Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Tryptamine

From Wikipedia, the free encyclopedia
Metabolite of the amino acid tryptophan
This article is about the specific substance. For the class of substances, seesubstituted tryptamine.

Pharmaceutical compound
Tryptamine
Clinical data
Other namesT; Triptamine; 3-(2-Aminoethyl)indole; 2-(3-Indolyl)ethylamine; Indolylethylamine; Indolethylamine; PAL-235; PAL235
Routes of
administration
Intravenous injection[1][2][3]
Drug classSerotonin receptor agonist;Trace amine-associated receptor 1 (TAAR1)agonist;Serotonin–norepinephrine–dopamine releasing agent;Serotonergic psychedelic;Hallucinogen
ATC code
  • None
Legal status
Legal status
  • Legal or unregulated
Pharmacokinetic data
BioavailabilityOral: Very low
MetabolismVery rapid (oxidative deamination byMAOTooltip monoamine oxidase)[4][5][2][3]
MetabolitesIndole-3-acetic acid (IAA)
Onset of actionIVTooltip Intravenous injection: Very rapid[4][5][2][3]
Eliminationhalf-lifeVery short[4][5][2][3]
Duration of actionIVTooltip Intravenous injection: Very short[4][5][2][3]
ExcretionUrine[3][6][7]
Identifiers
  • 2-(1H-indol-3-yl)ethan-1-amine
CAS Number
PubChemCID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
CompTox Dashboard(EPA)
ECHA InfoCard100.000.464Edit this at Wikidata
Chemical and physical data
FormulaC10H12N2
Molar mass160.220 g·mol−1
3D model (JSmol)
Melting point118 °C (244 °F)[8]
Boiling point137 °C (279 °F) (0.15 mmHg)[8]
Solubility in waterNegligible mg/mL (20 °C)
  • c1ccc2c(c1)c(c[nH]2)CCN
  • InChI=1S/C10H12N2/c11-6-5-8-7-12-10-4-2-1-3-9(8)10/h1-4,7,12H,5-6,11H2 checkY
  • Key:APJYDQYYACXCRM-UHFFFAOYSA-N ☒N

Tryptamine, also known as2-(3-indolyl)ethylamine, is anindolaminemetabolite of theessential amino acidtryptophan.[9][10] The chemical structure is defined by anindole—a fusedbenzene andpyrrole ring, and a 2-aminoethyl group at the second carbon (third aromatic atom, with the first one being theheterocyclic nitrogen).[9] The structure of tryptamine is a shared feature of certain aminergicneuromodulators includingmelatonin,serotonin,bufotenin and psychedelic derivatives such asdimethyltryptamine (DMT),psilocybin,psilocin andothers.[11][12][13]

Tryptamine has been shown to activateserotonin receptors[5][14] andtrace amine-associated receptors expressed in the mammalian brain, and regulates the activity ofdopaminergic,serotonergic andglutamatergic systems.[15][16] In the human gut, bacteria convert dietary tryptophan to tryptamine, which activates5-HT4 receptors and regulates gastrointestinal motility.[10][17][18]

Multiple tryptamine-derived drugs have been developed to treatmigraines, while trace amine-associated receptors are being explored as a potential treatment target for neuropsychiatric disorders.[19][20][21]

Natural occurrences

[edit]

For a list of plants, fungi and animals containing tryptamines, seeList of psychoactive plants andList of naturally occurring tryptamines.

Mammalian brain

[edit]

Endogenous levels of tryptamine in the mammalian brain are less than 100 ng per gram of tissue.[12][16] However, elevated levels of trace amines have been observed in patients with certain neuropsychiatric disorders taking medications, such asbipolar depression andschizophrenia.[22]

Mammalian gut microbiome

[edit]

Tryptamine is relatively abundant in thegut and feces of humans and rodents.[10][17]Commensal bacteria, includingRuminococcus gnavus andClostridium sporogenes in thegastrointestinal tract, possess theenzyme tryptophandecarboxylase, which aids in the conversion of dietary tryptophan to tryptamine.[10] Tryptamine is aligand for gut epithelial serotonin type 4 (5-HT4) receptors and regulates gastrointestinalelectrolyte balance through colonic secretions.[17]

Metabolism

[edit]

Biosynthesis

[edit]

To yield tryptaminein vivo, tryptophan decarboxylase removes the carboxylic acid group on the α-carbon oftryptophan.[12] Synthetic modifications to tryptamine can produceserotonin andmelatonin; however, these pathways do not occur naturally as the main pathway for endogenous neurotransmitter synthesis.[23]

Catabolism

[edit]

Monoamine oxidases A and B are the primary enzymes involved in tryptamine metabolism to produceindole-3-acetaldehyde, however it is unclear which isoform is specific to tryptamine degradation.[24]

Figure

[edit]
Conversion of tryptophan to tryptamine, followed by its degradation to indole-3-acetaldehyde.

Biological activity

[edit]
Tryptamine target activities
TargetAffinity (Ki, nM)Species
5-HT1A32–105 (Ki)
899–>10,000 (EC50Tooltip half-maximal effective concentration)
ND (EmaxTooltip maximal efficacy)
Human
Human
Human
5-HT1B36–525Human
5-HT1D23–521Human
5-HT1E2,559Human
5-HT1F2,409Human
5-HT2A37–4,070 (Ki)
7.4–257 (EC50)
71–104% (
Emax)
Human
Human
Human
5-HT2B25–113 (Ki)
29.5 (EC50)
92% (
Emax)
Human
Human
Human
5-HT2C17–3,000 (Ki)
1.17–45.7 (EC50)
85–108% (
Emax)
Human
Human
Human
5-HT3NDND
5-HT4>10,000
13,500 (EC50)
96% (
Emax)
Mouse
Pig
Pig
5-HT5ANDND
5-HT670–438Human
5-HT7148–158Human
α2A19,000Rat
TAAR1Tooltip Human trace amine-associated receptor 11,400 (Ki)
2,700 (EC50)
117% (
Emax)
130 (Ki)
410 (
EC50)
91% (
Emax)
1,084 (Ki)
2,210–21,000 (
EC50)
73% (
Emax)
Mouse
Mouse
Mouse
Rat
Rat
Rat
Human
Human
Human
SERTTooltip Serotonin transporter32.6 (EC50)aRat
NETTooltip Norepinephrine transporter716 (EC50)aRat
DATTooltip Dopamine transporter164 (EC50)aRat
Note: The smaller the value, the more avidly the compound binds to or activates the site.Footnotes:a =Neurotransmitter release.Refs:Main:[25][26]Additional:[27][28][29][5][30][31][32][33][34][35][36]

Serotonin receptor agonist

[edit]

Tryptamine is known to act as aserotonin receptoragonist, although itspotency is limited by rapidinactivation bymonoamine oxidases.[4][5][14][37][38][39] It has specifically been found to act as afull agonist of theserotonin5-HT2A receptor (EC50Tooltip half-maximal effective concentration = 7.36 ± 0.56 nM;Emax = 104 ± 4%).[5] Tryptamine was of much lower potency in stimulating the 5-HT2A receptorβ-arrestin pathway (EC50 = 3,485 ± 234 nM; Emax = 108 ± 16%).[5] In contrast to the 5-HT2A receptor, tryptamine was found to be inactive at the serotonin5-HT1A receptor.[5]

Gastrointestinal motility

[edit]

Tryptamine produced by mutualistic bacteria in the human gut activates serotonin GPCRs ubiquitously expressed along the colonic epithelium.[17] Upon tryptamine binding, the activated 5-HT4 receptor undergoes a conformational change which allows itsGs alpha subunit to exchangeGDP forGTP, and its liberation from the 5-HT4 receptor and βγ subunit.[17] GTP-bound Gs activatesadenylyl cyclase, which catalyzes the conversion ofATP intocyclic adenosine monophosphate (cAMP).[17] cAMP opens chloride and potassium ion channels to drive colonic electrolyte secretion and promote intestinal motility.[18][40]

Tryptamine promotes intestinal motility by activating serotonin receptors in the gut to increase colonic secretions.

Monoamine releasing agent

[edit]

Tryptamine has been found to act as amonoamine releasing agent (MRA).[4][5][30] It is a releaser ofserotonin,dopamine, andnorepinephrine, in that order of potency (EC50 = 32.6 nM, 164 nM, and 716 nM, respectively).[4][5][30] That is, it acts as aserotonin–norepinephrine–dopamine releasing agent (SNDRA).[5][30]

Monoamine release of tryptamine and related agents (EC50Tooltip Half maximal effective concentration, nM)
Compound5-HTTooltip SerotoninNETooltip NorepinephrineDATooltip DopamineRef
Tryptamine32.6716164[5][30]
Serotonin44.4>10,000≥1,960[41][42]
Phenethylamine>10,00010.939.5[43][44][42]
Tyramine2,77540.6119[41][42]
5-Methoxytryptamine2,169>10,000>10,000[30]
N-Methyltryptamine22.4733321[5]
Dimethyltryptamine1144,166>10,000[5]
Psilocin561>10,000>10,000[45][5]
Bufotenin30.5>10,000>10,000[5]
5-MeO-DMT>10,000>10,000>10,000[46]
α-Methyltryptamine21.7–6879–11278.6–180[46]
α-Ethyltryptamine23.2640232[30]
D-Amphetamine698–1,7656.6–7.25.8–24.8[41][47]
Notes: The smaller the value, the more strongly the drug releases the neurotransmitter. Theassays were done in rat brainsynaptosomes and humanpotencies may be different. See alsoMonoamine releasing agent § Activity profiles for a larger table with more compounds.Refs:[48][49]

Monoaminergic activity enhancer

[edit]

Tryptamine is amonoaminergic activity enhancer (MAE) ofserotonin,norepinephrine, anddopamine in addition to itsserotonin receptoragonism.[50][51] That is, it enhances theaction potential-mediated release of thesemonoamine neurotransmitters.[50][51] The MAE actions of tryptamine and other MAEs may be mediated by TAAR1 agonism.[52][53]Synthetic and morepotent MAEs likebenzofuranylpropylaminopentane (BPAP) andindolylpropylaminopentane (IPAP) have beenderived from tryptamine.[50][51][54][55][56]

TAAR1 agonist

[edit]

Tryptamine is an agonist of thetrace amine-associated receptor 1 (TAAR1).[28] It is apotent TAAR1full agonist in rats, a weak TAAR1 full agonist in mice, and a very weak TAAR1partial agonist in humans.[28] Tryptamine may act as a traceneuromodulator in some species via activation of TAAR1 signaling.[28][57]

The TAAR1 is a stimulatoryG protein-coupled receptor (GPCR) that is weaklyexpressed in theintracellular compartment of bothpre- andpostsynaptic neurons.[16] TAAR1 agonists have been implicated in regulatingmonoaminergicneurotransmission, for instance by activatingG protein-coupled inwardly-rectifying potassium channels (GIRKs) and reducingneuronal firing via facilitation ofmembrane hyperpolarization through theefflux ofpotassium ions.[28][58]

TAAR1 agonists are under investigation as a novel treatment forneuropsychiatric conditions likeschizophrenia,drug addiction, anddepression.[16] The TAAR1 is expressed in brain structures associated with dopamine systems, such as theventral tegmental area (VTA) and serotonin systems in thedorsal raphe nuclei (DRN).[16] Additionally, the human TAAR1 gene is localized at 6q23.2 on the human chromosome, which is a susceptibilitylocus formood disorders and schizophrenia.[28] Activation of TAAR1 suggests a potential novel treatment forneuropsychiatric disorders, as TAAR1 agonists produceantipsychotic-like,anti-addictive, andantidepressant-like effects in animals.[58][28]

TAAR1 affinities and activational potencies of tryptamines[28][29]
CompoundHuman TAAR1Mouse TAAR1Rat TAAR1
EC50 (nM)Ki (nM)EC50 (nM)Ki (nM)EC50 (nM)Ki (nM)
Tryptamine21,000N/A2,7001,400410130
Serotonin>50,000N/A>50,000N/A5,200N/A
Psilocin>30,000N/A2,70017,0009201,400
Dimethyltryptamine>10,000N/A1,2003,3001,50022,000
Notes: (1)EC50 and Ki values are in nanomolar (nM). (2)EC50 reflects the concentration required to elicit 50% of the maximum TAAR1 response. (3) The smaller the Ki value, the stronger the compound binds to the receptor.

Effects in animals and humans

[edit]

In a published clinical study, tryptamine, at a total dose of 23 to 277 mg byintravenous infusion, producedhallucinogenic effects or perceptual disturbances similar to those of small doses oflysergic acid diethylamide (LSD).[1][2][5][3] It also produced other LSD-like effects, includingpupil dilation, increasedblood pressure, and increased force of thepatellar reflex.[1][5][2][3] Tryptamine producedside effects includingnausea,vomiting,dizziness,tingling sensations,sweating, and bodily heaviness among others as well.[1][3] Conversely, there were no changes inheart rate orrespiratory rate.[3] Theonset of the effects was rapid and theduration was very short.[4][5][2][3] This can be attributed to the very rapidmetabolism of tryptamine bymonoamine oxidase (MAO) and its very shortelimination half-life.[4][5][2][3]

In animals, tryptamine, alone and/or in combination with amonoamine oxidase inhibitor (MAOI), produces behavioral changes such ashyperlocomotion and reversal ofreserpine-inducedbehavioral depression.[1][4][59][60] In addition, it produces effects likehyperthermia,tachycardia,myoclonus, andseizures orconvulsions, among others.[1][4][59][60] Findings on tryptamine and thehead-twitch response in rodents have been mixed, with some studies reporting no effect,[61][62] some studies reporting induction of head twitches by tryptamine,[63][64][65] and others reporting that tryptamine actually antagonized5-hydroxytryptophan (5-HTP)-induced head twitches.[59][61] Another study found that combination of tryptamine with an MAOI dose-dependently produced head twitches.[66] Head twitches in rodents are a behavioral proxy of psychedelic-like effects.[67][68] Many of the effects of tryptamine can be reversed byserotonin receptor antagonists likemetergoline,metitepine (methiothepin), andcyproheptadine.[4][59][60][1] Conversely, the effects of tryptamine in animals are profoundly augmented by MAOIs due to inhibition of its metabolism.[4][60][1]

Tryptamine seems to also elevateprolactin andcortisol levels in animals and/or humans.[60]

TheLD50Tooltip median lethal dose values of tryptamine in animals include 100 mg/kg i.p. in mice, 500 mg/kg s.c. in mice, and 223 mg/kg i.p. in rats.[69]

Pharmacokinetics

[edit]

Tryptamine producedendogenously oradministered peripherally is readily able to cross theblood–brain barrier and enter thecentral nervous system.[60][59] This is in contrast toserotonin, which isperipherally selective.[60]

Tryptamine ismetabolized bymonoamine oxidase (MAO) to formindole-3-acetic acid (IAA).[60][4][59] Its metabolism is described as extremely rapid and itselimination half-life andduration as very short.[4][5][2][3] In addition, its duration is described as shorter than that ofdimethyltryptamine (DMT).[1] Brain tryptamine levels are increased up to 300-fold by MAOIs in animals.[59] In addition, the effects ofexogenous tryptamine are strongly augmented bymonoamine oxidase inhibitors (MAOIs).[4][59]

Tryptamine isexcreted inurine and its rate of urinary excretion has been reported to bepH-dependent.[3][6][7]

Chemistry

[edit]

Tryptamine is asubstituted tryptaminederivative andtrace amine and isstructurally related to theamino acidtryptophan.[2]

Properties

[edit]

The experimentallog P of tryptamine is 1.55.[69]

Synthesis

[edit]

Thechemical synthesis of tryptamine has been described.[2]

Derivatives

[edit]
Main article:Substituted tryptamine

Theendogenousmonoamine neurotransmittersserotonin (5-hydroxytryptamine or 5-HT) andmelatonin (5-methoxy-N-acetyltryptamine), as well as trace amines likeN-methyltryptamine (NMT),N,N-dimethyltryptamine (DMT), andbufotenin (N,N-dimethylserotonin), arederivatives of tryptamine.[2]

All tryptamine derivatives possess a modified 2-aminoethyl group and/or the addition of a substituent on the indole.

A variety of drugs, including bothnaturally occurring andpharmaceutical substances, are derivatives of tryptamine.[2] These include the tryptamine psychedelics likepsilocybin,psilocin, DMT, and5-MeO-DMT; tryptaminestimulants,entactogens, psychedelics, and/orantidepressants likeα-methyltryptamine (αMT) andα-ethyltryptamine (αET);triptanantimigraine agents likesumatriptan; certainantipsychotics likeoxypertine; and thesleep aidmelatonin.[2]

Various other drugs, includingergolines andlysergamides like the psychedeliclysergic acid diethylamide (LSD), the antimigraine agentsergotamine,dihydroergotamine, andmethysergide, and theantiparkinsonian agentsbromocriptine,cabergoline,lisuride, andpergolide;β-carbolines likeharmine (some of which aremonoamine oxidase inhibitors (MAOIs));Iboga alkaloids like thehallucinogenibogaine;yohimbans like theα2 blockeryohimbine; antipsychotics likeciclindole andflucindole; and the MAOI antidepressantmetralindole, can all be thought of ascyclized tryptamine derivatives.[2]

Drugs very closely related to tryptamines, but technically not tryptamines themselves, include certain triptans likeavitriptan andnaratriptan; the antipsychoticssertindole andtepirindole; and the MAOI antidepressantspirlindole andtetrindole.

See also

[edit]

References

[edit]
  1. ^abcdefghiMartin WR, Sloan JW (1977). "Pharmacology and Classification of LSD-like Hallucinogens".Drug Addiction II. Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 305–368.doi:10.1007/978-3-642-66709-1_3.ISBN 978-3-642-66711-4.MARTIN and SLOAN (1970) found that intravenously infused tryptamine increased blood pressure, dilated pupils, enhanced the patellar reflex, and produced perceptual distortions. [...] Tryptamine, but not DMT, increases locomotor activity in the mouse, while both antagonize reserpine depression (V ANE et al., 1961). [...] In the rat, tryptamine causes backward locomotion, Straub tail, bradypnea and dyspnea, and clonic convulsions (TEDESCHI et al., 1959). [...] Tryptamine produces a variety of changes in the cat causing signs of sympathetic activation including mydriasis, retraction of nictitating membrane, piloerection, motor signs such as extension of limbs and convulsions and affective changes such as hissing and snarling (LAIDLAW, 1912). [...]
  2. ^abcdefghijklmnopShulgin A (1997).Tihkal: The Continuation. Transform Press.#53. T.ISBN 978-0-9630096-9-2. Retrieved17 August 2024.(with 250 mg, intravenously) "Tryptamine was infused intravenously over a period of up to 7.5 minutes. Physical changes included an increases in blood pressure, in the amplitude of the patellar reflex, and in pupillary diameter. The subjective changes are not unlike those seen with small doses of LSD. A point-by-point comparison between the tryptamine and LSD syndromes reveals a close similarity which is consistent with the hypothesis that tryptamine and LSD have a common mode of action."
  3. ^abcdefghijklmnMartin WR, Sloan JW (1970). "Effects of infused tryptamine in man".Psychopharmacologia.18 (3):231–237.doi:10.1007/BF00412669.PMID 4922520.
  4. ^abcdefghijklmnopJones RS (1982). "Tryptamine: a neuromodulator or neurotransmitter in mammalian brain?".Progress in Neurobiology.19 (1–2):117–139.doi:10.1016/0301-0082(82)90023-5.PMID 6131482.
  5. ^abcdefghijklmnopqrstuvwBlough BE, Landavazo A, Decker AM, Partilla JS, Baumann MH, Rothman RB (October 2014)."Interaction of psychoactive tryptamines with biogenic amine transporters and serotonin receptor subtypes".Psychopharmacology.231 (21):4135–4144.doi:10.1007/s00213-014-3557-7.PMC 4194234.PMID 24800892.[Tryptamine (T): [...] Psychoactive effects: Psychoactive, short acting due to metabolism, increased blood pressure, similar to LSD
  6. ^abFranzen F, Gross H (June 1965). "Tryptamine, N,N-dimethyltryptamine, N,N-dimethyl-5-hydroxytryptamine and 5-methoxytryptamine in human blood and urine".Nature.206 (988): 1052.Bibcode:1965Natur.206.1052F.doi:10.1038/2061052a0.PMID 5839067.
  7. ^abPrice J (December 1975). "The dependence of tryptamine excretion on urinary pH".Clinica Chimica Acta; International Journal of Clinical Chemistry.65 (3):339–342.doi:10.1016/0009-8981(75)90259-4.PMID 1161.
  8. ^abLide DR, ed. (2005).CRC Handbook of Chemistry and Physics (85th ed.).CRC Press. pp. 3–564.ISBN 978-0-8493-0484-2.
  9. ^ab"Tryptamine".pubchem.ncbi.nlm.nih.gov. Retrieved2020-12-01.
  10. ^abcdJenkins TA, Nguyen JC, Polglaze KE, Bertrand PP (January 2016)."Influence of Tryptophan and Serotonin on Mood and Cognition with a Possible Role of the Gut-Brain Axis".Nutrients.8 (1): 56.doi:10.3390/nu8010056.PMC 4728667.PMID 26805875.
  11. ^Tylš F, Páleníček T, Horáček J (March 2014). "Psilocybin--summary of knowledge and new perspectives".European Neuropsychopharmacology.24 (3):342–356.doi:10.1016/j.euroneuro.2013.12.006.PMID 24444771.S2CID 10758314.
  12. ^abcTittarelli R, Mannocchi G, Pantano F, Romolo FS (January 2015)."Recreational use, analysis and toxicity of tryptamines".Current Neuropharmacology.13 (1):26–46.doi:10.2174/1570159X13666141210222409.PMC 4462041.PMID 26074742.
  13. ^"The Ayahuasca Phenomenon".MAPS. 21 November 2014. Retrieved2020-10-03.
  14. ^abMousseau DD (March 1993). "Tryptamine: a metabolite of tryptophan implicated in various neuropsychiatric disorders".Metabolic Brain Disease.8 (1):1–44.doi:10.1007/BF01000528.PMID 8098507.
  15. ^Khan MZ, Nawaz W (October 2016). "The emerging roles of human trace amines and human trace amine-associated receptors (hTAARs) in central nervous system".Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie.83:439–449.doi:10.1016/j.biopha.2016.07.002.PMID 27424325.
  16. ^abcdeBerry MD, Gainetdinov RR, Hoener MC, Shahid M (December 2017)."Pharmacology of human trace amine-associated receptors: Therapeutic opportunities and challenges".Pharmacology & Therapeutics.180:161–180.doi:10.1016/j.pharmthera.2017.07.002.PMID 28723415.S2CID 207366162.
  17. ^abcdefBhattarai Y, Williams BB, Battaglioli EJ, Whitaker WR, Till L, Grover M, et al. (June 2018)."Gut Microbiota-Produced Tryptamine Activates an Epithelial G-Protein-Coupled Receptor to Increase Colonic Secretion".Cell Host & Microbe.23 (6): 775–785.e5.doi:10.1016/j.chom.2018.05.004.PMC 6055526.PMID 29902441.
  18. ^abField M (April 2003)."Intestinal ion transport and the pathophysiology of diarrhea".The Journal of Clinical Investigation.111 (7):931–943.doi:10.1172/JCI200318326.PMC 152597.PMID 12671039.
  19. ^"Serotonin Receptor Agonists (Triptans)".LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases. 2012.PMID 31644023. Retrieved2020-10-15.
  20. ^"New Compound Related to Psychedelic Ibogaine Could Treat Addiction, Depression".UC Davis. 2020-12-09. Retrieved2020-12-11.
  21. ^Service RF."Chemists re-engineer a psychedelic to treat depression and addiction in rodents".Science Magazine. AAAS. Retrieved2020-12-11.
  22. ^Miller GM (January 2011)."The emerging role of trace amine-associated receptor 1 in the functional regulation of monoamine transporters and dopaminergic activity".Journal of Neurochemistry.116 (2):164–176.doi:10.1111/j.1471-4159.2010.07109.x.PMC 3005101.PMID 21073468.
  23. ^"Serotonin Synthesis and Metabolism".Sigma Aldrich. 2020.
  24. ^"MetaCyc L-tryptophan degradation VI (via tryptamine)".biocyc.org. Retrieved2020-12-11.
  25. ^"PDSP Database".UNC (in Zulu). Retrieved7 November 2024.
  26. ^Liu T."BindingDB BDBM50024210 1H-indole-3-ethanamine::2-(1H-indol-3-yl)ethanamine::2-(3-indolyl)ethylamine::CHEMBL6640::tryptamine".BindingDB. Retrieved7 November 2024.
  27. ^Toro-Sazo M, Brea J, Loza MI, Cimadevila M, Cassels BK (2019)."5-HT2 receptor binding, functional activity and selectivity in N-benzyltryptamines".PLOS ONE.14 (1) e0209804.Bibcode:2019PLoSO..1409804T.doi:10.1371/journal.pone.0209804.PMC 6328172.PMID 30629611.
  28. ^abcdefghGainetdinov RR, Hoener MC, Berry MD (July 2018)."Trace Amines and Their Receptors".Pharmacological Reviews.70 (3):549–620.doi:10.1124/pr.117.015305.PMID 29941461.S2CID 49411553.
  29. ^abSimmler LD, Buchy D, Chaboz S, Hoener MC, Liechti ME (April 2016)."In Vitro Characterization of Psychoactive Substances at Rat, Mouse, and Human Trace Amine-Associated Receptor 1"(PDF).The Journal of Pharmacology and Experimental Therapeutics.357 (1):134–144.doi:10.1124/jpet.115.229765.PMID 26791601. Archived fromthe original(PDF) on 9 May 2025.
  30. ^abcdefgBlough BE, Landavazo A, Partilla JS, Decker AM, Page KM, Baumann MH, et al. (October 2014)."Alpha-ethyltryptamines as dual dopamine-serotonin releasers".Bioorganic & Medicinal Chemistry Letters.24 (19):4754–4758.doi:10.1016/j.bmcl.2014.07.062.PMC 4211607.PMID 25193229.
  31. ^Porter RH, Benwell KR, Lamb H, Malcolm CS, Allen NH, Revell DF, et al. (September 1999)."Functional characterization of agonists at recombinant human 5-HT2A, 5-HT2B and 5-HT2C receptors in CHO-K1 cells".British Journal of Pharmacology.128 (1):13–20.doi:10.1038/sj.bjp.0702751.PMC 1571597.PMID 10498829.
  32. ^van Wijngaarden I, Soudijn W (1997). "5-HT2A, 5-HT2B and 5-HT2C receptor ligands".Pharmacochemistry Library. Vol. 27. Elsevier. pp. 161–197.doi:10.1016/s0165-7208(97)80013-x.ISBN 978-0-444-82041-9.
  33. ^Chen X, Li J, Yu L, Maule F, Chang L, Gallant JA, et al. (October 2023)."A cane toad (Rhinella marina) N-methyltransferase converts primary indolethylamines to tertiary psychedelic amines".The Journal of Biological Chemistry.299 (10) 105231.doi:10.1016/j.jbc.2023.105231.PMC 10570959.PMID 37690691.
  34. ^Chen X, Li J, Yu L, Dhananjaya D, Maule F, Cook S, et al. (10 March 2023)."Bioproduction platform using a novel cane toad (Rhinella marina) N-methyltransferase for psychedelic-inspired drug discovery"(PDF).Research Square.doi:10.21203/rs.3.rs-2667175/v1. Retrieved18 March 2025.
  35. ^Egan C, Grinde E, Dupre A, Roth BL, Hake M, Teitler M, et al. (February 2000). "Agonist high and low affinity state ratios predict drug intrinsic activity and a revised ternary complex mechanism at serotonin 5-HT(2A) and 5-HT(2C) receptors".Synapse.35 (2):144–150.doi:10.1002/(SICI)1098-2396(200002)35:2<144::AID-SYN7>3.0.CO;2-K.PMID 10611640.
  36. ^Medhurst AD, Kaumann AJ (November 1993)."Characterization of the 5-HT4 receptor mediating tachycardia in piglet isolated right atrium".British Journal of Pharmacology.110 (3):1023–1030.doi:10.1111/j.1476-5381.1993.tb13916.x.PMC 2175817.PMID 8298790.
  37. ^Anwar MA, Ford WR, Broadley KJ, Herbert AA (April 2012)."Vasoconstrictor and vasodilator responses to tryptamine of rat-isolated perfused mesentery: comparison with tyramine and β-phenylethylamine".British Journal of Pharmacology.165 (7):2191–2202.doi:10.1111/j.1476-5381.2011.01706.x.PMC 3413856.PMID 21958009.
  38. ^Bradley PB, Humphrey PP, Williams RH (April 1985)."Tryptamine-induced vasoconstrictor responses in rat caudal arteries are mediated predominantly via 5-hydroxytryptamine receptors".British Journal of Pharmacology.84 (4):919–925.doi:10.1111/j.1476-5381.1985.tb17386.x.PMC 1987057.PMID 3159458.
  39. ^Glennon RA (January 1987). "Central serotonin receptors as targets for drug research".Journal of Medicinal Chemistry.30 (1):1–12.doi:10.1021/jm00384a001.PMID 3543362.Table II. Affinities of Selected Phenalkylamines for 5-HT1 and 5-HT2 Binding Sites
  40. ^"Microbiome-Lax May Relieve Constipation".GEN - Genetic Engineering and Biotechnology News. 2018-06-15. Retrieved2020-12-11.
  41. ^abcRothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Carroll FI, et al. (January 2001). "Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin".Synapse.39 (1):32–41.doi:10.1002/1098-2396(20010101)39:1<32::AID-SYN5>3.0.CO;2-3.PMID 11071707.
  42. ^abcBlough B (July 2008)."Dopamine-releasing agents"(PDF). In Trudell ML, Izenwasser S (eds.).Dopamine Transporters: Chemistry, Biology and Pharmacology. Hoboken [NJ]: Wiley. pp. 305–320.ISBN 978-0-470-11790-3.OCLC 181862653.OL 18589888W.
  43. ^Reith ME, Blough BE, Hong WC, Jones KT, Schmitt KC, Baumann MH, et al. (February 2015)."Behavioral, biological, and chemical perspectives on atypical agents targeting the dopamine transporter".Drug and Alcohol Dependence.147:1–19.doi:10.1016/j.drugalcdep.2014.12.005.PMC 4297708.PMID 25548026.
  44. ^Forsyth AN (22 May 2012)."Synthesis and Biological Evaluation of Rigid Analogues of Methamphetamines".ScholarWorks@UNO. Retrieved4 November 2024.
  45. ^Rothman RB, Partilla JS, Baumann MH, Lightfoot-Siordia C, Blough BE (April 2012)."Studies of the biogenic amine transporters. 14. Identification of low-efficacy "partial" substrates for the biogenic amine transporters".The Journal of Pharmacology and Experimental Therapeutics.341 (1):251–262.doi:10.1124/jpet.111.188946.PMC 3364510.PMID 22271821.
  46. ^abNagai F, Nonaka R, Satoh Hisashi Kamimura K (March 2007). "The effects of non-medically used psychoactive drugs on monoamine neurotransmission in rat brain".European Journal of Pharmacology.559 (2–3):132–137.doi:10.1016/j.ejphar.2006.11.075.PMID 17223101.
  47. ^Baumann MH, Partilla JS, Lehner KR, Thorndike EB, Hoffman AF, Holy M, et al. (March 2013)."Powerful cocaine-like actions of 3,4-methylenedioxypyrovalerone (MDPV), a principal constituent of psychoactive 'bath salts' products".Neuropsychopharmacology.38 (4):552–562.doi:10.1038/npp.2012.204.PMC 3572453.PMID 23072836.
  48. ^Rothman RB, Baumann MH (October 2003). "Monoamine transporters and psychostimulant drugs".European Journal of Pharmacology.479 (1–3):23–40.doi:10.1016/j.ejphar.2003.08.054.PMID 14612135.
  49. ^Rothman RB, Baumann MH (2006). "Therapeutic potential of monoamine transporter substrates".Current Topics in Medicinal Chemistry.6 (17):1845–1859.doi:10.2174/156802606778249766.PMID 17017961.
  50. ^abcShimazu S, Miklya I (May 2004). "Pharmacological studies with endogenous enhancer substances: beta-phenylethylamine, tryptamine, and their synthetic derivatives".Progress in Neuro-Psychopharmacology & Biological Psychiatry.28 (3):421–427.doi:10.1016/j.pnpbp.2003.11.016.PMID 15093948.S2CID 37564231.
  51. ^abcKnoll J (August 2003). "Enhancer regulation/endogenous and synthetic enhancer compounds: a neurochemical concept of the innate and acquired drives".Neurochemical Research.28 (8):1275–1297.doi:10.1023/a:1024224311289.PMID 12834268.
  52. ^Harsing LG, Knoll J, Miklya I (August 2022)."Enhancer Regulation of Dopaminergic Neurochemical Transmission in the Striatum".International Journal of Molecular Sciences.23 (15): 8543.doi:10.3390/ijms23158543.PMC 9369307.PMID 35955676.
  53. ^Harsing LG, Timar J, Miklya I (August 2023)."Striking Neurochemical and Behavioral Differences in the Mode of Action of Selegiline and Rasagiline".International Journal of Molecular Sciences.24 (17) 13334.doi:10.3390/ijms241713334.PMC 10487936.PMID 37686140.
  54. ^Knoll J (2001)."Antiaging compounds: (-)deprenyl (selegeline) and (-)1-(benzofuran-2-yl)-2-propylaminopentane, [(-)BPAP], a selective highly potent enhancer of the impulse propagation mediated release of catecholamine and serotonin in the brain".CNS Drug Reviews.7 (3):317–345.doi:10.1111/j.1527-3458.2001.tb00202.x.PMC 6494119.PMID 11607046.
  55. ^Yoneda F, Moto T, Sakae M, Ohde H, Knoll B, Miklya I, et al. (May 2001). "Structure-activity studies leading to (-)1-(benzofuran-2-yl)-2-propylaminopentane, ((-)BPAP), a highly potent, selective enhancer of the impulse propagation mediated release of catecholamines and serotonin in the brain".Bioorganic & Medicinal Chemistry.9 (5):1197–1212.doi:10.1016/s0968-0896(01)00002-5.PMID 11377178.
  56. ^Knoll J, Yoneda F, Knoll B, Ohde H, Miklya I (December 1999)."(-)1-(Benzofuran-2-yl)-2-propylaminopentane, [(-)BPAP], a selective enhancer of the impulse propagation mediated release of catecholamines and serotonin in the brain".British Journal of Pharmacology.128 (8):1723–1732.doi:10.1038/sj.bjp.0702995.PMC 1571822.PMID 10588928.
  57. ^Zucchi R, Chiellini G, Scanlan TS, Grandy DK (December 2006)."Trace amine-associated receptors and their ligands".British Journal of Pharmacology.149 (8):967–978.doi:10.1038/sj.bjp.0706948.PMC 2014643.PMID 17088868.
  58. ^abGrandy DK, Miller GM, Li JX (February 2016).""TAARgeting Addiction"--The Alamo Bears Witness to Another Revolution: An Overview of the Plenary Symposium of the 2015 Behavior, Biology and Chemistry Conference".Drug and Alcohol Dependence.159:9–16.doi:10.1016/j.drugalcdep.2015.11.014.PMC 4724540.PMID 26644139.
  59. ^abcdefghKellar KJ, Cascio CS (1986). "Tryptamine and Phenylethylamine Recognition Sites in Brain".Receptor Binding. Vol. 4. New Jersey: Humana Press. pp. 119–138.doi:10.1385/0-89603-078-4:119.ISBN 978-0-89603-078-7.
  60. ^abcdefghMurphy DL, Tamarkin L, Garrick NA, Taylor PL, Markey SP (1985). "Trace Indoleamines in the Central Nervous System".Neuropsychopharmacology of the Trace Amines. Totowa, NJ: Humana Press. pp. 343–360.doi:10.1007/978-1-4612-5010-4_36.ISBN 978-1-4612-9397-2.
  61. ^abJones RS (June 1981)."In vivo pharmacological studies on the interactions between tryptamine and 5-hydroxytryptamine".British Journal of Pharmacology.73 (2):485–493.doi:10.1111/j.1476-5381.1981.tb10447.x.PMC 2071674.PMID 6972243.
  62. ^Yamada J, Sugimoto Y, Horisaka K (January 1987). "The behavioural effects of intravenously administered tryptamine in mice".Neuropharmacology.26 (1):49–53.doi:10.1016/0028-3908(87)90043-8.PMID 3561719.
  63. ^Haberzettl R, Bert B, Fink H, Fox MA (November 2013)."Animal models of the serotonin syndrome: a systematic review".Behavioural Brain Research.256:328–345.doi:10.1016/j.bbr.2013.08.045.PMID 24004848.
  64. ^Sugimoto Y, Yamada J, Horisaka K (January 1986). "Effect of tryptamine on the behavior of mice".Journal of Pharmacobio-Dynamics.9 (1):68–73.doi:10.1248/bpb1978.9.68.PMID 2940357.
  65. ^Orikasa S, Sloley BD (1988). "Effects of 5,7-dihydroxytryptamine and 6-hydroxydopamine on head-twitch response induced by serotonin, p-chloroamphetamine, and tryptamine in mice".Psychopharmacology.95 (1):124–131.doi:10.1007/BF00212780.PMID 3133691.
  66. ^Irons J, Robinson CM, Marsden CA (1984). "5ht Involvement in Tryptamine Induced Behaviour in Mice".Neurobiology of the Trace Amines. Totowa, NJ: Humana Press. pp. 423–427.doi:10.1007/978-1-4612-5312-9_35.ISBN 978-1-4612-9781-9.
  67. ^Canal CE, Morgan D (2012)."Head-twitch response in rodents induced by the hallucinogen 2,5-dimethoxy-4-iodoamphetamine: a comprehensive history, a re-evaluation of mechanisms, and its utility as a model".Drug Testing and Analysis.4 (7–8):556–576.doi:10.1002/dta.1333.PMC 3722587.PMID 22517680.
  68. ^Kozlenkov A, González-Maeso J (2013). "Animal Models and Hallucinogenic Drugs".The Neuroscience of Hallucinations. New York, NY: Springer New York. pp. 253–277.doi:10.1007/978-1-4614-4121-2_14.ISBN 978-1-4614-4120-5.
  69. ^ab"Tryptamine".PubChem. Retrieved7 November 2024.

External links

[edit]
Amino acid-derived
Major excitatory /
inhibitory systems
Glutamate system
GABA system
Glycine system
GHB system
Biogenic amines
Monoamines
Trace amines
Others
Neuropeptides
Lipid-derived
Endocannabinoids
Neurosteroids
Nucleobase-derived
Nucleosides
Adenosine system
Vitamin-derived
Miscellaneous
Cholinergic system
Gasotransmitters
Candidates
Tryptamines
No ring subs.
4-Hydroxytryptamines
5-Hydroxytryptamines
5-Methoxytryptamines
Other ring subs.
α-Alkyltryptamines
Others
Cyclized
Bioisosteres
Phenethylamines
Scalines
2C-x
3C-x
DOx
4C-x
Ψ-PEA
MDxx
FLY
25x-NB (NBOMes)
Others
Cyclized
Lysergamides
  • Bioisosteres:JRT
Others
Natural sources
5-HT1
5-HT1A
5-HT1B
5-HT1D
5-HT1E
5-HT1F
5-HT2
5-HT2A
5-HT2B
5-HT2C
5-HT37
5-HT3
5-HT4
5-HT5A
5-HT6
5-HT7
TAAR1Tooltip Trace amine-associated receptor 1
Agonists
Endogenous
Exogenous
Antagonists
Inverse agonists
TAAR5Tooltip Trace amine-associated receptor 5
Agonists
Inverse agonists
Notes: (1) TAAR1 activity of ligands varies significantly between species. Some agents that are TAAR1 ligands in some species are not in other species. This navbox includes all TAAR1 ligands regardless of species. (2) See the individual pages for references, as well as theList of trace amines,TAAR, andTAAR1 pages.
See also:Receptor/signaling modulators
DRAsTooltip Dopamine releasing agents
NRAsTooltip Norepinephrine releasing agents
SRAsTooltip Serotonin releasing agents
Others
Tryptamines
4-Hydroxytryptamines
andesters/ethers
5-Hydroxy- and
5-methoxytryptamines
N-Acetyltryptamines
α-Alkyltryptamines
Cyclized tryptamines
Isotryptamines
Related compounds
Stimulants
Depressants
Hallucinogens
Entactogens
Psychiatric drugs
Others
Cocoa bean
Components
Types
Products
Processes
Industry
By country
Other topics
Retrieved from "https://en.wikipedia.org/w/index.php?title=Tryptamine&oldid=1323686567"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp