Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Gudermannian function

From Wikipedia, the free encyclopedia
(Redirected fromTranscendent angle)
Mathematical function relating circular and hyperbolic functions
The Gudermannian function relates the area of acircular sector to the area of ahyperbolic sector, via a commonstereographic projection. If twice the area of the blue hyperbolic sector isψ, then twice the area of the red circular sector isϕ = gdψ. Twice the area of the purple triangle is the stereographic projections = tan1/2ϕ = tanh1/2ψ. The blue point has coordinates(coshψ, sinhψ). The red point has coordinates(cosϕ, sinϕ). The purple point has coordinates(0,s).
Graph of the Gudermannian function.
Graph of the inverse Gudermannian function.

In mathematics, theGudermannian function relates ahyperbolic angle measureψ{\textstyle \psi } to acircular angle measureϕ{\textstyle \phi } called thegudermannian ofψ{\textstyle \psi } and denotedgdψ{\textstyle \operatorname {gd} \psi }.[1] The Gudermannian function reveals a close relationship between thecircular functions andhyperbolic functions. It was introduced in the 1760s byJohann Heinrich Lambert, and later named forChristoph Gudermann who also described the relationship between circular and hyperbolic functions in 1830.[2] The gudermannian is sometimes called thehyperbolic amplitude as alimiting case of theJacobi elliptic amplitudeam(ψ,m){\textstyle \operatorname {am} (\psi ,m)} when parameterm=1.{\textstyle m=1.}

Thereal Gudermannian function is typically defined for<ψ<{\textstyle -\infty <\psi <\infty } to be the integral of the hyperbolic secant[3]

ϕ=gdψ0ψsechtdt=arctan(sinhψ).{\displaystyle \phi =\operatorname {gd} \psi \equiv \int _{0}^{\psi }\operatorname {sech} t\,\mathrm {d} t=\operatorname {arctan} (\sinh \psi ).}

The real inverse Gudermannian function can be defined for12π<ϕ<12π{\textstyle -{\tfrac {1}{2}}\pi <\phi <{\tfrac {1}{2}}\pi } as theintegral of the (circular) secant

ψ=gd1ϕ=0ϕsectdt=arsinh(tanϕ).{\displaystyle \psi =\operatorname {gd} ^{-1}\phi =\int _{0}^{\phi }\operatorname {sec} t\,\mathrm {d} t=\operatorname {arsinh} (\tan \phi ).}

The hyperbolic angle measureψ=gd1ϕ{\displaystyle \psi =\operatorname {gd} ^{-1}\phi } is called theanti-gudermannian ofϕ{\displaystyle \phi } or sometimes thelambertian ofϕ{\displaystyle \phi }, denotedψ=lamϕ.{\displaystyle \psi =\operatorname {lam} \phi .}[4] In the context ofgeodesy andnavigation for latitudeϕ{\textstyle \phi },kgd1ϕ{\displaystyle k\operatorname {gd} ^{-1}\phi } (scaled by arbitrary constantk{\textstyle k}) was historically called themeridional part ofϕ{\displaystyle \phi } (French:latitude croissante). It is the vertical coordinate of theMercator projection.

The two angle measuresϕ{\textstyle \phi } andψ{\textstyle \psi } are related by a commonstereographic projection

s=tan12ϕ=tanh12ψ,{\displaystyle s=\tan {\tfrac {1}{2}}\phi =\tanh {\tfrac {1}{2}}\psi ,}

and this identity can serve as an alternative definition forgd{\textstyle \operatorname {gd} } andgd1{\textstyle \operatorname {gd} ^{-1}} valid throughout thecomplex plane:

gdψ=2arctan(tanh12ψ),gd1ϕ=2artanh(tan12ϕ).{\displaystyle {\begin{aligned}\operatorname {gd} \psi &={2\arctan }{\bigl (}\tanh {\tfrac {1}{2}}\psi \,{\bigr )},\\[5mu]\operatorname {gd} ^{-1}\phi &={2\operatorname {artanh} }{\bigl (}\tan {\tfrac {1}{2}}\phi \,{\bigr )}.\end{aligned}}}

Circular–hyperbolic identities

[edit]

We can evaluate the integral of the hyperbolic secant using the stereographic projection (hyperbolic half-tangent) as achange of variables:[5]

gdψ0ψ1coshtdt=0tanh12ψ1u21+u22du1u2(u=tanh12t)=20tanh12ψ11+u2du=2arctan(tanh12ψ),tan12gdψ=tanh12ψ.{\displaystyle {\begin{aligned}\operatorname {gd} \psi &\equiv \int _{0}^{\psi }{\frac {1}{\operatorname {cosh} t}}\mathrm {d} t=\int _{0}^{\tanh {\frac {1}{2}}\psi }{\frac {1-u^{2}}{1+u^{2}}}{\frac {2\,\mathrm {d} u}{1-u^{2}}}\qquad {\bigl (}u=\tanh {\tfrac {1}{2}}t{\bigr )}\\[8mu]&=2\int _{0}^{\tanh {\frac {1}{2}}\psi }{\frac {1}{1+u^{2}}}\mathrm {d} u={2\arctan }{\bigl (}\tanh {\tfrac {1}{2}}\psi \,{\bigr )},\\[5mu]\tan {\tfrac {1}{2}}{\operatorname {gd} \psi }&=\tanh {\tfrac {1}{2}}\psi .\end{aligned}}}

Lettingϕ=gdψ{\textstyle \phi =\operatorname {gd} \psi } ands=tan12ϕ=tanh12ψ{\textstyle s=\tan {\tfrac {1}{2}}\phi =\tanh {\tfrac {1}{2}}\psi } we can derive a number of identities between hyperbolic functions ofψ{\textstyle \psi } and circular functions ofϕ.{\textstyle \phi .}[6]

Identities related to the Gudermannian function represented graphically.
Identities related to the Gudermannian function represented graphically.
s=tan12ϕ=tanh12ψ,2s1+s2=sinϕ=tanhψ,1+s22s=cscϕ=cothψ,1s21+s2=cosϕ=sechψ,1+s21s2=secϕ=coshψ,2s1s2=tanϕ=sinhψ,1s22s=cotϕ=cschψ.{\displaystyle {\begin{aligned}s&=\tan {\tfrac {1}{2}}\phi =\tanh {\tfrac {1}{2}}\psi ,\\[6mu]{\frac {2s}{1+s^{2}}}&=\sin \phi =\tanh \psi ,\quad &{\frac {1+s^{2}}{2s}}&=\csc \phi =\coth \psi ,\\[10mu]{\frac {1-s^{2}}{1+s^{2}}}&=\cos \phi =\operatorname {sech} \psi ,\quad &{\frac {1+s^{2}}{1-s^{2}}}&=\sec \phi =\cosh \psi ,\\[10mu]{\frac {2s}{1-s^{2}}}&=\tan \phi =\sinh \psi ,\quad &{\frac {1-s^{2}}{2s}}&=\cot \phi =\operatorname {csch} \psi .\\[8mu]\end{aligned}}}

These are commonly used as expressions forgd{\displaystyle \operatorname {gd} } andgd1{\displaystyle \operatorname {gd} ^{-1}} for real values ofψ{\displaystyle \psi } andϕ{\displaystyle \phi } with|ϕ|<12π.{\displaystyle |\phi |<{\tfrac {1}{2}}\pi .} For example, the numerically well-behaved formulas

gdψ=arctan(sinhψ),gd1ϕ=arsinh(tanϕ).{\displaystyle {\begin{aligned}\operatorname {gd} \psi &=\operatorname {arctan} (\sinh \psi ),\\[6mu]\operatorname {gd} ^{-1}\phi &=\operatorname {arsinh} (\tan \phi ).\end{aligned}}}

(Note, for|ϕ|>12π{\displaystyle |\phi |>{\tfrac {1}{2}}\pi } and for complex arguments, care must be taken choosingbranches of the inverse functions.)[7]

We can also expressψ{\textstyle \psi } andϕ{\textstyle \phi } in terms ofs:{\textstyle s\colon }

2arctans=ϕ=gdψ,2artanhs=gd1ϕ=ψ.{\displaystyle {\begin{aligned}2\arctan s&=\phi =\operatorname {gd} \psi ,\\[6mu]2\operatorname {artanh} s&=\operatorname {gd} ^{-1}\phi =\psi .\\[6mu]\end{aligned}}}

If we expandtan12{\textstyle \tan {\tfrac {1}{2}}} andtanh12{\textstyle \tanh {\tfrac {1}{2}}} in terms of theexponential, then we can see thats,{\textstyle s,}expϕi,{\displaystyle \exp \phi i,} andexpψ{\displaystyle \exp \psi } are allMöbius transformations of each-other (specifically, rotations of theRiemann sphere):

s=i1eϕi1+eϕi=eψ1eψ+1,isis+i=expϕi=eψieψ+i,1+s1s=ii+eϕiieϕi=expψ.{\displaystyle {\begin{aligned}s&=i{\frac {1-e^{\phi i}}{1+e^{\phi i}}}={\frac {e^{\psi }-1}{e^{\psi }+1}},\\[10mu]i{\frac {s-i}{s+i}}&=\exp \phi i\quad ={\frac {e^{\psi }-i}{e^{\psi }+i}},\\[10mu]{\frac {1+s}{1-s}}&=i{\frac {i+e^{\phi i}}{i-e^{\phi i}}}\,=\exp \psi .\end{aligned}}}

For real values ofψ{\textstyle \psi } andϕ{\textstyle \phi } with|ϕ|<12π{\displaystyle |\phi |<{\tfrac {1}{2}}\pi }, these Möbius transformations can be written in terms of trigonometric functions in several ways,

expψ=secϕ+tanϕ=tan12(12π+ϕ)=1+tan12ϕ1tan12ϕ=1+sinϕ1sinϕ,expϕi=sechψ+itanhψ=tanh12(12πi+ψ)=1+itanh12ψ1itanh12ψ=1+isinhψ1isinhψ.{\displaystyle {\begin{aligned}\exp \psi &=\sec \phi +\tan \phi =\tan {\tfrac {1}{2}}{\bigl (}{\tfrac {1}{2}}\pi +\phi {\bigr )}\\[6mu]&={\frac {1+\tan {\tfrac {1}{2}}\phi }{1-\tan {\tfrac {1}{2}}\phi }}={\sqrt {\frac {1+\sin \phi }{1-\sin \phi }}},\\[12mu]\exp \phi i&=\operatorname {sech} \psi +i\tanh \psi =\tanh {\tfrac {1}{2}}{\bigl (}{-{\tfrac {1}{2}}}\pi i+\psi {\bigr )}\\[6mu]&={\frac {1+i\tanh {\tfrac {1}{2}}\psi }{1-i\tanh {\tfrac {1}{2}}\psi }}={\sqrt {\frac {1+i\sinh \psi }{1-i\sinh \psi }}}.\end{aligned}}}

These give further expressions forgd{\displaystyle \operatorname {gd} } andgd1{\displaystyle \operatorname {gd} ^{-1}} for real arguments with|ϕ|<12π.{\displaystyle |\phi |<{\tfrac {1}{2}}\pi .} For example,[8]

gdψ=2arctaneψ12π,gd1ϕ=log(secϕ+tanϕ).{\displaystyle {\begin{aligned}\operatorname {gd} \psi &=2\arctan e^{\psi }-{\tfrac {1}{2}}\pi ,\\[6mu]\operatorname {gd} ^{-1}\phi &=\log(\sec \phi +\tan \phi ).\end{aligned}}}

Complex values

[edit]
The Gudermannian functionz ↦ gdz is a conformal map from an infinite strip to an infinite strip. It can be broken into two parts: a mapz ↦ tanh1/2z from one infinite strip to the complex unit disk and a mapζ ↦ 2 arctanζ from the disk to the other infinite strip.

As afunction of a complex variable,zw=gdz{\textstyle z\mapsto w=\operatorname {gd} z}conformally maps the infinite strip|Imz|12π{\textstyle \left|\operatorname {Im} z\right|\leq {\tfrac {1}{2}}\pi } to the infinite strip|Rew|12π,{\textstyle \left|\operatorname {Re} w\right|\leq {\tfrac {1}{2}}\pi ,} whilewz=gd1w{\textstyle w\mapsto z=\operatorname {gd} ^{-1}w} conformally maps the infinite strip|Rew|12π{\textstyle \left|\operatorname {Re} w\right|\leq {\tfrac {1}{2}}\pi } to the infinite strip|Imz|12π.{\textstyle \left|\operatorname {Im} z\right|\leq {\tfrac {1}{2}}\pi .}

Analytically continued byreflections to the whole complex plane,zw=gdz{\textstyle z\mapsto w=\operatorname {gd} z} is a periodic function of period2πi{\textstyle 2\pi i} which sends any infinite strip of "height"2πi{\textstyle 2\pi i} onto the stripπ<Rewπ.{\textstyle -\pi <\operatorname {Re} w\leq \pi .} Likewise, extended to the whole complex plane,wz=gd1w{\textstyle w\mapsto z=\operatorname {gd} ^{-1}w} is a periodic function of period2π{\textstyle 2\pi } which sends any infinite strip of "width"2π{\textstyle 2\pi } onto the stripπ<Imzπ.{\textstyle -\pi <\operatorname {Im} z\leq \pi .}[9] For all points in the complex plane, these functions can be correctly written as:

gdz=2arctan(tanh12z),gd1w=2artanh(tan12w).{\displaystyle {\begin{aligned}\operatorname {gd} z&={2\arctan }{\bigl (}\tanh {\tfrac {1}{2}}z\,{\bigr )},\\[5mu]\operatorname {gd} ^{-1}w&={2\operatorname {artanh} }{\bigl (}\tan {\tfrac {1}{2}}w\,{\bigr )}.\end{aligned}}}

For thegd{\textstyle \operatorname {gd} } andgd1{\textstyle \operatorname {gd} ^{-1}} functions to remain invertible with these extended domains, we might consider each to be amultivalued function (perhapsGd{\textstyle \operatorname {Gd} } andGd1{\textstyle \operatorname {Gd} ^{-1}}, withgd{\textstyle \operatorname {gd} } andgd1{\textstyle \operatorname {gd} ^{-1}} theprincipal branch) or consider their domains and codomains asRiemann surfaces.

Ifu+iv=gd(x+iy),{\textstyle u+iv=\operatorname {gd} (x+iy),} then the real and imaginary componentsu{\textstyle u} andv{\textstyle v} can be found by:[10]

tanu=sinhxcosy,tanhv=sinycoshx.{\displaystyle \tan u={\frac {\sinh x}{\cos y}},\quad \tanh v={\frac {\sin y}{\cosh x}}.}

(In practical implementation, make sure to use the2-argument arctangent,u=atan2(sinhx,cosy){\textstyle u=\operatorname {atan2} (\sinh x,\cos y)}.)

Likewise, ifx+iy=gd1(u+iv),{\textstyle x+iy=\operatorname {gd} ^{-1}(u+iv),} then componentsx{\textstyle x} andy{\textstyle y} can be found by:[11]

tanhx=sinucoshv,tany=sinhvcosu.{\displaystyle \tanh x={\frac {\sin u}{\cosh v}},\quad \tan y={\frac {\sinh v}{\cos u}}.}

Multiplying these together reveals the additional identity[8]

tanhxtany=tanutanhv.{\displaystyle \tanh x\,\tan y=\tan u\,\tanh v.}

Symmetries

[edit]

The two functions can be thought of as rotations or reflections of each-other, with a similar relationship assinhiz=isinz{\textstyle \sinh iz=i\sin z}between sine and hyperbolic sine:[12]

gdiz=igd1z,gd1iz=igdz.{\displaystyle {\begin{aligned}\operatorname {gd} iz&=i\operatorname {gd} ^{-1}z,\\[5mu]\operatorname {gd} ^{-1}iz&=i\operatorname {gd} z.\end{aligned}}}

The functions are bothodd and they commute withcomplex conjugation. That is, a reflection across the real or imaginary axis in the domain results in the same reflection in thecodomain:

gd(z)=gdz,gdz¯=gdz¯,gd(z¯)=gdz¯,gd1(z)=gd1z,gd1z¯=gd1z¯,gd1(z¯)=gd1z¯.{\displaystyle {\begin{aligned}\operatorname {gd} (-z)&=-\operatorname {gd} z,&\quad \operatorname {gd} {\bar {z}}&={\overline {\operatorname {gd} z}},&\quad \operatorname {gd} (-{\bar {z}})&=-{\overline {\operatorname {gd} z}},\\[5mu]\operatorname {gd} ^{-1}(-z)&=-\operatorname {gd} ^{-1}z,&\quad \operatorname {gd} ^{-1}{\bar {z}}&={\overline {\operatorname {gd} ^{-1}z}},&\quad \operatorname {gd} ^{-1}(-{\bar {z}})&=-{\overline {\operatorname {gd} ^{-1}z}}.\end{aligned}}}

The functions areperiodic, with periods2πi{\textstyle 2\pi i} and2π{\textstyle 2\pi }:

gd(z+2πi)=gdz,gd1(z+2π)=gd1z.{\displaystyle {\begin{aligned}\operatorname {gd} (z+2\pi i)&=\operatorname {gd} z,\\[5mu]\operatorname {gd} ^{-1}(z+2\pi )&=\operatorname {gd} ^{-1}z.\end{aligned}}}

A translation in the domain ofgd{\textstyle \operatorname {gd} } by±πi{\textstyle \pm \pi i} results in a half-turn rotation and translation in the codomain by one of±π,{\textstyle \pm \pi ,} and vice versa forgd1:{\textstyle \operatorname {gd} ^{-1}\colon }[13]

gd(±πi+z)={πgdzif   Rez0,πgdzif   Rez<0,gd1(±π+z)={πigd1zif   Imz0,πigd1zif   Imz<0.{\displaystyle {\begin{aligned}\operatorname {gd} ({\pm \pi i}+z)&={\begin{cases}\pi -\operatorname {gd} z\quad &{\mbox{if }}\ \ \operatorname {Re} z\geq 0,\\[5mu]-\pi -\operatorname {gd} z\quad &{\mbox{if }}\ \ \operatorname {Re} z<0,\end{cases}}\\[15mu]\operatorname {gd} ^{-1}({\pm \pi }+z)&={\begin{cases}\pi i-\operatorname {gd} ^{-1}z\quad &{\mbox{if }}\ \ \operatorname {Im} z\geq 0,\\[3mu]-\pi i-\operatorname {gd} ^{-1}z\quad &{\mbox{if }}\ \ \operatorname {Im} z<0.\end{cases}}\end{aligned}}}

A reflection in the domain ofgd{\textstyle \operatorname {gd} } across either of the linesx±12πi{\textstyle x\pm {\tfrac {1}{2}}\pi i} results in a reflection in the codomain across one of the lines±12π+yi,{\textstyle \pm {\tfrac {1}{2}}\pi +yi,} and vice versa forgd1:{\textstyle \operatorname {gd} ^{-1}\colon }

gd(±πi+z¯)={πgdz¯if   Rez0,πgdz¯if   Rez<0,gd1(±πz¯)={πi+gd1z¯if   Imz0,πi+gd1z¯if   Imz<0.{\displaystyle {\begin{aligned}\operatorname {gd} ({\pm \pi i}+{\bar {z}})&={\begin{cases}\pi -{\overline {\operatorname {gd} z}}\quad &{\mbox{if }}\ \ \operatorname {Re} z\geq 0,\\[5mu]-\pi -{\overline {\operatorname {gd} z}}\quad &{\mbox{if }}\ \ \operatorname {Re} z<0,\end{cases}}\\[15mu]\operatorname {gd} ^{-1}({\pm \pi }-{\bar {z}})&={\begin{cases}\pi i+{\overline {\operatorname {gd} ^{-1}z}}\quad &{\mbox{if }}\ \ \operatorname {Im} z\geq 0,\\[3mu]-\pi i+{\overline {\operatorname {gd} ^{-1}z}}\quad &{\mbox{if }}\ \ \operatorname {Im} z<0.\end{cases}}\end{aligned}}}

This is related to the identity

tanh12(πi±z)=tan12(πgdz).{\displaystyle \tanh {\tfrac {1}{2}}({\pi i}\pm z)=\tan {\tfrac {1}{2}}({\pi }\mp \operatorname {gd} z).}

Specific values

[edit]

A few specific values (where{\textstyle \infty } indicates the limit at one end of the infinite strip):[14]

gd(0)=0,gd(±log(2+3))=±13π,gd(πi)=π,gd(±13πi)=±log(2+3)i,gd(±)=±12π,gd(±log(1+2))=±14π,gd(±12πi)=±i,gd(±14πi)=±log(1+2)i,gd(log(1+2)±12πi)=12π±log(1+2)i,gd(log(1+2)±12πi)=12π±log(1+2)i.{\displaystyle {\begin{aligned}\operatorname {gd} (0)&=0,&\quad {\operatorname {gd} }{\bigl (}{\pm {\log }{\bigl (}2+{\sqrt {3}}{\bigr )}}{\bigr )}&=\pm {\tfrac {1}{3}}\pi ,\\[5mu]\operatorname {gd} (\pi i)&=\pi ,&\quad {\operatorname {gd} }{\bigl (}{\pm {\tfrac {1}{3}}}\pi i{\bigr )}&=\pm {\log }{\bigl (}2+{\sqrt {3}}{\bigr )}i,\\[5mu]\operatorname {gd} ({\pm \infty })&=\pm {\tfrac {1}{2}}\pi ,&\quad {\operatorname {gd} }{\bigl (}{\pm {\log }{\bigl (}1+{\sqrt {2}}{\bigr )}}{\bigr )}&=\pm {\tfrac {1}{4}}\pi ,\\[5mu]{\operatorname {gd} }{\bigl (}{\pm {\tfrac {1}{2}}}\pi i{\bigr )}&=\pm \infty i,&\quad {\operatorname {gd} }{\bigl (}{\pm {\tfrac {1}{4}}}\pi i{\bigr )}&=\pm {\log }{\bigl (}1+{\sqrt {2}}{\bigr )}i,\\[5mu]&&{\operatorname {gd} }{\bigl (}{\log }{\bigl (}1+{\sqrt {2}}{\bigr )}\pm {\tfrac {1}{2}}\pi i{\bigr )}&={\tfrac {1}{2}}\pi \pm {\log }{\bigl (}1+{\sqrt {2}}{\bigr )}i,\\[5mu]&&{\operatorname {gd} }{\bigl (}{-\log }{\bigl (}1+{\sqrt {2}}{\bigr )}\pm {\tfrac {1}{2}}\pi i{\bigr )}&=-{\tfrac {1}{2}}\pi \pm {\log }{\bigl (}1+{\sqrt {2}}{\bigr )}i.\end{aligned}}}

Derivatives

[edit]

As the Gudermannian and inverse Gudermannian functions can be defined as the antiderivatives of the hyperbolic secant and circular secant functions, respectively, their derivatives are those secant functions:

ddzgdz=sechz,ddzgd1z=secz.{\displaystyle {\begin{aligned}{\frac {\mathrm {d} }{\mathrm {d} z}}\operatorname {gd} z&=\operatorname {sech} z,\\[10mu]{\frac {\mathrm {d} }{\mathrm {d} z}}\operatorname {gd} ^{-1}z&=\sec z.\end{aligned}}}

Argument-addition identities

[edit]

By combininghyperbolic andcircular argument-addition identities,

tanh(z+w)=tanhz+tanhw1+tanhztanhw,tan(z+w)=tanz+tanw1tanztanw,{\displaystyle {\begin{aligned}\tanh(z+w)&={\frac {\tanh z+\tanh w}{1+\tanh z\,\tanh w}},\\[10mu]\tan(z+w)&={\frac {\tan z+\tan w}{1-\tan z\,\tan w}},\end{aligned}}}

with thecircular–hyperbolic identity,

tan12(gdz)=tanh12z,{\displaystyle \tan {\tfrac {1}{2}}(\operatorname {gd} z)=\tanh {\tfrac {1}{2}}z,}

we have the Gudermannian argument-addition identities:

gd(z+w)=2arctantan12(gdz)+tan12(gdw)1+tan12(gdz)tan12(gdw),gd1(z+w)=2artanhtanh12(gd1z)+tanh12(gd1w)1tanh12(gd1z)tanh12(gd1w).{\displaystyle {\begin{aligned}\operatorname {gd} (z+w)&=2\arctan {\frac {\tan {\tfrac {1}{2}}(\operatorname {gd} z)+\tan {\tfrac {1}{2}}(\operatorname {gd} w)}{1+\tan {\tfrac {1}{2}}(\operatorname {gd} z)\,\tan {\tfrac {1}{2}}(\operatorname {gd} w)}},\\[12mu]\operatorname {gd} ^{-1}(z+w)&=2\operatorname {artanh} {\frac {\tanh {\tfrac {1}{2}}(\operatorname {gd} ^{-1}z)+\tanh {\tfrac {1}{2}}(\operatorname {gd} ^{-1}w)}{1-\tanh {\tfrac {1}{2}}(\operatorname {gd} ^{-1}z)\,\tanh {\tfrac {1}{2}}(\operatorname {gd} ^{-1}w)}}.\end{aligned}}}

Further argument-addition identities can be written in terms of other circular functions,[15] but they require greater care in choosing branches in inverse functions. Notably,

gd(z+w)=u+v,where tanu=sinhzcoshw, tanv=sinhwcoshz,gd1(z+w)=u+v,where tanhu=sinzcosw, tanhv=sinwcosz,{\displaystyle {\begin{aligned}\operatorname {gd} (z+w)&=u+v,\quad {\text{where}}\ \tan u={\frac {\sinh z}{\cosh w}},\ \tan v={\frac {\sinh w}{\cosh z}},\\[10mu]\operatorname {gd} ^{-1}(z+w)&=u+v,\quad {\text{where}}\ \tanh u={\frac {\sin z}{\cos w}},\ \tanh v={\frac {\sin w}{\cos z}},\end{aligned}}}

which can be used to derive theper-component computation for the complex Gudermannian and inverse Gudermannian.[16]

In the specific casez=w,{\textstyle z=w,} double-argument identities are

gd(2z)=2arctan(sin(gdz)),gd1(2z)=2artanh(sinh(gd1z)).{\displaystyle {\begin{aligned}\operatorname {gd} (2z)&=2\arctan(\sin(\operatorname {gd} z)),\\[5mu]\operatorname {gd} ^{-1}(2z)&=2\operatorname {artanh} (\sinh(\operatorname {gd} ^{-1}z)).\end{aligned}}}

Taylor series

[edit]

TheTaylor series near zero, valid for complex valuesz{\textstyle z} with|z|<12π,{\textstyle |z|<{\tfrac {1}{2}}\pi ,} are[17]

gdz=k=0Ek(k+1)!zk+1=z16z3+124z5615040z7+27772576z9,gd1z=k=0|Ek|(k+1)!zk+1=z+16z3+124z5+615040z7+27772576z9+,{\displaystyle {\begin{aligned}\operatorname {gd} z&=\sum _{k=0}^{\infty }{\frac {E_{k}}{(k+1)!}}z^{k+1}=z-{\frac {1}{6}}z^{3}+{\frac {1}{24}}z^{5}-{\frac {61}{5040}}z^{7}+{\frac {277}{72576}}z^{9}-\dots ,\\[10mu]\operatorname {gd} ^{-1}z&=\sum _{k=0}^{\infty }{\frac {|E_{k}|}{(k+1)!}}z^{k+1}=z+{\frac {1}{6}}z^{3}+{\frac {1}{24}}z^{5}+{\frac {61}{5040}}z^{7}+{\frac {277}{72576}}z^{9}+\dots ,\end{aligned}}}

where the numbersEk{\textstyle E_{k}} are theEuler secant numbers, 1, 0, -1, 0, 5, 0, -61, 0, 1385 ... (sequencesA122045,A000364, andA028296 in theOEIS). These series were first computed byJames Gregory in 1671.[18]

Because the Gudermannian and inverse Gudermannian functions are the integrals of the hyperbolic secant and secant functions, the numeratorsEk{\textstyle E_{k}} and|Ek|{\textstyle |E_{k}|} are same as the numerators of theTaylor series forsech andsec, respectively, but shifted by one place.

The reduced unsigned numerators are 1, 1, 1, 61, 277, ... and the reduced denominators are 1, 6, 24, 5040, 72576, ... (sequencesA091912 andA136606 in theOEIS).

History

[edit]
For broader coverage of this topic, seeMercator projection § History, andIntegral of the secant function.

The function and its inverse are related to theMercator projection. The vertical coordinate in the Mercator projection is calledisometric latitude, and is often denotedψ.{\textstyle \psi .} In terms oflatitudeϕ{\textstyle \phi } on the sphere (expressed inradians) the isometric latitude can be written

ψ=gd1ϕ=0ϕsectdt.{\displaystyle \psi =\operatorname {gd} ^{-1}\phi =\int _{0}^{\phi }\sec t\,\mathrm {d} t.}

The inverse from the isometric latitude to spherical latitude isϕ=gdψ.{\textstyle \phi =\operatorname {gd} \psi .} (Note: on anellipsoid of revolution, the relation between geodetic latitude and isometric latitude is slightly more complicated.)

Gerardus Mercator plotted his celebrated map in 1569, but the precise method of construction was not revealed. In 1599,Edward Wright described a method for constructing a Mercator projection numerically from trigonometric tables, but did not produce a closed formula. The closed formula was published in 1668 byJames Gregory.

The Gudermannian function per se was introduced byJohann Heinrich Lambert in the 1760s at the same time as thehyperbolic functions. He called it the "transcendent angle", and it went by various names until 1862 whenArthur Cayley suggested it be given its current name as a tribute toChristoph Gudermann's work in the 1830s on the theory ofspecial functions.[19]Gudermann had published articles inCrelle's Journal that were later collected in a book[20]which expoundedsinh{\textstyle \sinh } andcosh{\textstyle \cosh } to a wide audience (although represented by the symbolsSin{\textstyle {\mathfrak {Sin}}} andCos{\textstyle {\mathfrak {Cos}}}).

The notationgd{\textstyle \operatorname {gd} } was introduced by Cayley who starts by callingϕ=gdu{\textstyle \phi =\operatorname {gd} u} theJacobi elliptic amplitudeamu{\textstyle \operatorname {am} u} in the degenerate case where the elliptic modulus ism=1,{\textstyle m=1,} so that1msin2ϕ{\textstyle {\sqrt {1-m\sin \!^{2}\,\phi }}} reduces tocosϕ.{\textstyle \cos \phi .}[21] This is the inverse of theintegral of the secant function. Using Cayley's notation,

u=0dϕcosϕ=logtan(14π+12ϕ).{\displaystyle u=\int _{0}{\frac {d\phi }{\cos \phi }}={\log \,\tan }{\bigl (}{\tfrac {1}{4}}\pi +{\tfrac {1}{2}}\phi {\bigr )}.}

He then derives "the definition of the transcendent",

gdu=1ilogtan(14π+12ui),{\displaystyle \operatorname {gd} u={{\frac {1}{i}}\log \,\tan }{\bigl (}{\tfrac {1}{4}}\pi +{\tfrac {1}{2}}ui{\bigr )},}

observing that "although exhibited in an imaginary form, [it] is a real function ofu{\textstyle u}".

The Gudermannian and its inverse were used to maketrigonometric tables of circular functions also function as tables of hyperbolic functions. Given a hyperbolic angleψ{\textstyle \psi }, hyperbolic functions could be found by first looking upϕ=gdψ{\textstyle \phi =\operatorname {gd} \psi } in a Gudermannian table and then looking up the appropriate circular function ofϕ{\textstyle \phi }, or by directly locatingψ{\textstyle \psi } in an auxiliarygd1{\displaystyle \operatorname {gd} ^{-1}} column of the trigonometric table.[22]

Generalization

[edit]

The Gudermannian function can be thought of mapping points on one branch of a hyperbola to points on a semicircle. Points on one sheet of ann-dimensionalhyperboloid of two sheets can be likewise mapped onto an-dimensional hemisphere via stereographic projection. Thehemisphere model of hyperbolic space uses such a map to represent hyperbolic space.

Applications

[edit]
Distance in thePoincaré half-plane model of thehyperbolic plane from the apex of a semicircle to another point on it is the inverse Gudermannian function of the central angle.

See also

[edit]

Notes

[edit]
  1. ^The symbolsψ{\textstyle \psi } andϕ{\textstyle \phi } were chosen for this article because they are commonly used ingeodesy for theisometric latitude (vertical coordinate of theMercator projection) andgeodetic latitude, respectively, and geodesy/cartography was the original context for the study of the Gudermannian and inverse Gudermannian functions.
  2. ^Gudermann published several papers about the trigonometric and hyperbolic functions inCrelle's Journal in 1830–1831. These were collected in a book,Gudermann (1833).
  3. ^Roy & Olver (2010)§4.23(viii) "Gudermannian Function";Beyer (1987)
  4. ^Kennelly (1929);Lee (1976)
  5. ^Masson (2021)
  6. ^Gottschalk (2003) pp. 23–27
  7. ^Masson (2021) draws complex-valued plots of several of these, demonstrating that naïve implementations that choose the principal branch of inverse trigonometric functions yield incorrect results.
  8. ^abWeisstein, Eric W."Gudermannian".MathWorld.
  9. ^Kennelly (1929)
  10. ^Kennelly (1929)p. 181;Beyer (1987)p. 269
  11. ^Beyer (1987)p. 269 – note the typo.
  12. ^Legendre (1817)§4.2.8(163) pp. 144–145
  13. ^Kennelly (1929)p. 182
  14. ^Kahlig & Reich (2013)
  15. ^Cayley (1862)p. 21
  16. ^Kennelly (1929)pp. 180–183
  17. ^Legendre (1817)§4.2.7(162) pp. 143–144
  18. ^Turnbull, Herbert Westren, ed. (1939).James Gregory; Tercentenary Memorial Volume. G. Bell & Sons. p. 170.
  19. ^Becker & Van Orstrand (1909)
  20. ^Gudermann (1833)
  21. ^Cayley (1862)
  22. ^For example Hoüel labels the hyperbolic functions across the top in Table XIV of:Hoüel, Guillaume Jules (1885).Recueil de formules et de tables numériques. Gauthier-Villars. p. 36.
  23. ^Osborne (2013) p. 74
  24. ^Robertson (1997)
  25. ^Good, Anderson & Evans (2013)
  26. ^Kennelly (1928)
  27. ^Ringermacher & Mead (2009)

References

[edit]

External links

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Gudermannian_function&oldid=1331034008"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp