Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Trace class

From Wikipedia, the free encyclopedia
Compact operator for which a finite trace can be defined
Not to be confused withtrace operator, studied in partial differential equations.

Inmathematics, specificallyfunctional analysis, atrace-class operator is a linear operator for which atrace may be defined, such that the trace is a finite number independent of the choice of basis used to compute the trace. This trace of trace-class operators generalizes the trace of matrices studied inlinear algebra. All trace-class operators arecompact operators.

Inquantum mechanics,quantum states are described bydensity matrices, which are certain trace class operators.[1]

Trace-class operators are essentially the same asnuclear operators, though many authors reserve the term "trace-class operator" for the special case of nuclear operators onHilbert spaces and use the term "nuclear operator" in more generaltopological vector spaces (such asBanach spaces).

Definition

[edit]

LetH{\displaystyle H} be aseparableHilbert space,{ek}k=1{\displaystyle \left\{e_{k}\right\}_{k=1}^{\infty }} anorthonormal basis andA:HH{\displaystyle A:H\to H} apositivebounded linear operator onH{\displaystyle H}. Thetrace ofA{\displaystyle A} is denoted byTr(A){\displaystyle \operatorname {Tr} (A)} and defined as[2][3]

Tr(A)=k=1Aek,ek,{\displaystyle \operatorname {Tr} (A)=\sum _{k=1}^{\infty }\left\langle Ae_{k},e_{k}\right\rangle ,}

independent of the choice of orthonormal basis. A (not necessarily positive) bounded linear operatorT:HH{\displaystyle T:H\rightarrow H} is calledtrace classif and only if

Tr(|T|)<,{\displaystyle \operatorname {Tr} (|T|)<\infty ,}

where|T|:=TT{\displaystyle |T|:={\sqrt {T^{*}T}}} denotes the positive-semidefiniteHermitiansquare root.[4]

Thetrace-norm of a trace class operatorT is defined asT1:=Tr(|T|).{\displaystyle \|T\|_{1}:=\operatorname {Tr} (|T|).}One can show that the trace-norm is anorm on the space of all trace class operatorsB1(H){\displaystyle B_{1}(H)} and thatB1(H){\displaystyle B_{1}(H)}, with the trace-norm, becomes aBanach space.

WhenH{\displaystyle H} is finite-dimensional, every (positive) operator is trace class. ForA{\displaystyle A} this definition coincides with that of thetrace of a matrix. IfH{\displaystyle H} is complex, thenA{\displaystyle A} is alwaysself-adjoint (i.e.A=A=|A|{\displaystyle A=A^{*}=|A|}) though the converse is not necessarily true.[5]

Equivalent formulations

[edit]

Given a bounded linear operatorT:HH{\displaystyle T:H\to H}, each of the following statements is equivalent toT{\displaystyle T} being in the trace class:

Examples

[edit]

Spectral theorem

[edit]

LetT{\displaystyle T} be a bounded self-adjoint operator on a Hilbert space. ThenT2{\displaystyle T^{2}} is trace classif and only ifT{\displaystyle T} has apure point spectrum with eigenvalues{λi(T)}i=1{\displaystyle \left\{\lambda _{i}(T)\right\}_{i=1}^{\infty }} such that[12]

Tr(T2)=i=1λi(T2)<.{\displaystyle \operatorname {Tr} (T^{2})=\sum _{i=1}^{\infty }\lambda _{i}(T^{2})<\infty .}

Mercer's theorem

[edit]

Mercer's theorem provides another example of a trace class operator. That is, supposeK{\displaystyle K} is a continuous symmetricpositive-definite kernel onL2([a,b]){\displaystyle L^{2}([a,b])}, defined as

K(s,t)=j=1λjej(s)ej(t){\displaystyle K(s,t)=\sum _{j=1}^{\infty }\lambda _{j}\,e_{j}(s)\,e_{j}(t)}

then the associatedHilbert–Schmidt integral operatorTK{\displaystyle T_{K}} is trace class, i.e.,

Tr(TK)=abK(t,t)dt=iλi.{\displaystyle \operatorname {Tr} (T_{K})=\int _{a}^{b}K(t,t)\,dt=\sum _{i}\lambda _{i}.}

Finite-rank operators

[edit]

Everyfinite-rank operator is a trace-class operator. Furthermore, the space of all finite-rank operators is adense subspace ofB1(H){\displaystyle B_{1}(H)} (when endowed with the trace norm).[9]

Given anyx,yH,{\displaystyle x,y\in H,} define the operatorxy:HH{\displaystyle x\otimes y:H\to H} by(xy)(z):=z,yx.{\displaystyle (x\otimes y)(z):=\langle z,y\rangle x.} Thenxy{\displaystyle x\otimes y} is a continuous linear operator of rank 1 and is thus trace class; moreover, for any bounded linear operatorA onH (and intoH),Tr(A(xy))=Ax,y.{\displaystyle \operatorname {Tr} (A(x\otimes y))=\langle Ax,y\rangle .}[9]

Properties

[edit]
  1. IfA:HH{\displaystyle A:H\to H} is a non-negativeself-adjoint operator, thenA{\displaystyle A} is trace-class if and only ifTrA<.{\displaystyle \operatorname {Tr} A<\infty .} Therefore, a self-adjoint operatorA{\displaystyle A} is trace-classif and only if its positive partA+{\displaystyle A^{+}} and negative partA{\displaystyle A^{-}} are both trace-class. (The positive and negative parts of a self-adjoint operator are obtained by thecontinuous functional calculus.)
  2. The trace is alinear functional over the space of trace-class operators, that is,Tr(aA+bB)=aTr(A)+bTr(B).{\displaystyle \operatorname {Tr} (aA+bB)=a\operatorname {Tr} (A)+b\operatorname {Tr} (B).}The bilinear mapA,B=Tr(AB){\displaystyle \langle A,B\rangle =\operatorname {Tr} (A^{*}B)} is aninner product on the trace class; the corresponding norm is called theHilbert–Schmidt norm. The completion of the trace-class operators in the Hilbert–Schmidt norm are called the Hilbert–Schmidt operators.
  3. Tr:B1(H)C{\displaystyle \operatorname {Tr} :B_{1}(H)\to \mathbb {C} } is a positive linear functional such that ifT{\displaystyle T} is a trace class operator satisfyingT0 and TrT=0,{\displaystyle T\geq 0{\text{ and }}\operatorname {Tr} T=0,} thenT=0.{\displaystyle T=0.}[11]
  4. IfT:HH{\displaystyle T:H\to H} is trace-class then so isT{\displaystyle T^{*}} andT1=T1.{\displaystyle \|T\|_{1}=\left\|T^{*}\right\|_{1}.}[11]
  5. IfA:HH{\displaystyle A:H\to H} is bounded, andT:HH{\displaystyle T:H\to H} is trace-class, thenAT{\displaystyle AT} andTA{\displaystyle TA} are also trace-class (i.e. the space of trace-class operators onH is a two-sidedideal in the algebra of bounded linear operators onH), and[11][13]AT1=Tr(|AT|)AT1,TA1=Tr(|TA|)AT1.{\displaystyle \|AT\|_{1}=\operatorname {Tr} (|AT|)\leq \|A\|\|T\|_{1},\quad \|TA\|_{1}=\operatorname {Tr} (|TA|)\leq \|A\|\|T\|_{1}.}Furthermore, under the same hypothesis,[11]Tr(AT)=Tr(TA){\displaystyle \operatorname {Tr} (AT)=\operatorname {Tr} (TA)} and|Tr(AT)|AT.{\displaystyle |\operatorname {Tr} (AT)|\leq \|A\|\|T\|.} The last assertion also holds under the weaker hypothesis thatA andT are Hilbert–Schmidt.
  6. If(ek)k{\displaystyle \left(e_{k}\right)_{k}} and(fk)k{\displaystyle \left(f_{k}\right)_{k}} are two orthonormal bases ofH and ifT is trace class thenk|Tek,fk|T1.{\textstyle \sum _{k}\left|\left\langle Te_{k},f_{k}\right\rangle \right|\leq \|T\|_{1}.}[9]
  7. IfA is trace-class, then one can define theFredholm determinant ofI+A{\displaystyle I+A}:det(I+A):=n1[1+λn(A)],{\displaystyle \det(I+A):=\prod _{n\geq 1}[1+\lambda _{n}(A)],} where{λn(A)}n{\displaystyle \{\lambda _{n}(A)\}_{n}} is the spectrum ofA.{\displaystyle A.} The trace class condition onA{\displaystyle A} guarantees that the infinite product is finite: indeed,det(I+A)eA1.{\displaystyle \det(I+A)\leq e^{\|A\|_{1}}.}It also implies thatdet(I+A)0{\displaystyle \det(I+A)\neq 0} if and only if(I+A){\displaystyle (I+A)} is invertible.
  8. IfA:HH{\displaystyle A:H\to H} is trace class then for anyorthonormal basis(ek)k{\displaystyle \left(e_{k}\right)_{k}} ofH,{\displaystyle H,} the sum of positive termsk|Aek,ek|{\textstyle \sum _{k}\left|\left\langle A\,e_{k},e_{k}\right\rangle \right|} is finite.[11]
  9. IfA=BC{\displaystyle A=B^{*}C} for someHilbert-Schmidt operatorsB{\displaystyle B} andC{\displaystyle C} then for any normal vectoreH,{\displaystyle e\in H,}|Ae,e|=12(Be2+Ce2){\textstyle |\langle Ae,e\rangle |={\frac {1}{2}}\left(\|Be\|^{2}+\|Ce\|^{2}\right)} holds.[11]

Lidskii's theorem

[edit]

LetA{\displaystyle A} be a trace-class operator in a separable Hilbert spaceH,{\displaystyle H,} and let{λn(A)}n=1N{\displaystyle \{\lambda _{n}(A)\}_{n=1}^{N\leq \infty }} be the eigenvalues ofA.{\displaystyle A.} Let us assume thatλn(A){\displaystyle \lambda _{n}(A)} are enumerated with algebraic multiplicities taken into account (that is, if the algebraic multiplicity ofλ{\displaystyle \lambda } isk,{\displaystyle k,} thenλ{\displaystyle \lambda } is repeatedk{\displaystyle k} times in the listλ1(A),λ2(A),{\displaystyle \lambda _{1}(A),\lambda _{2}(A),\dots }). Lidskii's theorem (named afterVictor Borisovich Lidskii) states thatTr(A)=n=1Nλn(A){\displaystyle \operatorname {Tr} (A)=\sum _{n=1}^{N}\lambda _{n}(A)}

Note that the series on the right converges absolutely due toWeyl's inequalityn=1N|λn(A)|m=1Msm(A){\displaystyle \sum _{n=1}^{N}\left|\lambda _{n}(A)\right|\leq \sum _{m=1}^{M}s_{m}(A)}between the eigenvalues{λn(A)}n=1N{\displaystyle \{\lambda _{n}(A)\}_{n=1}^{N}} and thesingular values{sm(A)}m=1M{\displaystyle \{s_{m}(A)\}_{m=1}^{M}} of the compact operatorA.{\displaystyle A.}[14]

Relationship between common classes of operators

[edit]

One can view certain classes of bounded operators as noncommutative analogue of classicalsequence spaces, with trace-class operators as the noncommutative analogue of thesequence space1(N).{\displaystyle \ell ^{1}(\mathbb {N} ).}

Indeed, it is possible to apply thespectral theorem to show that every normal trace-class operator on a separable Hilbert space can be realized in a certain way as an1{\displaystyle \ell ^{1}} sequence with respect to some choice of a pair of Hilbert bases. In the same vein, the bounded operators are noncommutative versions of(N),{\displaystyle \ell ^{\infty }(\mathbb {N} ),} thecompact operators that ofc0{\displaystyle c_{0}} (the sequences convergent to 0), Hilbert–Schmidt operators correspond to2(N),{\displaystyle \ell ^{2}(\mathbb {N} ),} andfinite-rank operators toc00{\displaystyle c_{00}} (the sequences that have only finitely many non-zero terms). To some extent, the relationships between these classes of operators are similar to the relationships between their commutative counterparts.

Recall that every compact operatorT{\displaystyle T} on a Hilbert space takes the following canonical form: there exist orthonormal bases(ui)i{\displaystyle (u_{i})_{i}} and(vi)i{\displaystyle (v_{i})_{i}} and a sequence(αi)i{\displaystyle \left(\alpha _{i}\right)_{i}} of non-negative numbers withαi0{\displaystyle \alpha _{i}\to 0} such thatTx=iαix,viui for all xH.{\displaystyle Tx=\sum _{i}\alpha _{i}\langle x,v_{i}\rangle u_{i}\quad {\text{ for all }}x\in H.}Making the above heuristic comments more precise, we have thatT{\displaystyle T} is trace-class iff the seriesiαi{\textstyle \sum _{i}\alpha _{i}} is convergent,T{\displaystyle T} is Hilbert–Schmidt iffiαi2{\textstyle \sum _{i}\alpha _{i}^{2}} is convergent, andT{\displaystyle T} is finite-rank iff the sequence(αi)i{\displaystyle \left(\alpha _{i}\right)_{i}} has only finitely many nonzero terms. This allows to relate these classes of operators. The following inclusions hold and are all proper whenH{\displaystyle H} is infinite-dimensional:{ finite rank }{ trace class }{ Hilbert--Schmidt }{ compact }.{\displaystyle \{{\text{ finite rank }}\}\subseteq \{{\text{ trace class }}\}\subseteq \{{\text{ Hilbert--Schmidt }}\}\subseteq \{{\text{ compact }}\}.}

The trace-class operators are given the trace normT1=Tr[(TT)1/2]=iαi.{\textstyle \|T\|_{1}=\operatorname {Tr} \left[\left(T^{*}T\right)^{1/2}\right]=\sum _{i}\alpha _{i}.} The norm corresponding to the Hilbert–Schmidt inner product isT2=[Tr(TT)]1/2=(iαi2)1/2.{\displaystyle \|T\|_{2}=\left[\operatorname {Tr} \left(T^{*}T\right)\right]^{1/2}=\left(\sum _{i}\alpha _{i}^{2}\right)^{1/2}.}Also, the usualoperator norm isT=supi(αi).{\textstyle \|T\|=\sup _{i}\left(\alpha _{i}\right).} By classical inequalities regarding sequences,TT2T1{\displaystyle \|T\|\leq \|T\|_{2}\leq \|T\|_{1}}for appropriateT.{\displaystyle T.}

It is also clear that finite-rank operators are dense in both trace-class and Hilbert–Schmidt in their respective norms.

Trace class as the dual of compact operators

[edit]

Thedual space ofc0{\displaystyle c_{0}} is1(N).{\displaystyle \ell ^{1}(\mathbb {N} ).} Similarly, we have that the dual of compact operators, denoted byK(H),{\displaystyle K(H)^{*},} is the trace-class operators, denoted byB1.{\displaystyle B_{1}.} The argument, which we now sketch, is reminiscent of that for the corresponding sequence spaces. LetfK(H),{\displaystyle f\in K(H)^{*},} we identifyf{\displaystyle f} with the operatorTf{\displaystyle T_{f}} defined byTfx,y=f(Sx,y),{\displaystyle \langle T_{f}x,y\rangle =f\left(S_{x,y}\right),}whereSx,y{\displaystyle S_{x,y}} is the rank-one operator given bySx,y(h)=h,yx.{\displaystyle S_{x,y}(h)=\langle h,y\rangle x.}

This identification works because the finite-rank operators are norm-dense inK(H).{\displaystyle K(H).} In the event thatTf{\displaystyle T_{f}} is a positive operator, for any orthonormal basisui,{\displaystyle u_{i},} one hasiTfui,ui=f(I)f,{\displaystyle \sum _{i}\langle T_{f}u_{i},u_{i}\rangle =f(I)\leq \|f\|,}whereI{\displaystyle I} is the identity operator:I=i,uiui.{\displaystyle I=\sum _{i}\langle \cdot ,u_{i}\rangle u_{i}.}

But this means thatTf{\displaystyle T_{f}} is trace-class. An appeal topolar decomposition extend this to the general case, whereTf{\displaystyle T_{f}} need not be positive.

A limiting argument using finite-rank operators shows thatTf1=f.{\displaystyle \|T_{f}\|_{1}=\|f\|.} ThusK(H){\displaystyle K(H)^{*}} isisometrically isomorphic toB1.{\displaystyle B_{1}.}

As the predual of bounded operators

[edit]

Recall that the dual of1(N){\displaystyle \ell ^{1}(\mathbb {N} )} is(N).{\displaystyle \ell ^{\infty }(\mathbb {N} ).} In the present context, the dual of trace-class operatorsB1{\displaystyle B_{1}} is the bounded operatorsB(H).{\displaystyle B(H).} More precisely, the setB1{\displaystyle B_{1}} is a two-sidedideal inB(H).{\displaystyle B(H).} So given any operatorTB(H),{\displaystyle T\in B(H),} we may define acontinuouslinear functionalφT{\displaystyle \varphi _{T}} onB1{\displaystyle B_{1}} byφT(A)=Tr(AT).{\displaystyle \varphi _{T}(A)=\operatorname {Tr} (AT).} This correspondence between bounded linear operators and elementsφT{\displaystyle \varphi _{T}} of thedual space ofB1{\displaystyle B_{1}} is anisometric isomorphism. It follows thatB(H){\displaystyle B(H)}is the dual space ofB1.{\displaystyle B_{1}.} This can be used to define theweak-* topology onB(H).{\displaystyle B(H).}

See also

[edit]

References

[edit]
  1. ^Mittelstaedt 2009, pp. 389–390.
  2. ^abConway 2000, p. 86.
  3. ^Reed & Simon 1980, p. 206.
  4. ^Reed & Simon 1980, p. 196.
  5. ^Reed & Simon 1980, p. 195.
  6. ^Trèves 2006, p. 494.
  7. ^Conway 2000, p. 89.
  8. ^Reed & Simon 1980, pp. 203–204, 209.
  9. ^abcdConway 1990, p. 268.
  10. ^Trèves 2006, pp. 502–508.
  11. ^abcdefghConway 1990, p. 267.
  12. ^Simon 2010, p. 21.
  13. ^Reed & Simon 1980, p. 218.
  14. ^Simon, B. (2005)Trace ideals and their applications, Second Edition, American Mathematical Society.

Bibliography

[edit]
Basic concepts
Main results
Other results
Maps
Examples
Basic concepts
Topologies
Operators/Maps
Theorems
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
Retrieved from "https://en.wikipedia.org/w/index.php?title=Trace_class&oldid=1282616089"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp