Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Yield surface

From Wikipedia, the free encyclopedia
(Redirected fromTresca yield criterion)
Geometric representation of material yield
Surfaces on which the invariantsI1{\displaystyle I_{1}},J2{\displaystyle J_{2}},J3{\displaystyle J_{3}} are constant. Plotted in principal stress space.

Ayield surface is a five-dimensional surface in the six-dimensional space ofstresses. The yield surface is usuallyconvex and the state of stress ofinside the yield surface is elastic. When the stress state lies on the surface the material is said to have reached itsyield point and the material is said to have becomeplastic. Further deformation of the material causes the stress state to remain on the yield surface, even though the shape and size of the surface may change as the plastic deformation evolves. This is because stress states that lie outside the yield surface are non-permissible inrate-independent plasticity, though not in some models ofviscoplasticity.[1]

The yield surface is usually expressed in terms of (and visualized in) a three-dimensionalprincipal stress space (σ1,σ2,σ3{\displaystyle \sigma _{1},\sigma _{2},\sigma _{3}}), a two- or three-dimensional space spanned bystress invariants (I1,J2,J3{\displaystyle I_{1},J_{2},J_{3}}) or a version of the three-dimensionalHaigh–Westergaard stress space. Thus we may write the equation of the yield surface (that is, the yield function) in the forms:

Invariants used to describe yield surfaces

[edit]
Surfaces on which the invariantsξ{\displaystyle \xi },ρ{\displaystyle \rho },θ{\displaystyle \theta } are constant. Plotted in principal stress space.

The first principal invariant (I1{\displaystyle I_{1}}) of theCauchy stress (σ{\displaystyle {\boldsymbol {\sigma }}}), and the second and third principal invariants (J2,J3{\displaystyle J_{2},J_{3}}) of thedeviatoric part (s{\displaystyle {\boldsymbol {s}}}) of the Cauchy stress are defined as:

I1=Tr(σ)=σ1+σ2+σ3J2=12s:s=16[(σ1σ2)2+(σ2σ3)2+(σ3σ1)2]J3=det(s)=13(ss):s=s1s2s3{\displaystyle {\begin{aligned}I_{1}&={\text{Tr}}({\boldsymbol {\sigma }})=\sigma _{1}+\sigma _{2}+\sigma _{3}\\J_{2}&={\tfrac {1}{2}}{\boldsymbol {s}}:{\boldsymbol {s}}={\tfrac {1}{6}}\left[(\sigma _{1}-\sigma _{2})^{2}+(\sigma _{2}-\sigma _{3})^{2}+(\sigma _{3}-\sigma _{1})^{2}\right]\\J_{3}&=\det({\boldsymbol {s}})={\tfrac {1}{3}}({\boldsymbol {s}}\cdot {\boldsymbol {s}}):{\boldsymbol {s}}=s_{1}s_{2}s_{3}\end{aligned}}}

where (σ1,σ2,σ3{\displaystyle \sigma _{1},\sigma _{2},\sigma _{3}}) are the principal values ofσ{\displaystyle {\boldsymbol {\sigma }}}, (s1,s2,s3{\displaystyle s_{1},s_{2},s_{3}}) are the principal values ofs{\displaystyle {\boldsymbol {s}}}, and

s=σI13I{\displaystyle {\boldsymbol {s}}={\boldsymbol {\sigma }}-{\tfrac {I_{1}}{3}}\,{\boldsymbol {I}}}

whereI{\displaystyle {\boldsymbol {I}}} is the identity matrix.

A related set of quantities, (p,q,r{\displaystyle p,q,r\,}), are usually used to describe yield surfaces forcohesive frictional materials such as rocks, soils, and ceramics. These are defined as

p=13 I1 :  q=3 J2=σeq ;  r=3(12J3)1/3{\displaystyle p={\tfrac {1}{3}}~I_{1}~:~~q={\sqrt {3~J_{2}}}=\sigma _{\mathrm {eq} }~;~~r=3\left({\tfrac {1}{2}}\,J_{3}\right)^{1/3}}

whereσeq{\displaystyle \sigma _{\mathrm {eq} }} is theequivalent stress. However, the possibility of negative values ofJ3{\displaystyle J_{3}} and the resulting imaginaryr{\displaystyle r} makes the use of these quantities problematic in practice.

Another related set of widely used invariants is (ξ,ρ,θ{\displaystyle \xi ,\rho ,\theta \,}) which describe acylindrical coordinate system (theHaigh–Westergaard coordinates). These are defined as:

ξ=13 I1=3 p ;  ρ=2J2=23 q ;  cos(3θ)=(rq)3=332 J3J23/2{\displaystyle \xi ={\tfrac {1}{\sqrt {3}}}~I_{1}={\sqrt {3}}~p~;~~\rho ={\sqrt {2J_{2}}}={\sqrt {\tfrac {2}{3}}}~q~;~~\cos(3\theta )=\left({\tfrac {r}{q}}\right)^{3}={\tfrac {3{\sqrt {3}}}{2}}~{\cfrac {J_{3}}{J_{2}^{3/2}}}}

Theξρ{\displaystyle \xi -\rho \,} plane is also called theRendulic plane. The angleθ{\displaystyle \theta } is called stress angle, the valuecos(3θ){\displaystyle \cos(3\theta )} is sometimes called theLode parameter[4][5][6] and the relation betweenθ{\displaystyle \theta } andJ2,J3{\displaystyle J_{2},J_{3}} was first given by Novozhilov V.V. in 1951,[7] see also[8]

The principal stresses and the Haigh–Westergaard coordinates are related by

[σ1σ2σ3]=13[ξξξ]+23 ρ [cosθcos(θ2π3)cos(θ+2π3)]=13[ξξξ]+23 ρ [cosθsin(π6θ)sin(π6+θ)].{\displaystyle {\begin{bmatrix}\sigma _{1}\\\sigma _{2}\\\sigma _{3}\end{bmatrix}}={\tfrac {1}{\sqrt {3}}}{\begin{bmatrix}\xi \\\xi \\\xi \end{bmatrix}}+{\sqrt {\tfrac {2}{3}}}~\rho ~{\begin{bmatrix}\cos \theta \\\cos \left(\theta -{\tfrac {2\pi }{3}}\right)\\\cos \left(\theta +{\tfrac {2\pi }{3}}\right)\end{bmatrix}}={\tfrac {1}{\sqrt {3}}}{\begin{bmatrix}\xi \\\xi \\\xi \end{bmatrix}}+{\sqrt {\tfrac {2}{3}}}~\rho ~{\begin{bmatrix}\cos \theta \\-\sin \left({\tfrac {\pi }{6}}-\theta \right)\\-\sin \left({\tfrac {\pi }{6}}+\theta \right)\end{bmatrix}}\,.}

A different definition of the Lode angle can also be found in the literature:[9]

sin(3θ)= 332 J3J23/2{\displaystyle \sin(3\theta )=~{\tfrac {3{\sqrt {3}}}{2}}~{\cfrac {J_{3}}{J_{2}^{3/2}}}}

in which case the ordered principal stresses (whereσ1σ2σ3{\displaystyle \sigma _{1}\geq \sigma _{2}\geq \sigma _{3}}) are related by[10]

[σ1σ2σ3]=13[ξξξ]+ρ2 [cosθsinθ32sinθ3sinθ3cosθ].{\displaystyle {\begin{bmatrix}\sigma _{1}\\\sigma _{2}\\\sigma _{3}\end{bmatrix}}={\tfrac {1}{\sqrt {3}}}{\begin{bmatrix}\xi \\\xi \\\xi \end{bmatrix}}+{\tfrac {\rho }{\sqrt {2}}}~{\begin{bmatrix}\cos \theta -{\tfrac {\sin \theta }{\sqrt {3}}}\\{\tfrac {2\sin \theta }{\sqrt {3}}}\\-{\tfrac {\sin \theta }{\sqrt {3}}}-\cos \theta \end{bmatrix}}\,.}

Note. It is incorrect (false) information that Chakrabarty did defineshear stress mode angle with sin(3Teta). Chakrabarty adopted Lode parameter with opposite sign than it has in the original Lode paper from 1926, see Page 59, formula (3) in the book «Chakrabarty, Jagabanduhu; 2006, Theory of Plasticity: Third edition, Elsevier, Amsterdam.». Actually, Chakrabarty defined shear stress mode angle with -sin(3Teta) just like it did for the first time V.V. Novozhilov in his work from 1951, Novozhilov V.V., «O связи между напряжениями и деформациями в нелинейно упругой среде» (On relations between stresses and strains in non-linear elastic media), Прикладная математика и механика, 1951, p. 183-194; https://pmm.ipmnet.ru/ru/get/1951/15-2/183-194. The first work in which rational arguments and discussion is delivered why it iswise and useful to define shear stress mode angle with sin(.) function, regardless of the sign of the angle theta, is the Ziolkowski’s work «Parametrization of Cauchy Stress Tensor Treated as Autonomous Object Using Isotropy Angle and Skewness Angle» from 2022, https://et.ippt.pan.pl/index.php/et/article/view/2210, where it is elucidated that adopting definition ofshear stress mode angle with sin(.) function physically means acceptingpure shears ascomparison reference states, and it is explained why it is very beneficial.[11]

Examples of yield surfaces

[edit]

There are several different yield surfaces known in engineering, and those most popular are listed below.

Tresca yield surface

[edit]

The Tresca yield criterion is taken to be the work ofHenri Tresca.[12] It is also known as themaximumshear stress theory (MSST) and the Tresca–Guest[13] (TG) criterion. In terms of the principal stresses the Tresca criterion is expressed as

12max(|σ1σ2|,|σ2σ3|,|σ3σ1|)=Ssy=12Sy{\displaystyle {\tfrac {1}{2}}{\max(|\sigma _{1}-\sigma _{2}|,|\sigma _{2}-\sigma _{3}|,|\sigma _{3}-\sigma _{1}|)=S_{sy}={\tfrac {1}{2}}S_{y}}\!}

WhereSsy{\displaystyle S_{sy}} is the yield strength in shear, andSy{\displaystyle S_{y}} is the tensile yield strength.

Figure 1 shows the Tresca–Guest yield surface in the three-dimensional space of principal stresses. It is aprism of six sides and having infinite length. This means that the material remains elastic when all three principal stresses are roughly equivalent (ahydrostatic pressure), no matter how much it is compressed or stretched. However, when one of the principal stresses becomes smaller (or larger) than the others the material is subject to shearing. In such situations, if the shear stress reaches the yield limit then the material enters the plastic domain. Figure 2 shows the Tresca–Guest yield surface in two-dimensional stress space, it is a cross section of the prism along theσ1,σ2{\displaystyle \sigma _{1},\sigma _{2}} plane.

Figure 1: View of Tresca–Guest yield surface in 3D space of principal stresses
Figure 2: Tresca–Guest yield surface in 2D space (σ1,σ2{\displaystyle \sigma _{1},\sigma _{2}})

von Mises yield surface

[edit]
Main article:von Mises yield criterion

The von Mises yield criterion is expressed in the principal stresses as

(σ1σ2)2+(σ2σ3)2+(σ3σ1)2=2Sy2{\displaystyle {(\sigma _{1}-\sigma _{2})^{2}+(\sigma _{2}-\sigma _{3})^{2}+(\sigma _{3}-\sigma _{1})^{2}=2{S_{y}}^{2}}\!}

whereSy{\displaystyle S_{y}} is the yield strength in uniaxial tension.

Figure 3 shows the von Mises yield surface in the three-dimensional space of principal stresses. It is a circularcylinder of infinite length with its axis inclined at equal angles to the three principal stresses. Figure 4 shows the von Mises yield surface in two-dimensional space compared with Tresca–Guest criterion. A cross section of the von Mises cylinder on the plane ofσ1,σ2{\displaystyle \sigma _{1},\sigma _{2}} produces theelliptical shape of the yield surface.

Figure 3: View of Huber–Mises–Hencky yield surface in 3D space of principal stresses
Figure 4: Comparison of Tresca–Guest and Huber–Mises–Hencky criteria in 2D space (σ1,σ2{\displaystyle \sigma _{1},\sigma _{2}})

Burzyński-Yagn criterion

[edit]

This criterion[14][15] reformulated as the function of the hydrostatic nodes with the coordinates1/γ1{\displaystyle 1/\gamma _{1}} and1/γ2{\displaystyle 1/\gamma _{2}}

3I2=σeqγ1I11γ1σeqγ2I11γ2{\displaystyle 3I_{2}'={\frac {\sigma _{\mathrm {eq} }-\gamma _{1}I_{1}}{1-\gamma _{1}}}{\frac {\sigma _{\mathrm {eq} }-\gamma _{2}I_{1}}{1-\gamma _{2}}}}

represents the general equation of a second order surface of revolution about the hydrostatic axis. Some special case are:[16]

The relations compression-tension and torsion-tension can be computed to

σσ+=11γ1γ2,(3τσ+)2=1(1γ1)(1γ2){\displaystyle {\frac {\sigma _{-}}{\sigma _{+}}}={\frac {1}{1-\gamma _{1}-\gamma _{2}}},\qquad {\bigg (}{\sqrt {3}}\,{\frac {\tau _{*}}{\sigma _{+}}}{\bigg )}^{2}={\frac {1}{(1-\gamma _{1})(1-\gamma _{2})}}}

The Poisson's ratios at tension and compression are obtained using

ν+in=1+2(γ1+γ2)3γ1γ22+γ1+γ2{\displaystyle \nu _{+}^{\mathrm {in} }={\frac {-1+2(\gamma _{1}+\gamma _{2})-3\gamma _{1}\gamma _{2}}{-2+\gamma _{1}+\gamma _{2}}}}
νin=1+γ12+γ22γ1γ2(2+γ1+γ2)(1+γ1+γ2){\displaystyle \nu _{-}^{\mathrm {in} }=-{\frac {-1+\gamma _{1}^{2}+\gamma _{2}^{2}-\gamma _{1}\,\gamma _{2}}{(-2+\gamma _{1}+\gamma _{2})\,(-1+\gamma _{1}+\gamma _{2})}}}

For ductile materials the restriction

ν+in[0.48,12]{\displaystyle \nu _{+}^{\mathrm {in} }\in {\bigg [}\,0.48,\,{\frac {1}{2}}\,{\bigg ]}}

is important. The application of rotationally symmetric criteria for brittle failure with

ν+in]1, ν+el]{\displaystyle \nu _{+}^{\mathrm {in} }\in ]-1,~\nu _{+}^{\mathrm {el} }\,]}

has not been studied sufficiently.[17]

The Burzyński-Yagn criterion is well suited for academic purposes. For practical applications, the third invariant of the deviator in the odd and even power should be introduced in the equation, e.g.:[18]

3I21+c3cos3θ+c6cos23θ1+c3+c6=σeqγ1I11γ1σeqγ2I11γ2{\displaystyle 3I_{2}'{\frac {1+c_{3}\cos 3\theta +c_{6}\cos ^{2}3\theta }{1+c_{3}+c_{6}}}={\frac {\sigma _{\mathrm {eq} }-\gamma _{1}I_{1}}{1-\gamma _{1}}}{\frac {\sigma _{\mathrm {eq} }-\gamma _{2}I_{1}}{1-\gamma _{2}}}}

Huber criterion

[edit]

The Huber criterion consists of the Beltrami ellipsoid and a scaled von Mises cylinder in the principal stress space,[19][20][21][22] see also[23][24]

3I2={σeqγ1I11γ1σeq+γ1I11+γ1,I1>0σeq1γ1σeq1+γ1,I10{\displaystyle 3\,I_{2}'=\left\{{\begin{array}{ll}\displaystyle {\frac {\sigma _{\mathrm {eq} }-\gamma _{1}\,I_{1}}{1-\gamma _{1}}}\,{\frac {\sigma _{\mathrm {eq} }+\gamma _{1}\,I_{1}}{1+\gamma _{1}}},&I_{1}>0\\[1em]\displaystyle {\frac {\sigma _{\mathrm {eq} }}{1-\gamma _{1}}}\,{\frac {\sigma _{\mathrm {eq} }}{1+\gamma _{1}}},&I_{1}\leq 0\end{array}}\right.}

withγ1[0,1[{\displaystyle \gamma _{1}\in [0,1[}. The transition between the surfaces in the cross sectionI1=0{\displaystyle I_{1}=0} is continuously differentiable.The criterion represents the "classical view" with respect to inelastic material behavior:

The Huber criterion can be used as a yield surface with an empirical restriction for Poisson's ratio at tensionν+in[0.48,1/2]{\displaystyle \nu _{+}^{\mathrm {in} }\in [0.48,1/2]}, which leads toγ1[0,0.1155]{\displaystyle \gamma _{1}\in [0,0.1155]}.

Huber criterion withγ1=1/3{\displaystyle \gamma _{1}=1/{\sqrt {3}}} and modified Huber criterion withγ1=(1+5)/6{\displaystyle \gamma _{1}=(1+{\sqrt {5}})/6} andγ2=(15)/6{\displaystyle \gamma _{2}=(1-{\sqrt {5}})/6} in the Burzyński-plane: setting according the normal stress hypothesis (ν+in=0{\displaystyle \nu _{+}^{\mathrm {in} }=0}). The von Mises criterion (νin=ν+in=1/2{\displaystyle \nu _{-}^{\mathrm {in} }=\nu _{+}^{\mathrm {in} }=1/2}) is shown for comparison. C - uniaxial compression, Cc - biaxial compression in the stress relation 1:2, CC - equibiaxial compression, CCC - hydrostatic compression, S or TC - shear, T - uniaxial tension, Tt - biaxial tension in the stress relation 1:2, TT - equibiaxial tension, TTT - hydrostatic tension.

The modified Huber criterion,[25][24] see also,[26] cf.[27]

3I2={σeqγ1I11γ1σeqγ2I11γ2,I1>dσ+σeq2(1γ1γ2)2,I1dσ+{\displaystyle 3\,I_{2}'=\left\{{\begin{array}{ll}\displaystyle {\frac {\sigma _{\mathrm {eq} }-\gamma _{1}\,I_{1}}{1-\gamma _{1}}}\,{\frac {\sigma _{\mathrm {eq} }-\gamma _{2}\,I_{1}}{1-\gamma _{2}}},&I_{1}>-d\,\sigma _{\mathrm {+} }\\[1em]\displaystyle {\frac {\sigma _{\mathrm {eq} }^{2}}{(1-\gamma _{1}-\gamma _{2})^{2}}},&I_{1}\leq -d\,\sigma _{\mathrm {+} }\end{array}}\right.}

consists of the Schleicher ellipsoid with the restriction of Poisson's ratio at compression

νin=1+γ12+γ22γ1γ2(2+γ1+γ2)(1+γ1+γ2)=12{\displaystyle \nu _{-}^{\mathrm {in} }=-{\frac {-1+\gamma _{1}^{2}+\gamma _{2}^{2}-\gamma _{1}\,\gamma _{2}}{(-2+\gamma _{1}+\gamma _{2})\,(-1+\gamma _{1}+\gamma _{2})}}={\frac {1}{2}}}

and a cylinder with theC1{\displaystyle C^{1}}-transition in the cross sectionI1=dσ+{\displaystyle I_{1}=-d\,\sigma _{\mathrm {+} }}. The second setting for the parametersγ1[0,1[{\displaystyle \gamma _{1}\in [0,1[} andγ2<0{\displaystyle \gamma _{2}<0} follows with the compression / tension relation

d=σσ+=11γ1γ21{\displaystyle d={\frac {\sigma _{-}}{\sigma _{+}}}={\frac {1}{1-\gamma _{1}-\gamma _{2}}}\geq 1}

The modified Huber criterion can be better fitted to the measured data as the Huber criterion. For settingν+in=0.48{\displaystyle \nu _{+}^{\mathrm {in} }=0.48} it followsγ1=0.0880{\displaystyle \gamma _{1}=0.0880} andγ2=0.0747{\displaystyle \gamma _{2}=-0.0747}.

The Huber criterion and the modified Huber criterion should be preferred to the von Mises criterion since one obtains safer results in the regionI1>σ+{\displaystyle I_{1}>\sigma _{\mathrm {+} }}.For practical applications the third invariant of the deviatorI3{\displaystyle I_{3}'} should be considered in these criteria.[24]

Mohr–Coulomb yield surface

[edit]
Main article:Mohr–Coulomb theory

TheMohr–Coulomb yield (failure) criterion is similar to the Tresca criterion, with additional provisions for materials with different tensile and compressive yield strengths. This model is often used to modelconcrete,soil orgranular materials. The Mohr–Coulomb yield criterion may be expressed as:

m+12max(|σ1σ2|+K(σ1+σ2) ,  |σ1σ3|+K(σ1+σ3) ,  |σ2σ3|+K(σ2+σ3))=Syc{\displaystyle {\frac {m+1}{2}}\max {\Big (}|\sigma _{1}-\sigma _{2}|+K(\sigma _{1}+\sigma _{2})~,~~|\sigma _{1}-\sigma _{3}|+K(\sigma _{1}+\sigma _{3})~,~~|\sigma _{2}-\sigma _{3}|+K(\sigma _{2}+\sigma _{3}){\Big )}=S_{yc}}

where

m=SycSyt;K=m1m+1{\displaystyle m={\frac {S_{yc}}{S_{yt}}};K={\frac {m-1}{m+1}}}

and the parametersSyc{\displaystyle S_{yc}} andSyt{\displaystyle S_{yt}} are the yield (failure) stresses of the material in uniaxial compression and tension, respectively. The formula reduces to the Tresca criterion ifSyc=Syt{\displaystyle S_{yc}=S_{yt}}.

Figure 5 shows Mohr–Coulomb yield surface in the three-dimensional space of principal stresses. It is a conical prism andK{\displaystyle K} determines the inclination angle of conical surface. Figure 6 shows Mohr–Coulomb yield surface in two-dimensional stress space. In Figure 6Rr{\displaystyle R_{r}} andRc{\displaystyle R_{c}} is used forSyt{\displaystyle S_{yt}} andSyc{\displaystyle S_{yc}}, respectively, in the formula. It is a cross section of this conical prism on the plane ofσ1,σ2{\displaystyle \sigma _{1},\sigma _{2}}. In Figure 6 Rr and Rc are used for Syc and Syt, respectively, in the formula.

Figure 5: View of Mohr–Coulomb yield surface in 3D space of principal stresses
Figure 6: Mohr–Coulomb yield surface in 2D space (σ1,σ2{\displaystyle \sigma _{1},\sigma _{2}})

Drucker–Prager yield surface

[edit]
Main article:Drucker Prager yield criterion

TheDrucker–Prager yield criterion is similar to the von Mises yield criterion, with provisions for handling materials with differing tensile and compressive yield strengths. This criterion is most often used forconcrete where both normal and shear stresses can determine failure. The Drucker–Prager yield criterion may be expressed as

(m12)(σ1+σ2+σ3)+(m+12)(σ1σ2)2+(σ2σ3)2+(σ3σ1)22=Syc{\displaystyle {\bigg (}{\frac {m-1}{2}}{\bigg )}(\sigma _{1}+\sigma _{2}+\sigma _{3})+{\bigg (}{\frac {m+1}{2}}{\bigg )}{\sqrt {\frac {(\sigma _{1}-\sigma _{2})^{2}+(\sigma _{2}-\sigma _{3})^{2}+(\sigma _{3}-\sigma _{1})^{2}}{2}}}=S_{yc}}

where

m=SycSyt{\displaystyle m={\frac {S_{yc}}{S_{yt}}}}

andSyc{\displaystyle S_{yc}},Syt{\displaystyle S_{yt}} are the uniaxial yield stresses in compression and tension respectively. The formula reduces to the von Mises equation ifSyc=Syt{\displaystyle S_{yc}=S_{yt}}.

Figure 7 shows Drucker–Prager yield surface in the three-dimensional space of principal stresses. It is a regularcone. Figure 8 shows Drucker–Prager yield surface in two-dimensional space. The elliptical elastic domain is a cross section of the cone on the plane ofσ1,σ2{\displaystyle \sigma _{1},\sigma _{2}}; it can be chosen to intersect the Mohr–Coulomb yield surface in different number of vertices. One choice is to intersect the Mohr–Coulomb yield surface at three vertices on either side of theσ1=σ2{\displaystyle \sigma _{1}=-\sigma _{2}} line, but usually selected by convention to be those in the compression regime.[28] Another choice is to intersect the Mohr–Coulomb yield surface at four vertices on both axes (uniaxial fit) or at two vertices on the diagonalσ1=σ2{\displaystyle \sigma _{1}=\sigma _{2}} (biaxial fit).[29] The Drucker-Prager yield criterion is also commonly expressed in terms of thematerial cohesion and friction angle.

Figure 7: View of Drucker–Prager yield surface in 3D space of principal stresses
Figure 8: View of Drucker–Prager yield surface in 2D space of principal stresses

Bresler–Pister yield surface

[edit]
Main article:Bresler Pister yield criterion

The Bresler–Pister yield criterion is an extension of theDrucker Prager yield criterion that uses three parameters, and has additional terms for materials that yield under hydrostatic compression.In terms of the principal stresses, this yield criterion may be expressed as

Syc=12[(σ1σ2)2+(σ2σ3)2+(σ3σ1)2]1/2c0c1 (σ1+σ2+σ3)c2 (σ1+σ2+σ3)2{\displaystyle S_{yc}={\tfrac {1}{\sqrt {2}}}\left[(\sigma _{1}-\sigma _{2})^{2}+(\sigma _{2}-\sigma _{3})^{2}+(\sigma _{3}-\sigma _{1})^{2}\right]^{1/2}-c_{0}-c_{1}~(\sigma _{1}+\sigma _{2}+\sigma _{3})-c_{2}~(\sigma _{1}+\sigma _{2}+\sigma _{3})^{2}}

wherec0,c1,c2{\displaystyle c_{0},c_{1},c_{2}} are material constants. The additional parameterc2{\displaystyle c_{2}} gives the yield surface anellipsoidal cross section when viewed from a direction perpendicular to its axis. Ifσc{\displaystyle \sigma _{c}} is the yield stress in uniaxial compression,σt{\displaystyle \sigma _{t}} is the yield stress in uniaxial tension, andσb{\displaystyle \sigma _{b}} is the yield stress in biaxial compression, the parameters can be expressed as

c1=(σtσc(σt+σc))(4σb2σb(σc+σt)+σcσt4σb2+2σb(σtσc)σcσt)c2=(1(σt+σc))(σb(3σtσc)2σcσt4σb2+2σb(σtσc)σcσt)c0=c1σcc2σc2{\displaystyle {\begin{aligned}c_{1}=&\left({\cfrac {\sigma _{t}-\sigma _{c}}{(\sigma _{t}+\sigma _{c})}}\right)\left({\cfrac {4\sigma _{b}^{2}-\sigma _{b}(\sigma _{c}+\sigma _{t})+\sigma _{c}\sigma _{t}}{4\sigma _{b}^{2}+2\sigma _{b}(\sigma _{t}-\sigma _{c})-\sigma _{c}\sigma _{t}}}\right)\\c_{2}=&\left({\cfrac {1}{(\sigma _{t}+\sigma _{c})}}\right)\left({\cfrac {\sigma _{b}(3\sigma _{t}-\sigma _{c})-2\sigma _{c}\sigma _{t}}{4\sigma _{b}^{2}+2\sigma _{b}(\sigma _{t}-\sigma _{c})-\sigma _{c}\sigma _{t}}}\right)\\c_{0}=&c_{1}\sigma _{c}-c_{2}\sigma _{c}^{2}\end{aligned}}}
Figure 9: View of Bresler–Pister yield surface in 3D space of principal stresses
Figure 10: Bresler–Pister yield surface in 2D space (σ1,σ2{\displaystyle \sigma _{1},\sigma _{2}})

Willam–Warnke yield surface

[edit]
Main article:Willam Warnke yield criterion

TheWillam–Warnke yield criterion is a three-parameter smoothed version of theMohr–Coulomb yield criterion that has similarities in form to theDrucker–Prager andBresler–Pister yield criteria.

The yield criterion has the functional form

f(I1,J2,J3)=0 .{\displaystyle f(I_{1},J_{2},J_{3})=0~.}

However, it is more commonly expressed in Haigh–Westergaard coordinates as

f(ξ,ρ,θ)=0 .{\displaystyle f(\xi ,\rho ,\theta )=0~.}

The cross-section of the surface when viewed along its axis is a smoothed triangle (unlike Mohr–Coulomb). The Willam–Warnke yield surface is convex and has unique and well defined first and second derivatives on every point of its surface. Therefore, the Willam–Warnke model is computationally robust and has been used for a variety of cohesive-frictional materials.

Figure 11: View of Willam–Warnke yield surface in 3D space of principal stresses
Figure 12: Willam–Warnke yield surface in theπ{\displaystyle \pi }-plane

Podgórski and Rosendahl trigonometric yield surfaces

[edit]

Normalized with respect to the uniaxial tensile stressσeq=σ+{\displaystyle \sigma _{\mathrm {eq} }=\sigma _{+}}, the Podgórski criterion[30] as function of the stress angleθ{\displaystyle \theta } reads

σeq=3I2Ω3(θ,β3,χ3)Ω3(0,β3,χ3),{\displaystyle \sigma _{\mathrm {eq} }={\sqrt {3\,I_{2}'}}\,{\frac {\Omega _{3}(\theta ,\beta _{3},\chi _{3})}{\Omega _{3}(0,\beta _{3},\chi _{3})}},}

with the shape function of trigonal symmetry in theπ{\displaystyle \pi }-plane

Ω3(θ,β3,χ3)=cos[13(πβ3arccos[sin(χ3π2)cos3θ])],β3[0,1],χ3[1,1].{\displaystyle \Omega _{3}(\theta ,\beta _{3},\chi _{3})=\cos \left[\displaystyle {\frac {1}{3}}\left(\pi \beta _{3}-\arccos[\,\sin(\chi _{3}\,{\frac {\pi }{2}})\,\!\cos 3\,\theta \,]\right)\right],\qquad \beta _{3}\in [0,\,1],\quad \chi _{3}\in [-1,\,1].}

It contains the criteria of von Mises (circle in theπ{\displaystyle \pi }-plane,β3=[0,1]{\displaystyle \beta _{3}=[0,\,1]},χ3=0{\displaystyle \chi _{3}=0}), Tresca (regular hexagon,β3=1/2{\displaystyle \beta _{3}=1/2},χ3={1,1}{\displaystyle \chi _{3}=\{1,-1\}}), Mariotte (regular triangle,β3={0,1}{\displaystyle \beta _{3}=\{0,1\}},χ3={1,1}{\displaystyle \chi _{3}=\{1,-1\}}), Ivlev[31] (regular triangle,β3={1,0}{\displaystyle \beta _{3}=\{1,0\}},χ3={1,1}{\displaystyle \chi _{3}=\{1,-1\}}) and also the cubic criterion of Sayir[32] (the Ottosen criterion[33]) withβ3={0,1}{\displaystyle \beta _{3}=\{0,1\}} and the isotoxal (equilateral) hexagons of the Capurso criterion[31][32][34] withχ3={1,1}{\displaystyle \chi _{3}=\{1,-1\}}. The von Mises - Tresca transition[35] follows withβ3=1/2{\displaystyle \beta _{3}=1/2},χ3=[0,1]{\displaystyle \chi _{3}=[0,1]}. The isogonal (equiangular) hexagons of the Haythornthwaite criterion[24][36][37] containing the Schmidt-Ishlinsky criterion (regular hexagon) cannot be described with the Podgórski criterion.

The Rosendahl criterion[38][39][40] reads

σeq=3I2Ω6(θ,β6,χ6)Ω6(0,β6,χ6),{\displaystyle \sigma _{\mathrm {eq} }={\sqrt {3\,I_{2}'}}\,{\frac {\Omega _{6}(\theta ,\beta _{6},\chi _{6})}{\Omega _{6}(0,\beta _{6},\chi _{6})}},}

with the shape function of hexagonal symmetry in theπ{\displaystyle \pi }-plane

Ω6(θ,β6,χ6)=cos[16(πβ6arccos[sin(χ6π2)cos6θ])],β6[0,1],χ6[1,1].{\displaystyle \Omega _{6}(\theta ,\beta _{6},\chi _{6})=\cos \left[\displaystyle {\frac {1}{6}}\left(\pi \beta _{6}-\arccos[\,\sin(\chi _{6}\,{\frac {\pi }{2}})\,\!\cos 6\,\theta \,]\right)\right],\qquad \beta _{6}\in [0,\,1],\quad \chi _{6}\in [-1,\,1].}

It contains the criteria of von Mises (circle,β6=[0,1]{\displaystyle \beta _{6}=[0,\,1]},χ6=0{\displaystyle \chi _{6}=0}), Tresca (regular hexagon,β6={1,0}{\displaystyle \beta _{6}=\{1,0\}},χ6={1,1}{\displaystyle \chi _{6}=\{1,-1\}}), Schmidt—Ishlinsky (regular hexagon,β6={0,1}{\displaystyle \beta _{6}=\{0,1\}},χ6={1,1}{\displaystyle \chi _{6}=\{1,-1\}}), Sokolovsky (regular dodecagon,β6=1/2{\displaystyle \beta _{6}=1/2},χ6={1,1}{\displaystyle \chi _{6}=\{1,-1\}}), and also the bicubic criterion[24][38][41][42] withβ6=0{\displaystyle \beta _{6}=0} or equally withβ6=1{\displaystyle \beta _{6}=1} and the isotoxal dodecagons of the unified yield criterion of Yu[43] withχ6={1,1}{\displaystyle \chi _{6}=\{1,-1\}}. The isogonal dodecagons of the multiplicative ansatz criterion of hexagonal symmetry[24] containing the Ishlinsky-Ivlev criterion (regular dodecagon) cannot be described by the Rosendahl criterion.

The criteria of Podgórski and Rosendahl describe single surfaces in principal stress space without any additional outer contours and plane intersections. Note that in order to avoid numerical issues the real part functionRe{\displaystyle Re} can be introduced to the shape function:Re(Ω3){\displaystyle Re(\Omega _{3})} andRe(Ω6){\displaystyle Re(\Omega _{6})}. The generalization in the formΩ3n{\displaystyle \Omega _{3n}}[38] is relevant for theoretical investigations.

A pressure-sensitive extension of the criteria can be obtained with the linearI1{\displaystyle I_{1}}-substitution[24]

σeqσeqγ1I11γ1withγ1[0,1[,{\displaystyle \sigma _{\mathrm {eq} }\rightarrow {\frac {\sigma _{\mathrm {eq} }-\gamma _{1}\,I_{1}}{1-\gamma _{1}}}\qquad {\mbox{with}}\qquad \gamma _{1}\in [0,\,1[,}

which is sufficient for many applications, e.g. metals, cast iron, alloys, concrete, unreinforced polymers, etc.

Basic cross sections described by a circle and regular polygons of trigonal or hexagonal symmetries in theπ{\displaystyle \pi }-plane.

Bigoni–Piccolroaz yield surface

[edit]

TheBigoni–Piccolroaz yield criterion[44][45] is a seven-parameter surface defined by

f(p,q,θ)=F(p)+qg(θ)=0,{\displaystyle f(p,q,\theta )=F(p)+{\frac {q}{g(\theta )}}=0,}

whereF(p){\displaystyle F(p)} is the "meridian" function

F(p)={Mpc(ϕϕm)[2(1α)ϕ+α],ϕ[0,1],+,ϕ[0,1],{\displaystyle F(p)=\left\{{\begin{array}{ll}-Mp_{c}{\sqrt {(\phi -\phi ^{m})[2(1-\alpha )\phi +\alpha ]}},&\phi \in [0,1],\\+\infty ,&\phi \notin [0,1],\end{array}}\right.}
ϕ=p+cpc+c,{\displaystyle \phi ={\frac {p+c}{p_{c}+c}},}

describing the pressure-sensitivity andg(θ){\displaystyle g(\theta )} is the "deviatoric" function[46]

g(θ)=1cos[βπ613cos1(γcos3θ)],{\displaystyle g(\theta )={\frac {1}{\cos[\beta {\frac {\pi }{6}}-{\frac {1}{3}}\cos ^{-1}(\gamma \cos 3\theta )]}},}

describing the Lode-dependence of yielding. The seven, non-negative material parameters:

M>0, pc>0, c0, 0<α<2, m>1defining F(p),   0β2, 0γ<1defining g(θ),{\displaystyle \underbrace {M>0,~p_{c}>0,~c\geq 0,~0<\alpha <2,~m>1} _{{\mbox{defining}}~\displaystyle {F(p)}},~~~\underbrace {0\leq \beta \leq 2,~0\leq \gamma <1} _{{\mbox{defining}}~\displaystyle {g(\theta )}},}

define the shape of the meridian and deviatoric sections.

This criterion represents a smooth and convex surface, which is closed both in hydrostatic tension and compression and has a drop-like shape, particularly suited to describe frictional and granular materials. This criterion has also been generalized to the case of surfaces with corners.[47]

3D
In 3D space of principal stresses
'"`UNIQ--postMath-000000BA-QINU`"'-plane
In theπ{\displaystyle \pi }-plane
Bigoni-Piccolroaz yield surface

Cosine Ansatz (Altenbach-Bolchoun-Kolupaev)

[edit]

For the formulation of the strength criteria the stress angle

cos3θ=332I3I232{\displaystyle \cos 3\theta ={\frac {3{\sqrt {3}}}{2}}{\frac {I_{3}'}{I_{2}'^{\frac {3}{2}}}}}

can be used.

The following criterion of isotropic material behavior

(3I2)31+c3cos3θ+c6cos23θ1+c3+c6=(σeqγ1I11γ1)6lm(σeqγ2I11γ2)lσeqm{\displaystyle (3I_{2}')^{3}{\frac {1+c_{3}\cos 3\theta +c_{6}\cos ^{2}3\theta }{1+c_{3}+c_{6}}}=\displaystyle \left({\frac {\sigma _{\mathrm {eq} }-\gamma _{1}\,I_{1}}{1-\gamma _{1}}}\right)^{6-l-m}\,\left({\frac {\sigma _{\mathrm {eq} }-\gamma _{2}\,I_{1}}{1-\gamma _{2}}}\right)^{l}\,\sigma _{\mathrm {eq} }^{m}}

contains a number of other well-known less general criteria, provided suitable parameter values are chosen.

Parametersc3{\displaystyle c_{3}} andc6{\displaystyle c_{6}} describe the geometry of the surface in theπ{\displaystyle \pi }-plane. They are subject to the constraints

c6=14(2+c3),c6=14(2c3),c6512c3213,{\displaystyle c_{6}={\frac {1}{4}}(2+c_{3}),\qquad c_{6}={\frac {1}{4}}(2-c_{3}),\qquad c_{6}\geq {\frac {5}{12}}\,c_{3}^{2}-{\frac {1}{3}},}

which follow from the convexity condition. A more precise formulation of the third constraints is proposed in.[48][49]

Parametersγ1[0,1[{\displaystyle \gamma _{1}\in [0,\,1[} andγ2{\displaystyle \gamma _{2}} describe the position of the intersection points of the yield surface with hydrostatic axis (space diagonal in the principal stress space). These intersections points are called hydrostatic nodes.In the case of materials which do not fail at hydrostatic pressure (steel, brass, etc.) one getsγ2[0,γ1[{\displaystyle \gamma _{2}\in [0,\,\gamma _{1}[}. Otherwise for materials which fail at hydrostatic pressure (hard foams, ceramics, sintered materials, etc.) it followsγ2<0{\displaystyle \gamma _{2}<0}.

The integer powersl0{\displaystyle l\geq 0} andm0{\displaystyle m\geq 0},l+m<6{\displaystyle l+m<6} describe the curvature of the meridian. The meridian withl=m=0{\displaystyle l=m=0} is a straight line and withl=0{\displaystyle l=0} – a parabola.

Barlat's Yield Surface

[edit]

For the anisotropic materials, depending on the direction of the applied process (e.g., rolling) the mechanical properties vary and, therefore, using an anisotropic yield function is crucial. Since 1989Frederic Barlat has developed a family of yield functions for constitutive modelling of plastic anisotropy. Among them, Yld2000-2D yield criteria has been applied for a wide range of sheet metals (e.g., aluminum alloys and advanced high-strength steels). The Yld2000-2D model is a non-quadratic type yield function based on two linear transformation of the stress tensor:

Φ=Φ(X)+Φ(X)=2σ¯a{\displaystyle \Phi =\Phi '(X')+\Phi ''(X'')=2{{\bar {\sigma }}^{a}}} :
The Yld2000-2D yield loci for a AA6022 T4 sheet.
whereσ¯{\displaystyle {\bar {\sigma }}} is the effective stress. andX{\displaystyle X'} andX{\displaystyle X''} are the transformed matrices (by linear transformation C or L):
X=C.s=L.σX=C.s=L.σ{\displaystyle {\begin{array}{l}X'=C'.s=L'.\sigma \\X''=C''.s=L''.\sigma \end{array}}}
where s is the deviatoric stress tensor.

for principal values of X’ and X”, the model could be expressed as:

Φ=|X1+X2|aΦ=|2X2+X1|a+|2X1+X2|a {\displaystyle {\begin{array}{l}\Phi '={\left|{{{X'}_{1}}+{{X'}_{2}}}\right|^{a}}\\\Phi ''={\left|{2{{X''}_{2}}+{{X''}_{1}}}\right|^{a}}+{\left|{2{{X''}_{1}}+{{X''}_{2}}}\right|^{a}}\end{array}}\ }

and:

[L11L12L21L22L66]=[2/3001/30001/3002/30001][α1α2α7],[L11L12L21L22L66]=[2282014440444402822000001][α3α4α5α6α8]{\displaystyle \left[{\begin{array}{*{20}{c}}{{L'}_{11}}\\{{L'}_{12}}\\{{L'}_{21}}\\{{L'}_{22}}\\{{L'}_{66}}\end{array}}\right]=\left[{\begin{array}{*{20}{c}}{2/3}&0&0\\{-1/3}&0&0\\0&{-1/3}&0\\0&{-2/3}&0\\0&0&1\end{array}}\right]\left[{\begin{array}{*{20}{c}}{\alpha _{1}}\\{\alpha _{2}}\\{\alpha _{7}}\end{array}}\right],\left[{\begin{array}{*{20}{c}}{{L''}_{11}}\\{{L''}_{12}}\\{{L''}_{21}}\\{{L''}_{22}}\\{{L''}_{66}}\end{array}}\right]=\left[{\begin{array}{*{20}{c}}{-2}&2&8&{-2}&0\\1&{-4}&{-4}&4&0\\4&{-4}&{-4}&4&0\\{-2}&8&2&{-2}&0\\0&0&0&0&1\end{array}}\right]\left[{\begin{array}{*{20}{c}}{\alpha _{3}}\\{\alpha _{4}}\\{\alpha _{5}}\\{\alpha _{6}}\\{\alpha _{8}}\end{array}}\right]}

whereα1...α8{\displaystyle \alpha _{1}...\alpha _{8}} are eight parameters of the Barlat's Yld2000-2D model to be identified with a set of experiments.

See also

[edit]

References

[edit]
  1. ^Simo, J. C. and Hughes, T,. J. R., (1998), Computational Inelasticity, Springer.
  2. ^Yu, M.-H. (2004),Unified strength theory and its applications. Springer, Berlin
  3. ^Zienkiewicz O.C., Pande, G.N. (1977), Some useful forms of isotropic yield surfaces for soil androck mechanics. In: Gudehus, G. (ed.)Finite Elements in Geomechanics. Wiley, New York, pp. 179–198
  4. ^Lode, W. (1925). Versuche über den Einfluß der mittleren Hauptspannug auf die Fließgrenze.ZAMM 5(2), pp. 142–144
  5. ^Lode, W. (1926). Versuche über den Einfuss der mittleren Hauptspannung auf das Fliessen der Metalle Eisen Kupfer und Nickel.Zeitung Phys., vol. 36, pp. 913–939.
  6. ^Lode, W. (1928).Der Einfluß der mittleren Hauptspannung auf das Fließen der Metalle. Dissertation, Universität zu Göttingen. Forschungsarbeiten auf dem Gebiete des Ingenieurwesens, Heft 303, VDI, Berlin
  7. ^Novozhilov, V.V. (1951). On the principles of the statical analysis of the experimental results for isotropic materials (in Russ.: O prinzipakh obrabotki rezultatov staticheskikh ispytanij izotropnykh materialov).Prikladnaja Matematika i Mekhanika, XV(6):709–722.
  8. ^Nayak, G. C. and Zienkiewicz, O.C. (1972).Convenient forms of stress invariants for plasticity. Proceedings of the ASCE Journal of the Structural Division, vol. 98, no. ST4, pp. 949–954.
  9. ^Chakrabarty, J., 2006,Theory of Plasticity: Third edition, Elsevier, Amsterdam.
  10. ^Brannon, R.M., 2009,KAYENTA: Theory and User's Guide, Sandia National Laboratories, Albuquerque, New Mexico.
  11. ^Ziółkowski, Andrzej Grzegorz (2022-08-09)."Parametrization of Cauchy Stress Tensor Treated as Autonomous Object Using Isotropy Angle and Skewness Angle".Engineering Transactions.70 (3):239–286.doi:10.24423/EngTrans.2210.20220809.ISSN 2450-8071.
  12. ^Tresca, H. (1864).Mémoire sur l'écoulement des corps solides soumis à de fortes pressions. C. R. Acad. Sci. Paris, vol. 59, p. 754.
  13. ^Guest, James (1900)."V. On the strength of ductile materials under combined stress".The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science.50 (302):69–132.doi:10.1080/14786440009463892. Archived from the original on October 28, 2017. RetrievedNovember 16, 2025.{{cite journal}}: CS1 maint: bot: original URL status unknown (link)
  14. ^Burzyński, W. (1929). Über die Anstrengungshypothesen. Schweizerische Bauzeitung, 94 (21), pp. 259–262.
  15. ^Yagn, Yu. I. (1931).New methods of strength prediction (in Russ.: Novye metody pascheta na prochnost'). Vestnik inzhenerov i tekhnikov, 6, pp. 237–244.
  16. ^Altenbach, H., Kolupaev, V.A. (2014) Classical and Non-Classical Failure Criteria, in Altenbach, H., Sadowski, Th., eds.,Failure and Damage Analysis of Advanced Materials, in press, Springer, Heidelberg (2014), pp. 1–66
  17. ^Beljaev, N. M. (1979).Strength of Materials. Mir Publ., Moscow
  18. ^Bolchoun, A., Kolupaev, V. A., Altenbach, H. (2011) Convex and non-convex yield surfaces (in German: Konvexe und nichtkonvexe Fließflächen),Forschung im Ingenieurwesen, 75 (2), pp. 73–92
  19. ^Huber, M. T. (1904). Specific strain work as a measure of material effort (in Polish: Właściwa praca odkształcenia jako miara wytężenia materyału),Czasopismo Techniczne, Lwów, Organ Towarzystwa Politechnicznego we Lwowie, v. 22. pp. 34-40, 49-50, 61-62, 80-81
  20. ^Föppl, A., Föppl, L. (1920).Drang und Zwang: eine höhere Festigkeitslehre für Ingenieure. R. Oldenbourg, München
  21. ^Burzyński, W. (1929). Über die Anstrengungshypothesen.Schweizerische Bauzeitung94(21):259–262
  22. ^Kuhn, P. (1980).Grundzüge einer allgemeinen Festigkeitshypothese, Auszug aus Antrittsvorlesungdes Verfassers vom 11. Juli, 1980 Vom Konstrukteur und den Festigkeitshypothesen.Inst. für Maschinenkonstruktionslehre, Karlsruhe
  23. ^Kolupaev, V.A., Moneke M., Becker F. (2004). Stress appearance during creep. Calculation ofplastic parts (in German: Spannungsausprägung beim Kriechen: Berechnung von Kunststoffbauteilen). Kunststoffe 94(11):79–82
  24. ^abcdefgKolupaev, V.A. (2018).Equivalent Stress Concept for Limit State Analysis, Springer, Cham.
  25. ^Kolupaev, V. A., (2006).3D-Creep Behaviour of Parts Made of Non-Reinforced Thermoplastics (in German: Dreidimensionales Kriechverhalten von Bauteilen aus unverstärkten Thermoplasten), Diss., Martin-Luther-Universität Halle-Wittenberg, Halle-Saale
  26. ^Memhard, D,., Andrieux, F., Sun, D.-Z., Häcker, R. (2011) Development and verification of a material model for prediction of containment safety of exhaust turbochargers,8th European LS-DYNA Users Conference, Strasbourg, May 2011, 11 p.
  27. ^DiMaggio, F.L., Sandler, I.S. (1971) Material model for granular soils,Journal of the Engineering Mechanics Division, 97(3), 935-950
  28. ^Khan and Huang. (1995), Continuum Theory of Plasticity. J.Wiley.
  29. ^Neto, Periç, Owen. (2008), The mathematical Theory of Plasticity. J.Wiley.
  30. ^Podgórski, J. (1984). Limit state condition and the dissipation function for isotropic materials,Archives of Mechanics 36(3), pp. 323-342.
  31. ^abIvlev, D. D. (1959). The theory of fracture of solids (in Russ.: K teorii razrusheniia tverdykh tel),J. of Applied Mathematics and Mechanics, 23(3), pp. 884-895.
  32. ^abSayir, M. (1970). Zur Fließbedingung der Plastizitätstheorie,Ingenieur-Archiv 39(6), pp. 414-432.
  33. ^Ottosen, N. S. (1975). Failure and Elasticity of Concrete,Danish Atomic Energy Commission, Research Establishment Risö, Engineering Department, Report Risö-M-1801, Roskilde.
  34. ^Capurso, M. (1967). Yield conditions for incompressible isotropic and orthotropic materials with different yield stress in tension and compression,Meccanica 2(2), pp. 118--125.
  35. ^Lemaitre J., Chaboche J.L. (1990).Mechanics of Solid Materials, Cambridge University Press, Cambridge.
  36. ^Candland C.T. (1975). Implications of macroscopic failure criteria which are independent of hydrostatic stress,Int. J. Fracture 11(3), pp. 540–543.
  37. ^Haythornthwaite R.M. (1961). Range of yield condition in ideal plasticity,Proc ASCE J Eng Mech Div, EM6, 87, pp. 117–133.
  38. ^abcRosendahl, P. L., Kolupaev, V A., Altenbach, H. (2019). Extreme Yield Figures for Universal Strength Criteria, in Altenbach, H., Öchsner, A., eds.,State of the Art and Future Trends in Material Modeling, Advanced Structured Materials STRUCTMAT, Springer, Cham, pp. 259-324.
  39. ^Rosendahl, P. L. (2020).From bulk to structural failure: Fracture of hyperelastic materials, Diss., Technische Universität Darmstadt.
  40. ^Altenbach, H., Kolupaev, V. A. (2024). Reviewing yield criteria in plasticity theory, in Altenbach, H., Hohe, J., Mittelsted, Ch., eds.,Progress in Structural Mechanics, Springer, Cham, pp. 19-106.
  41. ^Szwed, A. (2000).Strength Hypotheses and Constitutive Relations of Materials Including Degradation Effects, (in Polish: Hipotezy Wytężeniowe i Relacje Konstytutywne Materiałów z Uwzględnieniem Efektów Degradacji), Praca Doctorska, Wydział Inąynierii Lądowej Politechniki Warszawskiej, Warszawa.
  42. ^Lagzdin, A. (1997). Smooth convex limit surfaces in the space of symmetric second-rank tensors,Mechanics of Composite Materials, 3(2), 119-127.
  43. ^Yu M.-H. (2002). Advances in strength theories for materials under complex stress state in the 20th century,Applied Mechanics Reviews, 55(5), pp. 169-218.
  44. ^Bigoni, D. Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, 2012 .ISBN 9781107025417.
  45. ^Bigoni, D. and Piccolroaz, A., (2004), Yield criteria for quasibrittle and frictional materials,International Journal of Solids and Structures41, 2855–2878.
  46. ^Podgórski, J. (1984). Limit state condition and the dissipation function for isotropic materials.Archives of Mechanics, 36 (3), pp. 323–342.
  47. ^Piccolroaz, A. and Bigoni, D. (2009), Yield criteria for quasibrittle and frictional materials: a generalization to surfaces with corners,International Journal of Solids and Structures46, 3587–3596.
  48. ^Altenbach, H., Bolchoun, A., Kolupaev, V.A. (2013). Phenomenological Yield and Failure Criteria, in Altenbach, H., Öchsner, A., eds.,Plasticity of Pressure-Sensitive Materials, Serie ASM, Springer, Heidelberg, pp. 49–152.
  49. ^Kolupaev, V.A. (2018). Equivalent Stress Concept for Limit State Analysis, Springer, Cham.
Divisions
Laws and
definitions
Solid mechanics
and
structural mechanics
Fluid mechanics
Acoustics
Rheology
Scientists
Awards
International
National
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Yield_surface&oldid=1338661455#Tresca_yield_surface"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp