Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Isotopes of tin

From Wikipedia, the free encyclopedia
(Redirected fromTin-120)

Isotopes oftin (50Sn)
Main isotopes[1]Decay
Isotopeabun­dancehalf-life(t1/2)modepro­duct
112Sn0.97%stable
113Snsynth115.08 dε113In
114Sn0.66%stable
115Sn0.34%stable
116Sn14.5%stable
117Sn7.68%stable
118Sn24.2%stable
119Sn8.59%stable
120Sn32.6%stable
121mSnsynth43.9 yIT77.6%121Sn
β22.4%121Sb
122Sn4.63%stable
123Snsynth129.2 dβ123Sb
124Sn5.79%stable
126Sntrace2.3×105 yβ126Sb
Standard atomic weightAr°(Sn)

Tin (50Sn) is the element withthe greatest number of naturally abundant isotopes, 10. Seven,114-120Sn, are theoretically stable, while the remaining three,112Sn,122Sn, and124Sn, are potentially radioactive todouble beta decay, but havenot been observed to decay. This is generally attributed to the fact that 50 is a "magic number" of protons. In addition, 32 unstable tin isotopes are known, including tin-100 (100Sn) and tin-132 (132Sn), which are both "doubly magic". The longest-lived of these istin-126 (126Sn), with a half-life about 230,000 years; with all others less than a year and the majority under 20 minutes.

The number of knownmetastable states is very large, including a long series of low-lying states in odd isotopes from 117 on, which gives two nuclides with a longer life than any ground-state radioisotope other than 126:121mSn, half-life 43.9 years, and119mSn, half-life 293.1 days.

List of isotopes

[edit]


Nuclide
[n 1]
ZNIsotopic mass(Da)[4]
[n 2][n 3]
Half-life[1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6]
Spin and
parity[1]
[n 7][n 4]
Natural abundance(mole fraction)
Excitation energy[n 4]Normal proportion[1]Range of variation
98Sn[5]50480+
99Sn[n 8]504998.94850(63)#24(4) msβ+ (95%)99In9/2+#
β+,p (5%)98Cd
100Sn[n 9]505099.93865(26)1.18(8) sβ+ (>83%)100In0+
β+, p (<17%)99Cd
101Sn5051100.93558(32)#[6]2.22(5) sβ+101In(7/2+)
β+, p?100Cd
102Sn5052101.93029(11)3.8(2) sβ+102In0+
102mSn2017(2) keV367(8) nsIT102Sn(6+)
103Sn5053102.927960(17)[6]7.0(2) sβ+ (98.8%)103In5/2+#
β+, p (1.2%)102Cd
104Sn5054103.923105(6)20.8(5) sβ+104In0+
105Sn5055104.921268(4)32.7(5) sβ+105In(5/2+)
β+, p (0.011%)104Cd
106Sn5056105.916957(5)1.92(8) minβ+106In0+
107Sn5057106.915714(6)2.90(5) minβ+107In(5/2+)
108Sn5058107.911894(6)10.30(8) minβ+108In0+
109Sn5059108.911293(9)18.1(2) minβ+109In5/2+
110Sn5060109.907845(15)4.154(4) hEC110In0+
111Sn5061110.907741(6)35.3(6) minβ+111In7/2+
111mSn254.71(4) keV12.5(10) μsIT111Sn1/2+
112Sn5062111.9048249(3)Observationally Stable[n 10]0+0.0097(1)
113Sn5063112.9051759(17)115.08(4) dβ+113In1/2+
113mSn77.389(19) keV21.4(4) minIT (91.1%)113Sn7/2+
β+ (8.9%)113In
114Sn5064113.90278013(3)Stable0+0.0066(1)
114mSn3087.37(7) keV733(14) nsIT114Sn7−
115Sn[n 11]5065114.903344695(16)Stable1/2+0.0034(1)
115m1Sn612.81(4) keV3.26(8) μsIT115Sn7/2+
115m2Sn713.64(12) keV159(1) μsIT115Sn11/2−
116Sn5066115.90174283(10)Stable0+0.1454(9)
116m1Sn2365.975(21) keV348(19) nsIT116Sn5−
116m2Sn3547.16(17) keV833(30) nsIT116Sn10+
117Sn[n 11]5067116.90295404(52)Stable1/2+0.0768(7)
117m1Sn[n 11]314.58(4) keV13.939(24) dIT117Sn11/2−
117m2Sn2406.4(4) keV1.75(7) μsIT117Sn(19/2+)
118Sn[n 11]5068117.90160663(54)Stable0+0.2422(9)
118m1Sn2574.91(4) keV230(10) nsIT118Sn7−
118m2Sn3108.06(22) keV2.52(6) μsIT118Sn(10+)
119Sn[n 11]5069118.90331127(78)Stable1/2+0.0859(4)
119m1Sn[n 11]89.531(13) keV293.1(7) dIT119Sn11/2−
119m2Sn2127.0(10) keV9.6(12) μsIT119Sn(19/2+)
119m3Sn2369.0(3) keV96(9) nsIT119Sn23/2+
120Sn[n 11]5070119.90220256(99)Stable0+0.3258(9)
120m1Sn2481.63(6) keV11.8(5) μsIT120Sn7−
120m2Sn2902.22(22) keV6.26(11) μsIT120Sn10+
121Sn[n 11]5071120.9042435(11)27.03(4) hβ121Sb3/2+
121m1Sn[n 11]6.31(6) keV43.9(5) yIT (77.6%)121Sn11/2−
β (22.4%)121Sb
121m2Sn1998.68(13) keV5.3(5) μsIT121Sn19/2+
121m3Sn2222.0(2) keV520(50) nsIT121Sn23/2+
121m4Sn2833.9(2) keV167(25) nsIT121Sn27/2−
122Sn[n 11]5072121.9034455(26)Observationally Stable[n 12]0+0.0463(3)
122m1Sn2409.03(4) keV7.5(9) μsIT122Sn7−
122m2Sn2765.5(3) keV62(3) μsIT122Sn10+
122m3Sn4721.2(3) keV139(9) nsIT122Sn15−
123Sn[n 11]5073122.9057271(27)129.2(4) dβ123Sb11/2−
123m1Sn24.6(4) keV40.06(1) minβ123Sb3/2+
123m2Sn1944.90(12) keV7.4(26) μsIT123Sn19/2+
123m3Sn2152.66(19) keV6 μsIT123Sn23/2+
123m4Sn2712.47(21) keV34 μsIT123Sn27/2−
124Sn[n 11]5074123.9052796(14)Observationally Stable[n 13]0+0.0579(5)
124m1Sn2204.620(23) keV270(60) nsIT124Sn5-
124m2Sn2324.96(4) keV3.1(5) μsIT124Sn7−
124m3Sn2656.6(3) keV51(3) μsIT124Sn10+
124m4Sn4552.4(3) keV260(25) nsIT124Sn15−
125Sn[n 11]5075124.9077894(14)9.634(15) dβ125Sb11/2−
125m1Sn27.50(14) keV9.77(25) minβ125Sb3/2+
125m2Sn1892.8(3) keV6.2(2) μsIT125Sn19/2+
125m3Sn2059.5(4) keV650(60) nsIT125Sn23/2+
125m4Sn2623.5(5) keV230(17) nsIT125Sn27/2−
126Sn[n 14]5076125.907658(11)2.30(14)×105 yβ126m1Sb[7]0+< 10−14[8]
126m1Sn2218.99(8) keV6.1(7) μsIT126Sn7−
126m2Sn2564.5(5) keV7.6(3) μsIT126Sn10+
126m3Sn4347.4(4) keV114(2) nsIT126Sn15−
127Sn5077126.9103917(99)2.10(4) hβ127Sb11/2−
127m1Sn5.07(6) keV4.13(3) minβ127Sb3/2+
127m2Sn1826.67(16) keV4.52(15) μsIT127Sn19/2+
127m3Sn1930.97(17) keV1.26(15) μsIT127Sn(23/2+)
127m4Sn2552.4(10) keV250(30) nsIT127Sn(27/2−)
128Sn5078127.910508(19)59.07(14) minβ128Sb0+
128m1Sn2091.50(11) keV6.5(5) sIT128Sn7−
128m2Sn2491.91(17) keV2.91(14) μsIT128Sn10+
128m3Sn4099.5(4) keV220(30) nsIT128Sn(15−)
129Sn5079128.913482(19)2.23(4) minβ129Sb3/2+
129m1Sn35.15(5) keV6.9(1) minβ129Sb11/2−
129m2Sn1761.6(10) keV3.49(11) μsIT129Sn(19/2+)
129m3Sn1802.6(10) keV2.22(13) μsIT129Sn23/2+
129m4Sn2552.9(11) keV221(18) nsIT129Sn(27/2−)
130Sn5080129.9139745(20)3.72(7) minβ130Sb0+
130m1Sn1946.88(10) keV1.7(1) minβ130Sb7−
130m2Sn2434.79(12) keV1.501(17) μsIT130Sn(10+)
131Sn5081130.917053(4)56.0(5) sβ131Sb3/2+
131m1Sn65.1(3) keV58.4(5) sβ131Sb11/2−
IT?131Sn
131m2Sn4670.0(4) keV316(5) nsIT131Sn(23/2−)
132Sn5082131.9178239(21)39.7(8) sβ132Sb0+
132mSn4848.52(20) keV2.080(16) μsIT132Sn8+
133Sn5083132.9239138(20)1.37(7) sβ (99.97%)133Sb7/2−
βn (.0294%)132Sb
134Sn5084133.928680(3)0.93(8) sβ (83%)134Sb0+
βn (17%)133Sb
134mSn1247.4(5) keV87(8) nsIT134Sn6+
135Sn5085134.934909(3)515(5) msβ (79%)135Sb7/2−#
βn (21%)134Sb
β2n?133Sb
136Sn5086135.93970(22)#355(18) msβ (72%)136Sb0+
βn (28%)135Sb
β2n?134Sb
137Sn5087136.94616(32)#249(15) msβ (52%)137Sb5/2−#
βn (48%)136Sb
β2n?135Sb
138Sn5088137.95114(43)#148(9) msβ (64%)138Sb0+
βn (36%)137Sb
β2n?136Sb
138mSn1344(2) keV210(45) nsIT138Sn(6+)
139Sn5089138.95780(43)#120(38) msβ139Sb5/2−#
βn?138Sb
β2n?137Sb
140Sn5090139.96297(32)#50# ms
[>550 ns]
β?140Sb0+
βn?139Sb
β2n?138Sb
This table header & footer:
  1. ^mSn – Excitednuclear isomer.
  2. ^( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^abc# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. ^Modes of decay:
    EC:Electron capture


    IT:Isomeric transition
    n:Neutron emission
    p:Proton emission
  6. ^Bold symbol as daughter – Daughter product is stable.
  7. ^( ) spin value – Indicates spin with weak assignment arguments.
  8. ^Heaviest known nuclide with more protons than neutrons
  9. ^Heaviest nuclide with equal numbers of protons and neutrons with no observed α decay
  10. ^Believed to decay by β+β+ to112Cd
  11. ^abcdefghijklmFission product
  12. ^Believed to undergo ββ decay to122Te
  13. ^Believed to undergo ββ decay to124Te with a half-life over 1×1017 years
  14. ^Long-lived fission product

Tin-117m

[edit]

Tin-117m is a radioisotope of tin. One of its uses is in a particulate suspension to treat canine synovitis (radiosynoviorthesis).[9]

Tin-121m

[edit]
Nuclidet12YieldQ[a 1]βγ
(a)(%)[a 2](keV)
155Eu4.74  0.0803[a 3]252βγ
85Kr10.73  0.2180[a 4]687βγ
113mCd13.9  0.0008[a 3]316β
90Sr28.914.505    2826[a 5]β
137Cs30.046.337    1176βγ
121mSn43.90.00005  390βγ
151Sm94.60.5314[a 3]77β
  1. ^Decay energy is split amongβ,neutrino, andγ if any.
  2. ^Per 65 thermal neutron fissions of235U and 35 of239Pu.
  3. ^abcNeutron poison; in thermal reactors, most is destroyed by further neutron capture.
  4. ^Less than 1/4 of mass-85 fission products as most bypass ground state:85Br →85mKr →85Rb.
  5. ^Has decay energy 546 keV; its decay product90Y has decay energy 2.28 MeV with weak gamma branching.

Tin-121m (121mSn) is anuclear isomer of tin with ahalf-life of 43.9 years, making it technically a medium-lived fission product.

In a normalthermal reactor, it has a very lowfission product yield; thus, this isotope is not a significant contributor tonuclear waste.Fast fission or fission of some heavieractinides will produce it at higher yields. For example, its yield from uranium-235 is 0.0007% per thermal fission and 0.002% per fast fission.[10]

Tin-126

[edit]
Nuclidet12YieldQ[a 1]βγ
(Ma)(%)[a 2](keV)
99Tc0.2116.1385294β
126Sn0.230.10844050[a 3]βγ
79Se0.330.0447151β
135Cs1.336.9110[a 4]269β
93Zr1.615.457591βγ
107Pd6.5  1.249933β
129I16.10.8410194βγ
  1. ^Decay energy is split amongβ,neutrino, andγ if any.
  2. ^Per 65 thermal neutron fissions of235U and 35 of239Pu.
  3. ^Has decay energy 380 keV, but its decay product126Sb has decay energy 3.67 MeV.
  4. ^Lower in thermal reactors because135Xe, its predecessor,readily absorbs neutrons.

Tin-126 is aradioisotope of tin and one of the only sevenlong-lived fission products. While tin-126'shalf-life of 230,000 years means a relatively lowspecific activity, its short-liveddecay products, twoisomers ofantimony-126, emit a cascade of hardgamma radiation - at least 3 photons above 400 keV per decay - before reaching stable tellurium-126, making it a possible external exposure hazard, which the other long-lived fission products are not by comparison.

Tin-126 is in the middle of the mass range for fission products, so its yield is fairly low (but still dominates that for the element tin). Fission of the common fuels such as235U and239Pu into unequal halves is preferred, especially with thermal neutrons, as used in almost all currentnuclear power plants.

Yield, % perfission[10]
ThermalFast14 MeV
232Thnotfissile0.0481 ± 0.00770.87 ± 0.20
233U0.224 ± 0.0180.278 ± 0.0221.92 ± 0.31
235U0.056 ± 0.0040.0137 ± 0.0011.70 ± 0.14
238Unotfissile0.054 ± 0.0041.31 ± 0.21
239Pu0.199 ± 0.0160.26 ± 0.022.02 ± 0.22
241Pu0.082 ± 0.0190.22 ± 0.03?

See also

[edit]

Daughter products other than tin

References

[edit]
  1. ^abcdeKondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021)."The NUBASE2020 evaluation of nuclear properties"(PDF).Chinese Physics C.45 (3) 030001.doi:10.1088/1674-1137/abddae.
  2. ^"Standard Atomic Weights: Tin".CIAAW. 1983.
  3. ^Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04)."Standard atomic weights of the elements 2021 (IUPAC Technical Report)".Pure and Applied Chemistry.doi:10.1515/pac-2019-0603.ISSN 1365-3075.
  4. ^Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*".Chinese Physics C.45 (3) 030003.doi:10.1088/1674-1137/abddaf.
  5. ^Suzuki, H.; Fukuda, N.; Takeda, H.; et al. (2025)."Discovery of98Sn produced by the projectile fragmentation of a 345-MeV/nucleon124Xe beam".Progress of Theoretical and Experimental Physics (ptaf051) 053D02.doi:10.1093/ptep/ptaf051.
  6. ^abNies, L.; Atanasov, D.; Athanasakis-Kaklamanakis, M.; Au, M.; Bernerd, C.; Blaum, K.; Chrysalidis, K.; Fischer, P.; Heinke, R.; Klink, C.; Lange, D.; Lunney, D.; Manea, V.; Marsh, B. A.; Müller, M.; Mougeot, M.; Naimi, S.; Schweiger, Ch.; Schweikhard, L.; Wienholtz, F. (9 January 2025)."Refining the nuclear mass surface with the mass of Sn 103".Physical Review C.111 (1) 014315.doi:10.1103/PhysRevC.111.014315.
  7. ^ENSDF analysis available atNational Nuclear Data Center."NuDat 3.0 database".Brookhaven National Laboratory.
  8. ^Shen, Hongtao; Jiang, Shan; He, Ming; Dong, Kejun; Li, Chaoli; He, Guozhu; Wu, Shaolei; Gong, Jie; Lu, Liyan; Li, Shizhuo; Zhang, Dawei; Shi, Guozhu; Huang, Chuntang; Wu, Shaoyong (February 2011)."Study on measurement of fission product nuclide 126Sn by AMS"(PDF).Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms.269 (3):392–395.doi:10.1016/j.nimb.2010.11.059.
  9. ^"Procedure for Use of Synovetin OA"(PDF).nrc.gov.
  10. ^abM. B. Chadwick et al, "Evaluated Nuclear Data File (ENDF) : ENDF/B-VII.1: Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields, and Decay Data", Nucl. Data Sheets 112(2011)2887. (accessed athttps://www-nds.iaea.org/exfor/endf.htm)
Group12 3456789101112131415161718
PeriodHydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gensChal­co­gensHalo­gensNoble gases
12
345678910
1112131415161718
192021222324252627282930313233343536
373839404142434445464748495051525354
55561 asterisk71727374757677787980818283848586
87881 asterisk103104105106107108109110111112113114115116117118
119120
1 asterisk5758596061626364656667686970 
1 asterisk8990919293949596979899100101102
Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_tin&oldid=1328685075#Tin-120"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp