Photograph of TCABR in USP's Plasma Physics Laboratory.
TheTokamak Chauffage Alfvén Brésilien (TCABR) is atokamak situated at the University of São Paulo (USP), Brazil.[1][2] TCABR is the largest tokamak in the southern hemisphere and one of themagnetic-confinement devices committed to advancing scientific knowledge infusion power.
TCABR was originally designed and constructed in Switzerland, at theÉcole Polytechnique Fédérale de Lausanne (EPFL), and operated there from 1980 until 1992, under the name ofTokamak Chauffage Alfvén (TCA).[1] The main focus of TCA was to assess and enhanceplasma heating withAlfvén waves. In 1994, the machine was transferred to USP, passing through an upgrade and addingBrésilien to its name. The operation of TCABR began in 1999.[1]
The TCABR plasma is made ofhydrogen and has a circular format.[1][3] In general, its discharges are ohmically heated and the plasma current in TCABR reaches up to. The minor and major radii of TCABR are respectively and, giving an aspect ratio of. The TCABR central electron temperature is around (i.e.,) and its mean electron density is, in units of.[1][3] Other parameters of TCABR include the toroidalmagnetic field, the hydrogen filling pressure,, a discharge duration of, and a steady-phase duration around.[1]
The current purpose of the TCABR tokamak includes the study of Alfvén waves,[1][5][6] but is not restricted to it. Other research areas are (i) the characterization ofmagnetohydrodynamic (MHD) instabilities,[1][7] (ii) the study of high-confinement regimes induced by electrical polarization of external electrodes in the plasma edge,[3][7][8] (iii) the investigation of edgeturbulence,[3][9] and (iv) the study of plasmapoloidal and toroidal rotation usingoptical diagnostics.[1][10][11] The TCABR team is also associated with a theoretical group focused on investigating instabilities and transport barriers in tokamaks anddynamical systems.[12][13]
An upgrade in the TCABR is also being conducted.[14][15][16] A set of 108RMP coils will be installed to control and study edge localized modes (ELMs). New shaping coils will be added, allowing great flexibility in plasma configurations (e.g. single null, double null, snowflake, and negative triangularity configurations).[16] The vacuum-vessel inner wall of TCABR will receive graphite tiles to decrease impurity deposition and energy loss in the plasma.
^abcdefghijGalvão, R M O.; Amador, C H S.; Baquero, W A H.; Borges, F.; Caldas, I. L.; Cuevas, N A M.; Duarte, V. N.; Elfimov, A. G.; Elizondo, J. I.; Fonseca, A M M.; Germano, T. M.; Grenfell, G. G.; Guimarães-Filho, Z. O.; Jeronimo, J. L.; Kuznetsov, Yu K.; Manrique, M A M.; Nascimento, I. C.; Pires, C J A.; Puglia, P G P.; Reis, A. P.; Ronchi, G.; Ruchko, L. F.; De Sá, W. P.; Sgalla, R J F.; Sanada, E. K.; Severo, J H F.; Theodoro, V. C.; Toufen, D. L. (2015)."Report on recent results obtained in TCABR".Journal of Physics: Conference Series.591 (1) 012001.Bibcode:2015JPhCS.591a2001G.doi:10.1088/1742-6596/591/1/012001.S2CID124858345.
^abde Sá, Wanderley Pires."TCABR Wiki". Retrieved6 June 2022.
^abcdGrenfell, G. G.; Nascimento, I. C.; Oliveira, D. S.; Guimarães-Filho, Z. O.; Elizondo, J. I.; Reis, A. P.; Galvão, R. M. O.; Baquero, W. A. H.; Oliveira, A. M.; Ronchi, G.; De Sá, W. P.; Severo, J. H. F.; T CABR Team (2018). "H-mode access and the role of spectral shift with electrode biasing in the TCABR tokamak".Physics of Plasmas.25 (7): 072301.Bibcode:2018PhPl...25g2301G.doi:10.1063/1.5029561.S2CID125657283.
^Ruchko, L.F.; Ozono, E.; Galvão, R.M.O.; Nascimento, I.C.; Degasperi, F.T.; Lerche, E. (1998). "Advanced antenna system for Alfvén wave plasma heating and current drive in TCABR tokamak".Fusion Engineering and Design.43:15–28.doi:10.1016/S0920-3796(98)00260-9.
^Severo, J H F.; Canal, G. P.; Ronchi, G.; Andrade, N. B.; Fernandes, T.; Ikeda, M. Y.; Collares, M. P.; Galvão, R M O.; Nascimento, I. C.; Tendler, M. (2021). "Overview of plasma rotation studies on the TCABR tokamak".Plasma Physics and Controlled Fusion.63 (7): 075001.Bibcode:2021PPCF...63g5001S.doi:10.1088/1361-6587/abf955.S2CID235293558.
^Marcus, F. A.; Caldas, I. L.; Guimarães-Filho, Z. O.; Morrison, P. J.; Horton, W.; Kuznetsov, Yu. K.; Nascimento, I. C. (2008). "Reduction of chaotic particle transport driven by drift waves in sheared flows".Physics of Plasmas.15 (11): 112304.Bibcode:2008PhPl...15k2304M.doi:10.1063/1.3009532.