Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Tokamak Chauffage Alfvén Brésilien

From Wikipedia, the free encyclopedia
(Redirected fromTokamak Chauffage Alfvén Brésilien (TCABR))
Tokamak at the University of Sao Paulo, Brazil
This articlemay be too technical for most readers to understand. Pleasehelp improve it tomake it understandable to non-experts, without removing the technical details.(October 2022) (Learn how and when to remove this message)
Photograph of TCABR in USP's Plasma Physics Laboratory.

TheTokamak Chauffage Alfvén Brésilien (TCABR) is atokamak situated at the University of São Paulo (USP), Brazil.[1][2] TCABR is the largest tokamak in the southern hemisphere and one of themagnetic-confinement devices committed to advancing scientific knowledge infusion power.

History

[edit]

TCABR was originally designed and constructed in Switzerland, at theÉcole Polytechnique Fédérale de Lausanne (EPFL), and operated there from 1980 until 1992, under the name ofTokamak Chauffage Alfvén (TCA).[1] The main focus of TCA was to assess and enhanceplasma heating withAlfvén waves. In 1994, the machine was transferred to USP, passing through an upgrade and addingBrésilien to its name. The operation of TCABR began in 1999.[1]

Properties

[edit]
3D virtual model of the TCABR tokamak.

The TCABR plasma is made ofhydrogen and has a circular format.[1][3] In general, its discharges are ohmically heated and the plasma current in TCABR reaches up toIP100 kA{\displaystyle I_{P}\leq 100\ {\text{kA}}}. The minor and major radii of TCABR are respectivelya=18.0cm{\displaystyle a=18.0\;{\text{cm}}} andR=61.5cm{\displaystyle R=61.5\;{\text{cm}}}, giving an aspect ratio ofA=R/a=3.4{\displaystyle A=R/a=3.4}. The TCABR central electron temperature is aroundkBTe650 eV{\displaystyle k_{B}T_{e}\leq 650\ {\text{eV}}} (i.e.,Te6×106K{\displaystyle T_{e}\sim 6\times 10^{6}\;{\text{K}}}) and its mean electron density is0.9n¯e03{\displaystyle 0.9\leq {\bar {n}}_{e0}\leq 3}, in units of1019m3{\displaystyle 10^{19}\;{\text{m}}^{-3}}.[1][3] Other parameters of TCABR include the toroidalmagnetic field,B01.1T,{\displaystyle B_{0}\sim 1.1\;{\text{T}},} the hydrogen filling pressure,PH3×104Pa{\displaystyle P_{H}\simeq 3\times 10^{-4}\;{\text{Pa}}}, a discharge duration ofTD100ms{\displaystyle T_{D}\simeq 100\;{\text{ms}}}, and a steady-phase duration aroundT60ms{\displaystyle T\leq 60\;{\text{ms}}}.[1]

Parameters of TCABR[1][2][4]
ParameterSymbolValue
Plasma formatCircular
Plasma compositionHHydrogen
Major radiusR0{\displaystyle R_{0}}61.5 cm{\displaystyle 61.5{\text{ cm}}}
Minor radiusa{\displaystyle a}18.0 cm{\displaystyle 18.0{\text{ cm}}}
Aspect ratio (R0/a{\displaystyle R_{0}/a})A{\displaystyle A}3.4{\displaystyle 3.4}
Plasma currentIp{\displaystyle I_{p}}100 kA{\displaystyle \leq 100\ {\text{kA}}}
Central (or toroidal) magnetic fieldB0{\displaystyle B_{0}}1.1 T{\displaystyle \sim 1.1\ {\text{T}}}
Line-averaged electronic densityn¯e0{\displaystyle {\overline {n}}_{e0}}0.93×1019 m3{\displaystyle 0.9\sim 3\times 10^{19}\ {\text{m}}^{-3}}
Central electronic temperaturekBTe0{\displaystyle k_{B}T_{e0}}0.5 keV{\displaystyle \sim 0.5\ {\text{keV}}}
Hydrogen filling pressurePH{\displaystyle P_{H}}13×102 Pa{\displaystyle 1\sim 3\times 10^{-2}\ {\text{Pa}}}
Discharge durationTD{\displaystyle T_{D}}100 ms{\displaystyle \simeq 100\ {\text{ms}}}
Duration of the steady phaseT{\displaystyle T}60 ms{\displaystyle \leq 60\ {\text{ms}}}

Research program

[edit]

The current purpose of the TCABR tokamak includes the study of Alfvén waves,[1][5][6] but is not restricted to it. Other research areas are (i) the characterization ofmagnetohydrodynamic (MHD) instabilities,[1][7] (ii) the study of high-confinement regimes induced by electrical polarization of external electrodes in the plasma edge,[3][7][8] (iii) the investigation of edgeturbulence,[3][9] and (iv) the study of plasmapoloidal and toroidal rotation usingoptical diagnostics.[1][10][11] The TCABR team is also associated with a theoretical group focused on investigating instabilities and transport barriers in tokamaks anddynamical systems.[12][13]

An upgrade in the TCABR is also being conducted.[14][15][16] A set of 108RMP coils will be installed to control and study edge localized modes (ELMs). New shaping coils will be added, allowing great flexibility in plasma configurations (e.g. single null, double null, snowflake, and negative triangularity configurations).[16] The vacuum-vessel inner wall of TCABR will receive graphite tiles to decrease impurity deposition and energy loss in the plasma.

References

[edit]
  1. ^abcdefghijGalvão, R M O.; Amador, C H S.; Baquero, W A H.; Borges, F.; Caldas, I. L.; Cuevas, N A M.; Duarte, V. N.; Elfimov, A. G.; Elizondo, J. I.; Fonseca, A M M.; Germano, T. M.; Grenfell, G. G.; Guimarães-Filho, Z. O.; Jeronimo, J. L.; Kuznetsov, Yu K.; Manrique, M A M.; Nascimento, I. C.; Pires, C J A.; Puglia, P G P.; Reis, A. P.; Ronchi, G.; Ruchko, L. F.; De Sá, W. P.; Sgalla, R J F.; Sanada, E. K.; Severo, J H F.; Theodoro, V. C.; Toufen, D. L. (2015)."Report on recent results obtained in TCABR".Journal of Physics: Conference Series.591 (1) 012001.Bibcode:2015JPhCS.591a2001G.doi:10.1088/1742-6596/591/1/012001.S2CID 124858345.
  2. ^abde Sá, Wanderley Pires."TCABR Wiki". Retrieved6 June 2022.
  3. ^abcdGrenfell, G. G.; Nascimento, I. C.; Oliveira, D. S.; Guimarães-Filho, Z. O.; Elizondo, J. I.; Reis, A. P.; Galvão, R. M. O.; Baquero, W. A. H.; Oliveira, A. M.; Ronchi, G.; De Sá, W. P.; Severo, J. H. F.; T CABR Team (2018). "H-mode access and the role of spectral shift with electrode biasing in the TCABR tokamak".Physics of Plasmas.25 (7): 072301.Bibcode:2018PhPl...25g2301G.doi:10.1063/1.5029561.S2CID 125657283.
  4. ^Ronchi, Gilson (2017-03-02).Estudo de perfis de pressão no Tokamak TCABR (Doutorado em Física thesis) (in Portuguese). São Paulo: Universidade de São Paulo.doi:10.11606/t.43.2017.tde-22022017-125032.
  5. ^Ruchko, L.F.; Ozono, E.; Galvão, R.M.O.; Nascimento, I.C.; Degasperi, F.T.; Lerche, E. (1998). "Advanced antenna system for Alfvén wave plasma heating and current drive in TCABR tokamak".Fusion Engineering and Design.43:15–28.doi:10.1016/S0920-3796(98)00260-9.
  6. ^Elfimov, A. G. (2009). "Kinetic ion effect on geodesic acoustic Alfvén modes in tokamaks".Physics of Plasmas.16 (3): 034501.Bibcode:2009PhPl...16c4501E.doi:10.1063/1.3081547.
  7. ^abNascimento, I.C.; Kuznetsov, Yu.K.; Guimarães-Filho, Z.O.; El Chamaa-Neto, I.; Usuriaga, O.; Fonseca, A.M.M.; Galvão, R.M.O.; Caldas, I.L.; Severo, J.H.F.; Semenov, I.B.; Ribeiro, C.; Heller, M.V.P.; Bellintani, V.; Elizondo, J.I.; Sanada, E. (2007). "Suppression and excitation of MHD activity with an electrically polarized electrode at the TCABR tokamak plasma edge".Nuclear Fusion.47 (11):1570–1576.Bibcode:2007NucFu..47.1570N.doi:10.1088/0029-5515/47/11/019.S2CID 54829018.
  8. ^Nascimento, I.C; Kuznetsov, Y.K; Severo, J.H.F; Fonseca, A.M.M; Elfimov, A.; Bellintani, V.; Machida, M.; Heller, M.V.A.P; Galvão, R.M.O; Sanada, E.K; Elizondo, J.I (2005). "Plasma confinement using biased electrode in the TCABR tokamak".Nuclear Fusion.45 (8):796–803.Bibcode:2005NucFu..45..796N.doi:10.1088/0029-5515/45/8/005.S2CID 56342265.
  9. ^Guimarães-Filho, Z.O.; Caldas, I.L.; Viana, R.L.; Kurths, J.; Nascimento, I.C.; Kuznetsov, Yu.K. (2008). "Recurrence quantification analysis of electrostatic fluctuations in fusion plasmas".Physics Letters A.372 (7):1088–1095.Bibcode:2008PhLA..372.1088G.doi:10.1016/j.physleta.2007.07.088.
  10. ^Severo, J.H.F; Nascimento, I.C; Tsypin, V.S; Galvão, R.M.O (2003). "Plasma residual rotation in the TCABR tokamak".Nuclear Fusion.43 (10):1047–1056.Bibcode:2003NucFu..43.1047S.doi:10.1088/0029-5515/43/10/005.S2CID 250738978.
  11. ^Severo, J H F.; Canal, G. P.; Ronchi, G.; Andrade, N. B.; Fernandes, T.; Ikeda, M. Y.; Collares, M. P.; Galvão, R M O.; Nascimento, I. C.; Tendler, M. (2021). "Overview of plasma rotation studies on the TCABR tokamak".Plasma Physics and Controlled Fusion.63 (7): 075001.Bibcode:2021PPCF...63g5001S.doi:10.1088/1361-6587/abf955.S2CID 235293558.
  12. ^Marcus, F. A.; Caldas, I. L.; Guimarães-Filho, Z. O.; Morrison, P. J.; Horton, W.; Kuznetsov, Yu. K.; Nascimento, I. C. (2008). "Reduction of chaotic particle transport driven by drift waves in sheared flows".Physics of Plasmas.15 (11): 112304.Bibcode:2008PhPl...15k2304M.doi:10.1063/1.3009532.
  13. ^de Sousa, Meirielen Caetano; Medeiros, Everton; Caldas, Iberê Luiz (6 June 2022)."Website of the Oscillation Control Group".
  14. ^Santos, A.O.; Komatsu, W.; Canal, G.P.; Severo, J.H.F.; De Sá, W.P.; Kassab, F.; Ferreira, J.G.; De Andrade, M.C.R.; Piqueira, J.R.C.; Nascimento, I.C.; Galvão, R.M.O. (2020). "Development of high-current power supplies for the TCABR tokamak".Fusion Engineering and Design.159 111698.doi:10.1016/j.fusengdes.2020.111698.S2CID 224884509.
  15. ^Canal, G. P. (6 June 2022)."An overview of the upgrade of the TCABR tokamak"(PDF). 12th IAEA Technical Meeting on Control, Data Acquisition and Remote Participation for Fusion Research (2019).{{cite web}}: CS1 maint: location (link)
  16. ^abCanal, G. P. (6 June 2022)."Modernização do tokamak TCABR para estudos de supressão de ELMs por campos RMP"(PDF). Comissão Nacional de Energia Nuclear, 1o Seminário Nacional de Fusão Nuclear (2021).{{cite web}}: CS1 maint: location (link)
Fusion power, processes and devices
Core topics
Nuclear fusion
Processes,
methods
Confinement
type
Gravitational
Magnetic
Magneto-inertial
Inertial
Electrostatic
Other forms
Devices,
experiments
Magnetic
confinement
Tokamak
International
Americas
Asia,
Oceania
Europe
Stellarator
Americas
Asia,
Oceania
Europe
Levitated dipole
Pinch
RFP
Field-reversed
configuration
Colliding
Mirror
Magneto-inertial
Inertial
confinement
Laser
Americas
Asia
Europe
Non-laser
Retrieved from "https://en.wikipedia.org/w/index.php?title=Tokamak_Chauffage_Alfvén_Brésilien&oldid=1315109043"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp