Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Trichothiodystrophy

From Wikipedia, the free encyclopedia
Medical condition
Trichothiodystrophy
Other namesAmish brittle hair syndrome, BIDS syndrome, brittle hair–intellectual impairment–decreased fertility–short stature syndrome[1]
This condition is inherited in an autosomal recessive manner.[1]
SpecialtyDermatology,medical genetics Edit this on Wikidata

Trichothiodystrophy (TTD) is anautosomal recessive inherited disorder characterised by brittle hair and intellectual impairment. The word breaks down intotricho – "hair",thio – "sulphur", anddystrophy – "wasting away" or literally "bad nourishment". TTD is associated with a range of symptoms connected with organs of theectoderm andneuroectoderm. TTD may be subclassified into four syndromes: Approximately half of all patients with trichothiodystrophy havephotosensitivity, which divides the classification into syndromes with or withoutphotosensitivity; BIDS and PBIDS, and IBIDS and PIBIDS. Modern covering usage is TTD-P (photosensitive), and TTD.[2]

Presentation

[edit]

Features of TTD can include photosensitivity, ichthyosis, brittle hair and nails, intellectual impairment, decreased fertility and short stature. A more subtle feature associated with this syndrome is a "tiger tail" banding pattern in hair shafts, seen in microscopy under polarized light.[3] The acronyms PIBIDS, IBIDS, BIDS and PBIDS give the initials of the words involved. BIDS syndrome, also called Amish brittle hair brain syndrome and hair-brain syndrome,[4] is anautosomalrecessive[5] inherited disease. It is nonphotosensitive. BIDS is characterized by brittle hair, intellectual impairment, decreased fertility, and short stature.[6]: 501  There is a photosensitive syndrome, PBIDS.[7]

BIDS is associated with the geneMPLKIP (TTDN1).[8] IBIDS syndrome, following the acronym from ichthyosis, brittle hair and nails, intellectual impairment and short stature, is theTay syndrome or sulfur-deficient brittle hair syndrome, first described by Tay in 1971.[9] (Chong Hai Tay was the Singaporean doctor who was the first doctor in South East Asia to have a disease named after him.[10]) Tay syndrome should not be confused with theTay–Sachs disease.[6]: 485 [11][12][13] It is anautosomalrecessive[14]congenital disease.[6]: 501 [15] In some cases, it can be diagnosed prenatally.[16] IBIDS syndrome is nonphotosensitive.

Cause

[edit]

The photosensitive form is referred to as PIBIDS, and is associated withERCC2/XPD[11] andERCC3.[17]

Photosensitive forms

[edit]

All photosensitive TTD syndromes have defects in thenucleotide excision repair (NER) pathway, which is a vital DNA repair system that removes many kinds of DNA lesions. This defect is not present in the nonphotosensitive TTD's.[18] These types of defects can result in other rare autosomal recessive diseases likexeroderma pigmentosum andCockayne syndrome.[19]

DNA repair

[edit]

Currently, mutations in four genes are recognized as causing the TTD phenotype, namelyTTDN1,ERCC3/XPB,ERCC2/XPD andTTDA.[20] Individuals with defects inXPB,XPD andTTDA are photosensitive, whereas those with a defect inTTDN1 are not. The three genes,XPB,XPD andTTDA, encode protein components of the multi-subunittranscription/repair factor IIH (TFIIH). This complex factor is an important decision maker inNER that opens theDNA double helix after damage is initially recognized. NER is a multi-step pathway that removes a variety of different DNA damages that alter normal base pairing, including both UV-induced damages and bulky chemical adducts. Features of premature aging often occur in individuals with mutational defects in genes specifying protein components of the NER pathway, including those with TTD[21] (seeDNA damage theory of aging).

Non-Photosensitive forms

[edit]

The non-photosensitive forms are caused byAARS1,CARS1,TTDN1,RNF113A,TARS1 andMARS1 genes.[22] The function ofAARS1,CARS1 andTARS1 gene are to charge tRNAs with amino acid.[23] According to one study, theTTDN1 gene plays role in mitosis.[24] Some study suggests that theRNF113A gene is a part ofspliceosome and it can terminate CXCR4 pathway throughCXCR4 Ubiquitination.[25][26][27]

RNF113A causesX-linked recessive form of TTD.[28]

Diagnosis

[edit]

The diagnosis of TTD can by made by showing low sulfur content by biochemical assay of hair shafts, also, it can by following findings:[29]

  • Trichoschisis (broken or split hairs)
  • Alternating light and dark bands called 'tiger-tail pattern' are found in the hair shaft, which can be detected by polarised light microscopy or trichoscopy.
  • A severely damaged or absent hair cuticle can be seen by electron microscopy scanning.

Treatment

[edit]

This disease doesn't have a cure, although it can be managed symptomatically.[30] Patients with Photosensetive forms should be provided with sun protection.[30][31]

See also

[edit]

References

[edit]
  1. ^ab"Trichothiodystrophy".Genetics Home Reference. Retrieved19 February 2018.
  2. ^Lambert WC, Gagna CE, Lambert MW (2010). "Trichothiodystrophy: Photosensitive, TTD-P, TTD, Tay Syndrome".Diseases of DNA Repair. Advances in Experimental Medicine and Biology. Vol. 685. pp. 106–10.doi:10.1007/978-1-4419-6448-9_10.ISBN 978-1-4419-6447-2.PMID 20687499.{{cite book}}: CS1 maint: multiple names: authors list (link)
  3. ^Liang, Christine; Kraemer, Kenneth H.; Morris, Andrea; Schiffmann, Raphael; Price, Vera H.; Menefee, Emory; DiGiovanna, John J. (February 2005). "Characterization of tiger tail banding and hair shaft abnormalities in trichothiodystrophy".Journal of the American Academy of Dermatology.52 (2):224–232.doi:10.1016/j.jaad.2004.09.013.PMID 15692466.
  4. ^Online Mendelian Inheritance in Man (OMIM):234050
  5. ^Baden, H. P.; Jackson, C. E.; Weiss, L.; Jimbow, K.; Lee, L.; Kubilus, J.; Gold, R. J. (Sep 1976)."The physicochemical properties of hair in the BIDS syndrome".American Journal of Human Genetics.28 (5):514–521.PMC 1685097.PMID 984047.
  6. ^abcFreedberg, et al. (2003).Fitzpatrick's Dermatology in General Medicine. (6th ed.). McGraw-Hill.ISBN 0-07-138076-0.
  7. ^Hashimo S, and Egly JM. Trichothiodystrophy view from the molecular basis of DNA repair transcription factor TF11H.www.oxfordjournals.org/content/18/R2/R224
  8. ^Nakabayashi K, Amann D, Ren Y, et al. (March 2005)."Identification of C7orf11 (TTDN1) gene mutations and genetic heterogeneity in nonphotosensitive trichothiodystrophy".Am. J. Hum. Genet.76 (3):510–6.doi:10.1086/428141.PMC 1196401.PMID 15645389.
  9. ^Tay CH (1971). "Ichthyosiform erythroderma, hair shaft abnormalities, and mental and growth retardation. A new recessive disorder".Arch Dermatol.104 (1):4–13.doi:10.1001/archderm.104.1.4.PMID 5120162.
  10. ^https://www.sma.org.sg/UploadedImg/files/Publications%20-%20SMA%20News/4506/Interview.pdf
  11. ^abOnline Mendelian Inheritance in Man (OMIM):601675
  12. ^Rapini, Ronald P.; Bolognia, Jean L.; Jorizzo, Joseph L. (2007).Dermatology: 2-Volume Set. St. Louis: Mosby.ISBN 978-1-4160-2999-1.
  13. ^Hashimoto S, and Egly JM, www.oxfordjournals.org/content/18/R2/R224
  14. ^Stefanini M, B. E.; Botta, E.; Lanzafame, M.; Orioli, D. (January 2010). "Trichothiodystrophy: from basic mechanisms to clinical implications".DNA Repair.9 (1):2–10.doi:10.1016/j.dnarep.2009.10.005.PMID 19931493.
  15. ^James, William; Berger, Timothy; Elston, Dirk (2005).Andrews' Diseases of the Skin: Clinical Dermatology (10th ed.). Saunders. p. 575.ISBN 978-0-7216-2921-6.
  16. ^Kleijer WJ, van der Sterre ML, Garritsen VH, Raams A, Jaspers NG (Dec 2007). "Prenatal diagnosis of xeroderma pigmentosum and trichothiodystrophy in 76 pregnancies at risk".Prenat. Diagn.27 (12):1133–1137.doi:10.1002/pd.1849.PMID 17880036.S2CID 23534246.
  17. ^Online Mendelian Inheritance in Man (OMIM):616390
  18. ^Hashimoto S, and Egly JMhttp://www.oxfordjournals.org/content/18/R2/R224[permanent dead link]
  19. ^Peserico, A.; Battistella, P. A.; Bertoli, P. (1 January 1992). "MRI of a very rare hereditary ectodermal dysplasia: PIBI(D)S".Neuroradiology.34 (4):316–317.doi:10.1007/BF00588190.PMID 1528442.S2CID 31063628.
  20. ^Theil AF, Hoeijmakers JH, Vermeulen W (2014). "TTDA: big impact of a small protein".Exp. Cell Res.329 (1):61–8.doi:10.1016/j.yexcr.2014.07.008.PMID 25016283.
  21. ^Edifizi D, Schumacher B (2015)."Genome Instability in Development and Aging: Insights from Nucleotide Excision Repair in Humans, Mice, and Worms".Biomolecules.5 (3):1855–69.doi:10.3390/biom5031855.PMC 4598778.PMID 26287260.
  22. ^"Orphanet : Diseases".www.orpha.net. Retrieved2025-02-27.
  23. ^Delarue, Marc (1995-02-01)."Aminoacyl-tRNA synthetases".Current Opinion in Structural Biology.5 (1):48–55.doi:10.1016/0959-440X(95)80008-O.ISSN 0959-440X.PMID 7773747.
  24. ^Zhang, Y.; Tian, Y.; Chen, Q.; Chen, D.; Zhai, Z.; Shu, H.-B. (2007-03-01)."TTDN1 is a Plk1-interacting protein involved in maintenance of cell cycle integrity".Cellular and Molecular Life Sciences.64 (5):632–640.doi:10.1007/s00018-007-6501-8.ISSN 1420-9071.PMC 11138413.PMID 17310276.
  25. ^Lear, Travis; Dunn, Sarah R.; McKelvey, Alison C.; Mir, Aazrin; Evankovich, John; Chen, Bill B.; Liu, Yuan (November 2017)."RING finger protein 113A regulates C-X-C chemokine receptor type 4 stability and signaling".American Journal of Physiology-Cell Physiology.313 (5):C584 –C592.doi:10.1152/ajpcell.00193.2017.ISSN 0363-6143.PMC 5792167.PMID 28978524.
  26. ^Zhang, Xiaofeng; Yan, Chuangye; Zhan, Xiechao; Li, Lijia; Lei, Jianlin; Shi, Yigong (March 2018)."Structure of the human activated spliceosome in three conformational states".Cell Research.28 (3):307–322.doi:10.1038/cr.2018.14.ISSN 1748-7838.PMC 5835773.PMID 29360106.
  27. ^Shostak, Kateryna; Jiang, Zheshen; Charloteaux, Benoit; Mayer, Alice; Habraken, Yvette; Tharun, Lars; Klein, Sebastian; Xu, Xinyi; Duong, Hong Quan; Vislovukh, Andrii; Close, Pierre; Florin, Alexandra; Rambow, Florian; Marine, Jean-Christophe; Büttner, Reinhard (2020-03-09)."The X-linked trichothiodystrophy-causing gene RNF113A links the spliceosome to cell survival upon DNA damage".Nature Communications.11 (1): 1270.Bibcode:2020NatCo..11.1270S.doi:10.1038/s41467-020-15003-7.ISSN 2041-1723.PMC 7062854.PMID 32152280.
  28. ^Corbett, Mark A.; Dudding-Byth, Tracy; Crock, Patricia A.; Botta, Elena; Christie, Louise M.; Nardo, Tiziana; Caligiuri, Giuseppina; Hobson, Lynne; Boyle, Jackie; Mansour, Albert; Friend, Kathryn L.; Crawford, Jo; Jackson, Graeme; Vandeleur, Lucianne; Hackett, Anna (2015-04-01)."A novel X-linked trichothiodystrophy associated with a nonsense mutation in RNF113A".Journal of Medical Genetics.52 (4):269–274.doi:10.1136/jmedgenet-2014-102418.ISSN 0022-2593.PMID 25612912.
  29. ^Hashimoto, Satoru; Egly, Jean Marc (2009-10-15)."Trichothiodystrophy view from the molecular basis of DNA repair/transcription factor TFIIH".Human Molecular Genetics.18 (R2):R224 –R230.doi:10.1093/hmg/ddp390.ISSN 0964-6906.PMID 19808800.
  30. ^abFaghri, S.; Tamura, D.; Kraemer, K. H.; DiGiovanna, J. J. (2008-10-01)."Trichothiodystrophy: a systematic review of 112 published cases characterises a wide spectrum of clinical manifestations".Journal of Medical Genetics.45 (10):609–621.doi:10.1136/jmg.2008.058743.ISSN 0022-2593.PMC 3459585.PMID 18603627.
  31. ^"Orphanet: Trichothiodystrophy".www.orpha.net. Retrieved2025-02-27.

External links

[edit]
Classification
External resources
Congenital malformations and deformations ofskin appendages
Nail disease
Hair disease
DNA replication
DNA repair
Nucleotide excision repair
MSI/DNA mismatch repair
MRN complex
Other
DNA repair
RecQ-associated
NER protein-associated
Lamin A/C
Other/related disorders
Retrieved from "https://en.wikipedia.org/w/index.php?title=Trichothiodystrophy&oldid=1296417242"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp