Simple model for one-dimensional crystal in solid-state physics
TheToda lattice , introduced byMorikazu Toda (1967 ), is a simple model for a one-dimensional crystal insolid state physics . It is famous because it is one of the earliest examples of a non-linearcompletely integrable system .
It is given by a chain of particles with nearest neighbor interaction, described by the Hamiltonian
H ( p , q ) = ∑ n ∈ Z ( p ( n , t ) 2 2 + V ( q ( n + 1 , t ) − q ( n , t ) ) ) {\displaystyle {\begin{aligned}H(p,q)&=\sum _{n\in \mathbb {Z} }\left({\frac {p(n,t)^{2}}{2}}+V(q(n+1,t)-q(n,t))\right)\end{aligned}}} and the equations of motion
d d t p ( n , t ) = − ∂ H ( p , q ) ∂ q ( n , t ) = e − ( q ( n , t ) − q ( n − 1 , t ) ) − e − ( q ( n + 1 , t ) − q ( n , t ) ) , d d t q ( n , t ) = ∂ H ( p , q ) ∂ p ( n , t ) = p ( n , t ) , {\displaystyle {\begin{aligned}{\frac {d}{dt}}p(n,t)&=-{\frac {\partial H(p,q)}{\partial q(n,t)}}=e^{-(q(n,t)-q(n-1,t))}-e^{-(q(n+1,t)-q(n,t))},\\{\frac {d}{dt}}q(n,t)&={\frac {\partial H(p,q)}{\partial p(n,t)}}=p(n,t),\end{aligned}}} whereq ( n , t ) {\displaystyle q(n,t)} is the displacement of then {\displaystyle n} -th particle from its equilibrium position,
andp ( n , t ) {\displaystyle p(n,t)} is its momentum (massm = 1 {\displaystyle m=1} ),
and the Toda potentialV ( r ) = e − r + r − 1 {\displaystyle V(r)=e^{-r}+r-1} .
Soliton solutions are solitary waves spreading in time with no change to their shape and size and interacting with each other in a particle-like way. The general N-soliton solution of the equation is
q N ( n , t ) = q + + log det ( I + C N ( n , t ) ) det ( I + C N ( n + 1 , t ) ) , {\displaystyle {\begin{aligned}q_{N}(n,t)=q_{+}+\log {\frac {\det(\mathbb {I} +C_{N}(n,t))}{\det(\mathbb {I} +C_{N}(n+1,t))}},\end{aligned}}} where
C N ( n , t ) = ( γ i ( n , t ) γ j ( n , t ) 1 − e κ i + κ j ) 1 < i , j < N , {\displaystyle C_{N}(n,t)={\Bigg (}{\frac {\sqrt {\gamma _{i}(n,t)\gamma _{j}(n,t)}}{1-e^{\kappa _{i}+\kappa _{j}}}}{\Bigg )}_{1<i,j<N},} with
γ j ( n , t ) = γ j e − 2 κ j n − 2 σ j sinh ( κ j ) t {\displaystyle \gamma _{j}(n,t)=\gamma _{j}\,e^{-2\kappa _{j}n-2\sigma _{j}\sinh(\kappa _{j})t}} whereκ j , γ j > 0 {\displaystyle \kappa _{j},\gamma _{j}>0} andσ j ∈ { ± 1 } {\displaystyle \sigma _{j}\in \{\pm 1\}} .
The Toda lattice is a prototypical example of acompletely integrable system . To see this one usesFlaschka 's variables
a ( n , t ) = 1 2 e − ( q ( n + 1 , t ) − q ( n , t ) ) / 2 , b ( n , t ) = − 1 2 p ( n , t ) {\displaystyle a(n,t)={\frac {1}{2}}{\rm {e}}^{-(q(n+1,t)-q(n,t))/2},\qquad b(n,t)=-{\frac {1}{2}}p(n,t)} such that the Toda lattice reads
a ˙ ( n , t ) = a ( n , t ) ( b ( n + 1 , t ) − b ( n , t ) ) , b ˙ ( n , t ) = 2 ( a ( n , t ) 2 − a ( n − 1 , t ) 2 ) . {\displaystyle {\begin{aligned}{\dot {a}}(n,t)&=a(n,t){\Big (}b(n+1,t)-b(n,t){\Big )},\\{\dot {b}}(n,t)&=2{\Big (}a(n,t)^{2}-a(n-1,t)^{2}{\Big )}.\end{aligned}}} To show that the system is completely integrable, it suffices to find aLax pair , that is, two operatorsL(t) andP(t) in theHilbert space of square summable sequencesℓ 2 ( Z ) {\displaystyle \ell ^{2}(\mathbb {Z} )} such that the Lax equation
d d t L ( t ) = [ P ( t ) , L ( t ) ] {\displaystyle {\frac {d}{dt}}L(t)=[P(t),L(t)]} (where [L , P ] = LP - PL is theLie commutator of the two operators) is equivalent to the time derivative of Flaschka's variables. The choice
L ( t ) f ( n ) = a ( n , t ) f ( n + 1 ) + a ( n − 1 , t ) f ( n − 1 ) + b ( n , t ) f ( n ) , P ( t ) f ( n ) = a ( n , t ) f ( n + 1 ) − a ( n − 1 , t ) f ( n − 1 ) . {\displaystyle {\begin{aligned}L(t)f(n)&=a(n,t)f(n+1)+a(n-1,t)f(n-1)+b(n,t)f(n),\\P(t)f(n)&=a(n,t)f(n+1)-a(n-1,t)f(n-1).\end{aligned}}} wheref(n+1) andf(n-1) are the shift operators, implies that the operatorsL(t) for differentt are unitarily equivalent.
The matrixL ( t ) {\displaystyle L(t)} has the property that its eigenvalues are invariant in time. These eigenvalues constitute independent integrals of motion, therefore the Toda lattice is completely integrable.In particular, the Toda lattice can be solved by virtue of theinverse scattering transform for theJacobi operator L . The main result implies that arbitrary (sufficiently fast) decaying initial conditions asymptotically for larget split into a sum of solitons and a decayingdispersive part.
Krüger, Helge; Teschl, Gerald (2009), "Long-time asymptotics of the Toda lattice for decaying initial data revisited",Rev. Math. Phys. ,21 (1):61– 109,arXiv :0804.4693 ,Bibcode :2009RvMaP..21...61K ,doi :10.1142/S0129055X0900358X ,MR 2493113 ,S2CID 14214460 Teschl, Gerald (2000),Jacobi Operators and Completely Integrable Nonlinear Lattices , Providence: Amer. Math. Soc.,ISBN 978-0-8218-1940-1 ,MR 1711536 Teschl, Gerald (2001),"Almost everything you always wanted to know about the Toda equation" ,Jahresbericht der Deutschen Mathematiker-Vereinigung ,103 (4):149– 162,MR 1879178 Eugene Gutkin, Integrable Hamiltonians with Exponential Potential, Physica 16D (1985) 398-404.doi :10.1016/0167-2789(85)90017-X Toda, Morikazu (1967), "Vibration of a chain with a non-linear interaction",J. Phys. Soc. Jpn. ,22 (2):431– 436,Bibcode :1967JPSJ...22..431T ,doi :10.1143/JPSJ.22.431 Toda, Morikazu (1989),Theory of Nonlinear Lattices , Springer Series in Solid-State Sciences, vol. 20 (2 ed.), Berlin: Springer,doi :10.1007/978-3-642-83219-2 ,ISBN 978-0-387-10224-5 ,MR 0971987