Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Titanium tetrachloride

From Wikipedia, the free encyclopedia
Inorganic chemical compound
Titanium tetrachloride
Spacefill model of titanium tetrachloride
Spacefill model of titanium tetrachloride
Names
IUPAC name
Titanium(IV) chloride
Other names
Titanium tetrachloride
Tetrachlorotitanium
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard100.028.584Edit this at Wikidata
EC Number
  • 231-441-9
MeSHTitanium+tetrachloride
RTECS number
  • XR1925000
UNII
UN number1838
  • InChI=1S/4ClH.Ti/h4*1H;/q;;;;+4/p-4 checkY
    Key: XJDNKRIXUMDJCW-UHFFFAOYSA-J checkY
  • InChI=1/4ClH.Ti/h4*1H;/q;;;;+4/p-4/rCl4Ti/c1-5(2,3)4
    Key: XJDNKRIXUMDJCW-FOGBWSKZAG
  • Cl[Ti](Cl)(Cl)Cl
Properties
TiCl4
Molar mass189.679 g/mol
AppearanceColourless liquid
Odorpenetrating acid odor
Density1.726 g/cm3
Melting point−24.1 °C (−11.4 °F; 249.1 K)
Boiling point136.4 °C (277.5 °F; 409.5 K)
reacts (exothermic hydrolysis)[1]
Solubilitysoluble indichloromethane,[2]toluene,[3]pentane[4]
Vapor pressure1.3 kPa (20 °C)
−54.0·10−6 cm3/mol
1.61 (10.5 °C)
Viscosity827 μPa s
Structure
Tetragonal
Tetrahedral
0 D
Thermochemistry
355 J·mol−1·K−1[5]
−763 kJ·mol−1[5]
Hazards[6]
Occupational safety and health (OHS/OSH):
Main hazards
Toxic, corrosive, reacts with water to releaseHCl
GHS labelling:
GHS05: CorrosiveGHS06: ToxicGHS07: Exclamation mark
Danger
H314,H317,H330,H335,H370,H372
P280,P301+P330+P331,P304+P340,P305+P351+P338,P308+P310
NFPA 704 (fire diamond)
Safety data sheet (SDS)MSDS
Related compounds
Otheranions
Titanium(IV) bromide
Titanium(IV) fluoride
Titanium(IV) iodide
Othercations
Hafnium(IV) chloride
Zirconium(IV) chloride
Related compounds
Titanium(II) chloride
Titanium(III) chloride
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)
Chemical compound
clear crystals under a clear liquid at the bottom of a glass flask
Crystals of frozen titanium tetrachloride melting into the liquid

Titanium tetrachloride is theinorganic compound with theformulaTiCl4. It is an important intermediate in the production oftitanium metal and the pigmenttitanium dioxide.TiCl4 is avolatile liquid. Upon contact with humid air, it forms thick clouds oftitanium dioxide (TiO2) andhydrochloric acid, a reaction that was formerly exploited for use in smoke machines. It is sometimes referred to as "tickle" or "tickle 4", as a phonetic representation of the symbols of its molecular formula (TiCl4).[7][8]

Properties and structure

[edit]

TiCl4 is a dense, colourless liquid, although crude samples may be yellow or even red-brown. It is one of the rare transition metal halides that is a liquid at room temperature,VCl4 being another example. This property reflects the fact that molecules ofTiCl4 weakly self-associate. Most metal chlorides arepolymers, wherein the chloride atoms bridge between the metals. Itsmelting point is similar to that ofCCl4.[9][10]

Ti4+ has a "closed" electronic shell, with the same number of electrons as the noble gasargon. Thetetrahedral structure forTiCl4 is consistent with its description as a d0 metal center (Ti4+) surrounded by four identical ligands. This configuration leads to highlysymmetrical structures, hence the tetrahedral shape of the molecule.TiCl4 adopts similar structures toTiBr4 andTiI4; the three compounds share many similarities.TiCl4 andTiBr4 react to give mixed halidesTiCl4−xBrx, wherex = 0, 1, 2, 3, 4. Magnetic resonance measurements also indicate that halide exchange is also rapid betweenTiCl4 andVCl4.[11]

TiCl4 is soluble intoluene andchlorocarbons. Certainarenes form complexes of the type[(C6R6)TiCl3]+.[12]TiCl4 reactsexothermically with donorsolvents such asTHF to give hexacoordinatedadducts.[13] Bulkierligands (L) give pentacoordinatedadductsTiCl4L.

Production

[edit]

TiCl4 is produced by thechloride process, which involves thereduction of titanium oxide ores, typicallyilmenite (FeTiO3), withcarbon under flowingchlorine at 900 °C. Impurities are removed bydistillation.[10]

2 FeTiO3 + 7 Cl2 + 6 C → 2 TiCl4 + 2 FeCl3 + 6 CO

The coproduction ofFeCl3 is undesirable, which has motivated the development of alternative technologies. Instead of directly using ilmenite, "rutile slag" is used. This material, an impure form ofTiO2, is derived from ilmenite by removal of iron, either using carbon reduction or extraction withsulfuric acid. CrudeTiCl4 contains a variety of other volatile halides, includingvanadyl chloride (VOCl3),silicon tetrachloride (SiCl4), andtin tetrachloride (SnCl4), which must be separated.[10]

Applications

[edit]

Production of titanium metal

[edit]

The world's supply of titanium metal, about 250,000 tons per year, is made fromTiCl4. The conversion involves the reduction of the tetrachloride withmagnesium metal. This procedure is known as theKroll process:[14]

2 Mg + TiCl4 → 2 MgCl2 + Ti

In theHunter process, liquidsodium is thereducing agent instead of magnesium.[15]

Production of titanium dioxide

[edit]

Around 90% of theTiCl4 production is used to make the pigmenttitanium dioxide (TiO2). The conversion involveshydrolysis ofTiCl4, a process that formshydrogen chloride:[14]

TiCl4 + 2 H2O → TiO2 + 4 HCl

In some cases,TiCl4 is oxidised directly withoxygen:

TiCl4 + O2 → TiO2 + 2 Cl2

Smoke screens

[edit]

It has been used to producesmoke screens since it produces a heavy, white smoke that has little tendency to rise. "Tickle" was the standard means of producing on-set smoke effects for motion pictures, before being phased out in the 1980s due to concerns abouthydrated HCl's effects on the respiratory system.[citation needed]

Chemical reactions

[edit]

Titanium tetrachloride is a versatile reagent that forms diverse derivatives including those illustrated below.[16]

Alcoholysis and related reactions

[edit]

A characteristic reaction ofTiCl4 is its easyhydrolysis, signaled by the release ofHCl vapors andtitanium oxides andoxychlorides. Titanium tetrachloride has been used to create navalsmokescreens, as the hydrochloric acid aerosol and titanium dioxide that is formed scatter light very efficiently. This smoke is corrosive, however.[10]

Alcohols react withTiCl4 to give alkoxides with the formula[Ti(OR)4]n (R =alkyl,n = 1, 2, 4). As indicated by their formula, thesealkoxides can adopt complex structures ranging from monomers to tetramers. Such compounds are useful inmaterials science as well asorganic synthesis. A well known derivative istitanium isopropoxide, which is a monomer.Titanium bis(acetylacetonate)dichloride results from treatment of titanium tetrachloride with excessacetylacetone:[17]

TiCl4 + 2Hacac → Ti(acac)2Cl2 + 2 HCl

Organicamines react withTiCl4 to give complexes containing amido (R2N-containing) and imido (RN2−-containing) complexes. With ammonia,titanium nitride is formed. An illustrative reaction is the synthesis oftetrakis(dimethylamido)titaniumTi(N(CH3)2)4, a yellow, benzene-soluble liquid:[18] This molecule is tetrahedral, with planar nitrogen centers.[19]

4 LiN(CH3)2 + TiCl4 → 4 LiCl + Ti(N(CH3)2)4

Complexes with simple ligands

[edit]

TiCl4 is aLewis acid as implicated by its tendency tohydrolyze. With theetherTHF,TiCl4 reacts to give yellow crystals ofTiCl4(THF)2. With chloride salts,TiCl4 reacts to form sequentially[Ti2Cl9],[Ti2Cl10]2− (see figure above), and[TiCl6]2−.[20] The reaction of chloride ions withTiCl4 depends on the counterion.[N(CH2CH2CH2CH3)4]Cl andTiCl4 gives the pentacoordinate complex[N(CH2CH2CH2CH3)4][TiCl5], whereas smaller[N(CH2CH3)4]+ gives[N(CH2CH3)4]2[Ti2Cl10]. These reactions highlight the influence of electrostatics on the structures of compounds with highly ionic bonding.

Redox

[edit]

Reduction ofTiCl4 withaluminium results in one-electron reduction. The trichloride (TiCl3) and tetrachloride have contrasting properties: the trichloride is a colored solid, being acoordination polymer, and isparamagnetic. When the reduction is conducted inTHF solution, the Ti(III) product converts to the light-blue adductTiCl3(THF)3.

Organometallic chemistry

[edit]
Main article:Organotitanium compound

Theorganometallic chemistry of titanium typically starts fromTiCl4. An important reaction involves sodiumcyclopentadienyl to givetitanocene dichloride,TiCl2(C5H5)2. This compound and many of its derivatives are precursors toZiegler–Natta catalysts.Tebbe's reagent, useful in organic chemistry, is an aluminium-containing derivative of titanocene that arises from the reaction of titanocene dichloride withtrimethylaluminium. It is used for the "olefination" reactions.[16]

Arenes, such asC6(CH3)6 react to give thepiano-stool complexes[Ti(C6R6)Cl3]+ (R = H,CH3; see figure above). This reaction illustrates the high Lewis acidity of theTiCl+3 entity, which is generated by abstraction ofchloride fromTiCl4 byAlCl3.[12]

Reagent in organic synthesis

[edit]

TiCl4 finds occasional use inorganic synthesis, capitalizing on itsLewis acidity, itsoxophilicity, and the electron-transfer properties of its reduced titanium halides. It is used in theLewis acid catalysedaldol addition[21] Key to this application is the tendency ofTiCl4 to activatealdehydes (RCHO) by formation ofadducts such as(RCHO)TiCl4OC(H)R.[22]

Toxicity and safety considerations

[edit]

Hazards posed by titanium tetrachloride generally arise from its reaction with water that releaseshydrochloric acid, which is severely corrosive itself and whose vapors are also extremely irritating.TiCl4 is a strongLewis acid, which exothermically forms adducts with even weak bases such asTHF and water.

References

[edit]
  1. ^Eremenko, B. V.; Bezuglaya, T. N.; Savitskaya, A. N.; Malysheva, M. L.; Kozlov, I. S.; Bogodist, L. G. (2001). "Stability of Aqueous Dispersions of the Hydrated Titanium Dioxide Prepared by Titanium Tetrachloride Hydrolysis".Colloid Journal.63 (2):173–178.doi:10.1023/A:1016673605744.S2CID 93971747.
  2. ^"titanium(IV) chloride, 1M soln. in dichloromethane".Alfa Aesar. Retrieved7 March 2018.
  3. ^"Titanium(IV) chloride solution 1.0 M in toluene".Sigma-Aldrich. Retrieved7 March 2018.
  4. ^Butts, Edward H De."patent US3021349A".
  5. ^abZumdahl, Steven S. (2009).Chemical Principles (6th ed.). Houghton-Mifflin. p. A23.ISBN 978-0-618-94690-7.
  6. ^"Classifications - CL Inventory".echa.europa.eu.
  7. ^[1]Archived 2013-02-17 at theWayback MachineAmerican Chemistry Council – "Titanium Tetrachloride: Stepping Stone to Amazing Technology"
  8. ^"Archived copy". Archived fromthe original on 2014-03-19. Retrieved2013-04-10.{{cite web}}: CS1 maint: archived copy as title (link)Iowa State University – "Chemistry Material Safety Data Sheets"
  9. ^Earnshaw, A.; Greenwood, N. (1997).Chemistry of the Elements (2nd ed.).Butterworth-Heinemann.
  10. ^abcdHeinz Sibum; Volker Güther; Oskar Roidl; Fathi Habashi; Hans Uwe Wolf; Carsten Siemers (2017). "Titanium, Titanium Alloys, and Titanium Compounds".Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. pp. 1–35.doi:10.1002/14356007.a27_095.pub2.ISBN 978-3-527-30673-2.
  11. ^Webb, S. P.; Gordon, M. S. (1999)."Intermolecular Self-Interactions of the Titanium Tetrahalides TiX4 (X = F, Cl, Br)".J. Am. Chem. Soc.121 (11):2552–2560.Bibcode:1999JAChS.121.2552W.doi:10.1021/ja983339i.
  12. ^abCalderazzo, F.; Ferri, I.; Pampaloni, G.; Troyanov, S. (1996). "η6-Arene Derivatives of Titanium(IV), Zirconium(IV) and Hafnium(IV)".J. Organomet. Chem.518 (1–2):189–196.doi:10.1016/0022-328X(96)06194-3.
  13. ^Manzer, L. E. (1982). "31. Tetragtdrfuran Complexes of Selected Early Transition Metals".Inorganic Syntheses. Vol. 21. pp. 135–40.doi:10.1002/9780470132524.ch31.ISBN 978-0-470-13252-4.
  14. ^abVölz, Hans G.; et al. (2006). "Pigments, Inorganic".Inorganic Pigments.Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.doi:10.1002/14356007.n20_n04.ISBN 978-3-527-30673-2.
  15. ^Schaschke, Carl (2014). "Hunter process".A Dictionary of Chemical Engineering. Oxford University Press.doi:10.1093/acref/9780199651450.001.0001.ISBN 978-0-19-965145-0.
  16. ^abReetz, Manfred T. (1986).Organotitanium reagents in organic synthesis (Reactivity and Structure Concepts in Organic Chemistry, Vol 24 ed.). Berlin Heidelberg New York Tokyo: Springer-Verl.ISBN 0-387-15784-0.
  17. ^Wilkie, C. A.; Lin, G.; Haworth, D. T. (1979).Cis-[Dihalobis(2,4-Pentaedionato)Titanium(IV)] Complexes. Vol. 19. pp. 145–148.doi:10.1002/9780470132500.ch33.ISBN 978-0-470-13250-0.{{cite book}}:|journal= ignored (help)
  18. ^Bradey, D. C.; Thomas, M. (1960). "Some Dialkylamino-derivatives of Titanium and Zirconium".J. Chem. Soc.:3857–3861.doi:10.1039/JR9600003857.
  19. ^M. E. Davie; T. Foerster; S. Parsons; C. Pulham; D. W. H. Rankin; B. A. Smart (2006). "The Crystal Structure of Tetrakis(dimethylamino)titanium(IV)".Polyhedron.25 (4):923–929.doi:10.1016/j.poly.2005.10.019.
  20. ^Creaser, C. S.; Creighton, J. A. (1975). "Pentachloro- and Pentabromotitanate(IV) ions".Dalton Trans. (14):1402–1405.doi:10.1039/DT9750001402.
  21. ^Mariappan Periasamy (2002): "New synthetic methods using the TiCl4-NR3 reagent system",Arkivoc, p. 151-166.
  22. ^Gundersen, L.-L.; Rise, F.; Undheim, K. (2004). "Titanium(IV) chloride". In Paquette, L. (ed.).Encyclopedia of Reagents for Organic Synthesis. New York, NY: J. Wiley & Sons.doi:10.1002/047084289X.rt119.pub2.ISBN 0-471-93623-5.

General reading

[edit]

External links

[edit]
Titanium(II)
Organotitanium(II) compounds
Titanium(III)
Organotitanium(III) compounds
Titanium(IV)
(Oxo)Titanates
Fluorotitanates
Alkoxides, carboxylates,amides
Organotitanium(IV) compounds
Salts and covalent derivatives of thechloride ion
HClHe
LiClBeCl2B4Cl4
B12Cl12
BCl3
B2Cl4
+BO3
C2Cl2
C2Cl4
C2Cl6
CCl4
+C
+CO3
NCl3
ClN3
+N
+NO3
ClxOy
Cl2O
Cl2O2
ClO
ClO2
Cl2O4
Cl2O6
Cl2O7
ClO4
+O
ClF
ClF3
ClF5
Ne
NaClMgCl2AlCl
AlCl3
Si5Cl12
Si2Cl6
SiCl4
P2Cl4
PCl3
PCl5
+P
S2Cl2
SCl2
SCl4
+SO4
Cl2Ar
KClCaCl
CaCl2
ScCl3TiCl2
TiCl3
TiCl4
VCl2
VCl3
VCl4
VCl5
CrCl2
CrCl3
CrCl4
MnCl2
MnCl3
FeCl2
FeCl3
CoCl2
CoCl3
NiCl2CuCl
CuCl2
ZnCl2GaCl
GaCl3
GeCl2
GeCl4
AsCl3
AsCl5
+As
Se2Cl2
SeCl2
SeCl4
BrClKr
RbClSrCl2YCl3ZrCl2
ZrCl3
ZrCl4
NbCl3
NbCl4
NbCl5
MoCl2
MoCl3
MoCl4
MoCl5
MoCl6
TcCl3
TcCl4
RuCl2
RuCl3
RuCl4
RhCl3PdCl2AgClCdCl2InCl
InCl2
InCl3
SnCl2
SnCl4
SbCl3
SbCl5
Te3Cl2
TeCl2
TeCl4
ICl
ICl3
XeCl
XeCl2
XeCl4
CsClBaCl2*LuCl3
177LuCl3
HfCl4TaCl3
TaCl4
TaCl5
WCl2
WCl3
WCl4
WCl5
WCl6
ReCl3
ReCl4
ReCl5
ReCl6
OsCl2
OsCl3
OsCl4
OsCl5
IrCl2
IrCl3
IrCl4
PtCl2
PtCl4
PtCl2−6
AuCl
(Au[AuCl4])2
AuCl3
AuCl4
Hg2Cl2
HgCl2
TlCl
TlCl3
PbCl2
PbCl4
BiCl3PoCl2
PoCl4
AtClRn
FrClRaCl2**LrCl3RfCl4DbCl5SgO2Cl2BhO3ClHsMtDsRgCnNhFlMcLvTsOg
 
*LaCl3CeCl3PrCl3NdCl2
NdCl3
PmCl3SmCl2
SmCl3
EuCl2
EuCl3
GdCl3TbCl3DyCl2
DyCl3
HoCl3ErCl3TmCl2
TmCl3
YbCl2
YbCl3
**AcCl3ThCl3
ThCl4
PaCl4
PaCl5
UCl3
UCl4
UCl5
UCl6
NpCl3
NpCl4
PuCl3
PuCl4
PuCl2−6
AmCl2
AmCl3
CmCl3BkCl3CfCl3
CfCl2
EsCl2
EsCl3
FmCl2MdCl2NoCl2
Retrieved from "https://en.wikipedia.org/w/index.php?title=Titanium_tetrachloride&oldid=1323098982"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp