Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Toda lattice

From Wikipedia, the free encyclopedia
Simple model for one-dimensional crystal in solid-state physics

TheToda lattice, introduced byMorikazu Toda (1967), is a simple model for a one-dimensional crystal insolid state physics. It is famous because it is one of the earliest examples of a non-linearcompletely integrable system.

It is given by a chain of particles with nearest neighbor interaction, described by the Hamiltonian

H(p,q)=nZ(p(n,t)22+V(q(n+1,t)q(n,t))){\displaystyle {\begin{aligned}H(p,q)&=\sum _{n\in \mathbb {Z} }\left({\frac {p(n,t)^{2}}{2}}+V(q(n+1,t)-q(n,t))\right)\end{aligned}}}

and the equations of motion

ddtp(n,t)=H(p,q)q(n,t)=e(q(n,t)q(n1,t))e(q(n+1,t)q(n,t)),ddtq(n,t)=H(p,q)p(n,t)=p(n,t),{\displaystyle {\begin{aligned}{\frac {d}{dt}}p(n,t)&=-{\frac {\partial H(p,q)}{\partial q(n,t)}}=e^{-(q(n,t)-q(n-1,t))}-e^{-(q(n+1,t)-q(n,t))},\\{\frac {d}{dt}}q(n,t)&={\frac {\partial H(p,q)}{\partial p(n,t)}}=p(n,t),\end{aligned}}}

whereq(n,t){\displaystyle q(n,t)} is the displacement of then{\displaystyle n}-th particle from its equilibrium position,

andp(n,t){\displaystyle p(n,t)} is its momentum (massm=1{\displaystyle m=1}),

and the Toda potentialV(r)=er+r1{\displaystyle V(r)=e^{-r}+r-1}.

Soliton solutions

[edit]

Soliton solutions are solitary waves spreading in time with no change to their shape and size and interacting with each other in a particle-like way. The general N-soliton solution of the equation is

qN(n,t)=q++logdet(I+CN(n,t))det(I+CN(n+1,t)),{\displaystyle {\begin{aligned}q_{N}(n,t)=q_{+}+\log {\frac {\det(\mathbb {I} +C_{N}(n,t))}{\det(\mathbb {I} +C_{N}(n+1,t))}},\end{aligned}}}

where

CN(n,t)=(γi(n,t)γj(n,t)1eκi+κj)1<i,j<N,{\displaystyle C_{N}(n,t)={\Bigg (}{\frac {\sqrt {\gamma _{i}(n,t)\gamma _{j}(n,t)}}{1-e^{\kappa _{i}+\kappa _{j}}}}{\Bigg )}_{1<i,j<N},}

with

γj(n,t)=γje2κjn2σjsinh(κj)t{\displaystyle \gamma _{j}(n,t)=\gamma _{j}\,e^{-2\kappa _{j}n-2\sigma _{j}\sinh(\kappa _{j})t}}

whereκj,γj>0{\displaystyle \kappa _{j},\gamma _{j}>0} andσj{±1}{\displaystyle \sigma _{j}\in \{\pm 1\}}.

Integrability

[edit]

The Toda lattice is a prototypical example of acompletely integrable system. To see this one usesFlaschka's variables

a(n,t)=12e(q(n+1,t)q(n,t))/2,b(n,t)=12p(n,t){\displaystyle a(n,t)={\frac {1}{2}}{\rm {e}}^{-(q(n+1,t)-q(n,t))/2},\qquad b(n,t)=-{\frac {1}{2}}p(n,t)}

such that the Toda lattice reads

a˙(n,t)=a(n,t)(b(n+1,t)b(n,t)),b˙(n,t)=2(a(n,t)2a(n1,t)2).{\displaystyle {\begin{aligned}{\dot {a}}(n,t)&=a(n,t){\Big (}b(n+1,t)-b(n,t){\Big )},\\{\dot {b}}(n,t)&=2{\Big (}a(n,t)^{2}-a(n-1,t)^{2}{\Big )}.\end{aligned}}}

To show that the system is completely integrable, it suffices to find aLax pair, that is, two operatorsL(t) andP(t) in theHilbert space of square summable sequences2(Z){\displaystyle \ell ^{2}(\mathbb {Z} )} such that the Lax equation

ddtL(t)=[P(t),L(t)]{\displaystyle {\frac {d}{dt}}L(t)=[P(t),L(t)]}

(where [LP] = LP - PL is theLie commutator of the two operators) is equivalent to the time derivative of Flaschka's variables. The choice

L(t)f(n)=a(n,t)f(n+1)+a(n1,t)f(n1)+b(n,t)f(n),P(t)f(n)=a(n,t)f(n+1)a(n1,t)f(n1).{\displaystyle {\begin{aligned}L(t)f(n)&=a(n,t)f(n+1)+a(n-1,t)f(n-1)+b(n,t)f(n),\\P(t)f(n)&=a(n,t)f(n+1)-a(n-1,t)f(n-1).\end{aligned}}}

wheref(n+1) andf(n-1) are the shift operators, implies that the operatorsL(t) for differentt are unitarily equivalent.

The matrixL(t){\displaystyle L(t)} has the property that its eigenvalues are invariant in time. These eigenvalues constitute independent integrals of motion, therefore the Toda lattice is completely integrable.In particular, the Toda lattice can be solved by virtue of theinverse scattering transform for theJacobi operatorL. The main result implies that arbitrary (sufficiently fast) decaying initial conditions asymptotically for larget split into a sum of solitons and a decayingdispersive part.

See also

[edit]

References

[edit]

External links

[edit]
Authority control databases: NationalEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Toda_lattice&oldid=1249482413"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp