Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Timeline of life

From Wikipedia, the free encyclopedia
(Redirected fromTimeline of the evolutionary history of life)

Not to be confused withHistory of evolutionary thought.
For more systematic coverage, seeHistory of life.
This box:
−4500 —
−4000 —
−3500 —
−3000 —
−2500 —
−2000 —
−1500 —
−1000 —
−500 —
0 —
 
 
 
 
 
 
 
 
 

Thetimeline of life represents the currentscientific theory outlining the major events during the development oflife onEarth. Dates in this article are consensus estimates based onscientific evidence, mainlyfossils.

Inbiology,evolution is any change across successive generations in the heritable characteristics of biological populations. Evolutionary processes give rise to diversity at every level ofbiological organization, fromkingdoms tospecies, and individualorganisms andmolecules, such asDNA andproteins. The similarities between all present day organisms imply acommon ancestor from which all known species, living andextinct, have diverged. More than 99 percent of all species that ever lived (over five billion)[1] are estimated to beextinct.[2][3] Estimates on the number of Earth's current species range from 10 million to 14 million,[4] with about 1.2 million or 14% documented, the restnot yet described.[5] However, a 2016 report estimates an additional 1 trillion microbial species, with only 0.001% described.[6]

There has been controversy between more traditional views of steadily increasingbiodiversity, and a newer view of cycles of annihilation and diversification, so that certain past times, such as theCambrian explosion, experienced maximums of diversity followed by sharp winnowing.[7][8]

Extinction

[edit]
Main article:Extinction event
Visual representation of the history of life on Earth as a spiral

Species go extinct constantly as environments change, as organisms compete for environmental niches, and as genetic mutation leads to the rise of new species from older ones. At long irregular intervals, Earth's biosphere suffers a catastrophic die-off, amass extinction,[9] often comprising an accumulation of smaller extinction events over a relatively brief period.[10]

The first known mass extinction was theGreat Oxidation Event 2.4 billion years ago, which killed most of the planet'sobligate anaerobes. Researchers have identified five other major extinction events in Earth's history, with estimated losses below:[11]

Smaller extinction events have occurred in the periods between, with some dividinggeologic time periods and epochs. TheHolocene extinction event is currently under way.[13]

Factors in mass extinctions includecontinental drift, changes in atmospheric and marinechemistry,volcanism and other aspects ofmountain formation, changes inglaciation, changes insea level, andimpact events.[10]

Detailed timeline

[edit]

In this timeline,Ma (formegaannum) means "million years ago,"ka (forkiloannum) means "thousand years ago," andya means "years ago."

Hadean Eon

[edit]
Moon
Main article:Hadean

4540 Ma – 4031 Ma

DateEvent
4540 MaPlanet Earth forms from theaccretion disc revolving around the youngSun, perhaps preceded by formation oforganic compounds necessary for life in the surroundingprotoplanetary disk ofcosmic dust.[14][15]
4510 MaAccording to thegiant-impact hypothesis, theMoon originated when Earth and the hypothesized planetTheia collided, sending into orbit myriad moonlets which eventually coalesced into our single Moon.[16][17] The Moon's gravitational pullstabilised Earth's fluctuatingaxis of rotation, setting up regular climatic conditions favoringabiogenesis.[18]
4404 MaEvidence of thefirst liquid water on Earth which were found in the oldest knownzircon crystals.[19]
4280–3770 MaEarliest possible appearance of life on Earth.[20][21][22][23]

Archean Eon

[edit]
Main article:Archean
Fragment of theAcasta Gneiss exhibited at theMuseum of Natural History in Vienna
Thecyanobacterial-algal mat, salty lake on theWhite Sea seaside
Halobacterium sp. strain NRC-1

4031 Ma – 2500 Ma

DateEvent
4100 MaEarliest possible preservation of biogenic carbon.[24][25]
4100–3800 MaLate Heavy Bombardment (LHB): extended barrage by meteoroidsimpacting the inner planets. Thermal flux from widespreadhydrothermal activity during the LHB may have aided abiogenesis and life's early diversification.[26] Possible remains ofbiotic life were found in 4.1 billion-year-old rocks inWestern Australia.[27][28]
4000 MaFormation of agreenstone belt of theAcasta Gneiss of theSlave craton in northwest Canada - the oldest known rock belt.[29]
3900–2500 MaCells resemblingprokaryotes appear.[30] These first organisms are believed to have beenchemoautotrophs, usingcarbon dioxide as acarbon source andoxidizing inorganic materials to extract energy.
3800 MaFormation of a greenstone belt of theIsua complex in westernGreenland, whose isotope frequencies suggest the presence of life.[29] The earliest evidence for life on Earth includes: 3.8 billion-year-oldbiogenichematite in abanded iron formation of theNuvvuagittuq Greenstone Belt in Canada;[31]graphite in 3.7 billion-year-old metasedimentary rocks in western Greenland;[32] andmicrobial matfossils in 3.48 billion-year-oldsandstone inWestern Australia.[33][34]
3800–3500 MaLast universal common ancestor (LUCA):[35][36] split betweenbacteria andarchaea.[37]

Bacteria develop primitivephotosynthesis, which at first did not produceoxygen.[38] These organisms exploit aproton gradient to generateadenosine triphosphate (ATP), a mechanism used by virtually all subsequent organisms.[39][40][41]

3000 MaPhotosynthesizingcyanobacteria using water as areducing agent and producing oxygen as a waste product.[42] Free oxygen initially oxidizes dissolved iron in the oceans, creatingiron ore. Oxygen concentration in the atmosphere slowly rises,poisoning many bacteria and eventually triggering theGreat Oxygenation Event.
2800 MaOldest evidence for microbial life on land in the form of organic matter-richpaleosols,ephemeral ponds andalluvial sequences, some bearingmicrofossils.[43]

Proterozoic Eon

[edit]
Detail of theeukaryoteendomembrane system and its components
Blepharisma japonicum, a free-livingciliatedprotozoan
Dickinsonia costata, an iconicEdiacaran organism, displays the characteristic quilted appearance of Ediacaran enigmata.
Main article:Proterozoic

2500 Ma – 539 Ma. Contains thePalaeoproterozoic,Mesoproterozoic andNeoproterozoic eras.

DateEvent
2500 MaGreat Oxidation Event led by cyanobacteria's oxygenic photosynthesis.[42] Commencement ofplate tectonics with old marine crust dense enough tosubduct.[29]
2400 MaPossible landfungi evidence from molecules.
2023 MaFormation of theVredefort impact structure, one of the largest and oldest verified impact structures on Earth. The crater is estimated to have been between 170–300 kilometres (110–190 mi) across when it first formed.[44]
By 1850 MaEukaryotic cells, containing membrane-boundorganelles with diverse functions, probably derived from prokaryotes engulfing each other viaphagocytosis. (SeeSymbiogenesis andEndosymbiont). Bacterial viruses (bacteriophages) emerge before or soon after the divergence of the prokaryotic and eukaryotic lineages.[45]Red beds show an oxidising atmosphere, favouring the spread of eukaryotic life.[46][47][48]
1500 MaVolyn biota, a collection of exceptionally well-preservedmicrofossils with varying morphologies.[49]
1300 MaEarliest landfungi.[50]
By 1200 MaMeiosis andsexual reproduction in single-celled eukaryotes, possibly even in the common ancestor of all eukaryotes[51] or in theRNA world.[52]Sexual reproduction may have increased the rate of evolution.[53]
By 1000 MaFirst non-marine eukaryotes move onto land. They were photosynthetic and multicellular, indicating that plants evolved much earlier than originally thought.[54]
750 MaBeginning ofanimal evolution.[55][56]
720–630 MaPossibleglobal glaciation[57][58] which increased the atmosphericoxygen and decreasedcarbon dioxide, and was eithercaused by land plant evolution[59] orresulted in it.[60] Opinion is divided on whether it increased or decreased biodiversity or the rate of evolution.[61][62][63]
600 MaAccumulation of atmospheric oxygen allows the formation of anozone layer.[64] Previous land-based life would probably have required other chemicals to attenuateultraviolet radiation.[43]
580–542 MaEdiacaran biota, the first large, complex aquatic multicellular organisms.[65]
580–500 MaCambrian explosion: most modern animalphyla appear.[66][67]
550–540 MaCtenophora (comb jellies),[68]Porifera (sponges),[69]Anthozoa (corals andsea anemones),[70]Ikaria wariootia (an earlyBilaterian).[71]

Phanerozoic Eon

[edit]
Main article:Phanerozoic

539 Ma – present

ThePhanerozoic Eon (Greek: period of well-displayed life) marks the appearance in the fossil record of abundant, shell-forming and/or trace-making organisms. It is subdivided into three eras, thePaleozoic,Mesozoic andCenozoic, with majormass extinctions at division points.

Palaeozoic Era

[edit]
Main article:Paleozoic
This sectionneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources in this section. Unsourced material may be challenged and removed.
Find sources: "Timeline of life" – news ·newspapers ·books ·scholar ·JSTOR
(September 2022) (Learn how and when to remove this message)

538.8 Ma – 251.9 Ma and contains theCambrian,Ordovician,Silurian,Devonian,Carboniferous andPermian periods.

With only a handful of species surviving today, theNautiloids flourished during the earlyPaleozoic era, from theLate Cambrian, where they constituted the main predatory animals.[72]
Haikouichthys, ajawless fish, is popularized as one of theearliest fishes and probably a basalchordate or a basalcraniate.[73]
Ferns first appear in the fossil record about 360 million years ago in the lateDevonian period.[74]
Synapsids such asDimetrodon were the largestterrestrial vertebrates in thePermian period, 299 to 251 million years ago.
DateEvent
535 MaMajor diversification of living things in the oceans:arthropods (e.g. trilobites,crustaceans),chordates,echinoderms,molluscs,brachiopods,foraminifers andradiolarians, etc.
530 MaThe first known footprints on land date to 530 Ma.[75]
520 MaEarliestgraptolites.[76]
511 MaEarliestcrustaceans.[77]
505 MaFossilization of theBurgess Shale
500 MaJellyfish have existed since at least this time.
485 MaFirst vertebrates with true bones (jawless fishes).
450 MaFirst completeconodonts andechinoids appear.
440 MaFirst agnathan fishes:Heterostraci,Galeaspida, andPituriaspida.
420 MaEarliestray-finned fishes,trigonotarbid arachnids, and landscorpions.[78]
410 MaFirst signs of teeth in fish. EarliestNautilida,lycophytes, andtrimerophytes.
488–400 MaFirstcephalopods (nautiloids)[79] andchitons.[80]
395 MaFirstlichens,stoneworts. Earliestharvestmen,mites,hexapods (springtails) andammonoids. The earliest known tracks on land named theZachelmie trackways which are possibly related toicthyostegalians.[81]
375 MaTiktaalik, a lobe-finned fish with some anatomical features similar to early tetrapods. It has been suggested to be a transitional species between fish and tetrapods.[82]
365 MaAcanthostega is one of the earliest vertebrates capable of walking.[83]
363 MaBy the start of theCarboniferous Period, the Earth begins to resemble its present state. Insects roamed the land and would soon take to the skies;sharks swam the oceans as top predators,[84] and vegetation covered the land, withseed-bearing plants andforests soon to flourish.

Four-limbed tetrapods gradually gain adaptations which will help them occupy a terrestrial life-habit.

360 MaFirstcrabs andferns. Land flora dominated byseed ferns. The Xinhang forest grows around this time.[85]
350 MaFirst large sharks,ratfishes, andhagfish; first crowntetrapods (with five digits and no fins and scales).
350 MaDiversification ofamphibians.[86]
325-335 MaFirstReptiliomorpha.[87]
330-320 MaFirstamniote vertebrates (Paleothyris).[88]
320 MaSynapsids (precursors to mammals) separate fromsauropsids (reptiles) in late Carboniferous.[89]
305 MaTheCarboniferous rainforest collapse occurs, causing a minor extinction event, as well as paving the way for amniotes to become dominant over amphibians and seed plants over ferns and lycophytes.

Firstdiapsid reptiles (e.g.Petrolacosaurus).

280 MaEarliestbeetles, seed plants andconifers diversify whilelepidodendrids andsphenopsids decrease.Terrestrial temnospondyl amphibians and pelycosaurs (e.g.Dimetrodon) diversify in species.
275 MaTherapsid synapsids separate from pelycosaur synapsids.
265 MaGorgonopsians appear in the fossil record.[90]
251.9–251.4 MaThePermian–Triassic extinction event eliminates over 90-95% of marine species. Terrestrial organisms were not as seriously affected as the marine biota. This "clearing of the slate" may have led to an ensuing diversification, but life on land took 30 million years to completely recover.[91]

Mesozoic Era

[edit]
Main article:Mesozoic
This sectionneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources in this section. Unsourced material may be challenged and removed.
Find sources: "Timeline of life" – news ·newspapers ·books ·scholar ·JSTOR
(September 2022) (Learn how and when to remove this message)
Utatsusaurus is the earliest-knownichthyopterygian.
Plateosaurus engelhardti
Cycas circinalis
For about 150 million years,dinosaurs were the dominant land animals on Earth.

From 251.9 Ma to 66 Ma and containing theTriassic,Jurassic andCretaceous periods.

DateEvent
250 MaMesozoic marine revolution begins: increasingly well adapted and diverse predators stresssessile marine groups; the "balance of power" in the oceans shifts dramatically as some groups of prey adapt more rapidly and effectively than others.
250 MaTriadobatrachus massinoti is the earliest known frog.
248 MaSturgeon andpaddlefish (Acipenseridae) first appear.
245 MaEarliestichthyosaurs
240 MaIncrease in diversity ofcynodonts andrhynchosaurs
225 MaEarliest dinosaurs (prosauropods), firstcardiidbivalves, diversity incycads,bennettitaleans, and conifers. Firstteleost fishes. First mammals (Adelobasileus).
220 MaSeed-producingGymnosperm forests dominate the land; herbivores grow to huge sizes to accommodate the large guts necessary to digest the nutrient-poor plants.[citation needed] Firstflies andturtles (Odontochelys). Firstcoelophysoid dinosaurs. Firstmammals from small-sizedcynodonts, which transitioned towards a nocturnal, insectivorous, and endothermic lifestyle.
205 MaMassive Triassic/Jurassic extinction. It wipes out allpseudosuchians exceptcrocodylomorphs, who transitioned to an aquatic habitat, whiledinosaurs took over the land andpterosaurs filled the air.
200 MaFirst accepted evidence forviruses infecting eukaryotic cells (the groupGeminiviridae).[92] However, viruses are still poorly understood and may have arisen before "life" itself, or may be a more recent phenomenon.

Major extinctions in terrestrial vertebrates and large amphibians. Earliest examples ofarmoured dinosaurs.

195 MaFirst pterosaurs with specialized feeding (Dorygnathus). Firstsauropod dinosaurs. Diversification in small,ornithischian dinosaurs:heterodontosaurids,fabrosaurids, andscelidosaurids.
190 MaPliosauroids appear in the fossil record. Firstlepidopteran insects (Archaeolepis),hermit crabs, modernstarfish, irregular echinoids,corbulid bivalves, andtubulipore bryozoans. Extensive development ofsponge reefs.
176 MaFirstStegosaurian dinosaurs.
170 MaEarliestsalamanders,newts,cryptoclidids,elasmosauridplesiosaurs, andcladotherian mammals. Sauropod dinosaurs diversify.
168 MaFirstlizards.
165 MaFirstrays andglycymeridid bivalves. Firstvampire squids.[93]
163 MaPterodactyloid pterosaurs first appear.[94]
161 MaCeratopsian dinosaurs appear in the fossil record (Yinlong) and the oldest known eutherian mammal:Juramaia.
160 MaMultituberculate mammals (genusRugosodon) appear in easternChina.
155 MaFirst blood-sucking insects (ceratopogonids),rudist bivalves, andcheilostome bryozoans.Archaeopteryx, a possible ancestor to the birds, appears in the fossil record, along withtriconodontid andsymmetrodont mammals. Diversity instegosaurian andtheropod dinosaurs.
131 MaFirstpine trees.
140 MaOrb-weaver spiders appear.
135 MaRise of theangiosperms. Some of these flowering plants bear structures that attract insects and other animals to spreadpollen; other angiosperms are pollinated by wind or water. This innovation causes a major burst of animalcoevolution. First freshwaterpelomedusid turtles. Earliestkrill.
120 MaOldest fossils ofheterokonts, including both marinediatoms andsilicoflagellates.
115 MaFirstmonotreme mammals.
114 MaEarliestbees.[95]
112 MaXiphactinus, a large predatory fish, appears in the fossil record.
110 MaFirsthesperornithes, toothed diving birds. Earliestlimopsid,verticordiid, andthyasirid bivalves.
100 MaFirstants.[96]
100–95 MaSpinosaurus appears in the fossil record.[97]
95 MaFirstcrocodilians evolve.[98]
90 MaExtinction of ichthyosaurs. Earliestsnakes andnuculanid bivalves. Large diversification in angiosperms:magnoliids,rosids,hamamelidids,monocots, andginger. Earliest examples ofticks. Probable origins ofplacental mammals (earliest undisputed fossil evidence is 66 Ma).
86–76 MaDiversification of therian mammals.[99][100]
70 MaMultituberculate mammals increase in diversity. Firstyoldiid bivalves. First possibleungulates (Protungulatum).
68–66 MaTyrannosaurus, the largest terrestrial predator of westernNorth America, appears in the fossil record. First species ofTriceratops.[101]

Cenozoic Era

[edit]
Main article:Cenozoic
This sectionneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources in this section. Unsourced material may be challenged and removed.
Find sources: "Timeline of life" – news ·newspapers ·books ·scholar ·JSTOR
(September 2022) (Learn how and when to remove this message)
Mount of oxyaenidPatriofelis from theAmerican Museum of Natural History
The batIcaronycteris appeared 52.2 million years ago
Grass flowers
Reconstructed skeletons offlightlessterror bird andground sloth at the Museu Nacional, Rio de Janeiro
Diprotodon went extinct about 40,000 years ago as part of theQuaternary extinction event, along with every other Australian creature over 100 kg (220 lb).
50,000 years ago several differenthuman species coexisted on Earth including modern humans andHomo floresiensis (pictured).
American lions exceeded extantlions in size and ranged over much of North America until 11,000 BP.
Cenozoic era (66 Ma – present)
DateEvent
66 MaTheCretaceous–Paleogene extinction event eradicates about half of all animal species, includingmosasaurs, pterosaurs, plesiosaurs,ammonites,belemnites, rudist andinoceramid bivalves, most planktic foraminifers, and all of the dinosaurs excluding the birds.[102]
66 MaRapid dominance of conifers andginkgos in high latitudes, along with mammals becoming the dominant species. Firstpsammobiid bivalves. Earliestrodents. Rapid diversification in ants.
63 MaEvolution of thecreodonts, an important group of meat-eating (carnivorous) mammals.
62 MaEvolution of the firstpenguins.
60 MaDiversification of large,flightless birds. Earliest trueprimates,[who?] along with the firstsemelid bivalves,edentate,carnivoran andlipotyphlan mammals, andowls. The ancestors of the carnivorous mammals (miacids) were alive.[citation needed]
59 MaEarliestsailfish appear.
56 MaGastornis, a large flightless bird, appears in the fossil record.
55 MaModern bird groups diversify (firstsong birds,parrots,loons,swifts,woodpeckers), firstwhale (Himalayacetus), earliestlagomorphs,armadillos, appearance ofsirenian,proboscidean mammals in the fossil record. Flowering plants continue to diversify. The ancestor (according to theory) of the species in the genusCarcharodon, the earlymako sharkIsurus hastalis, is alive. Ungulates split intoartiodactyla andperissodactyla, withsome members of the former returning to the sea.
52 MaFirstbats appear (Onychonycteris).
50 MaPeak diversity of dinoflagellates andnannofossils, increase in diversity ofanomalodesmatan and heteroconch bivalves,brontotheres,tapirs,rhinoceroses, andcamels appear in the fossil record, diversification of primates.
40 MaModern-typebutterflies andmoths appear. Extinction ofGastornis.Basilosaurus, one of the first of the giant whales, appeared in the fossil record.
38 MaEarliestbears.
37 MaFirstnimravid ("false saber-toothed cats") carnivores — these species are unrelated to modern-typefelines. Firstalligators andruminants.
35 MaGrasses diversify from among the monocotangiosperms;grasslands begin to expand. Slight increase in diversity of cold-tolerantostracods and foraminifers, along with major extinctions ofgastropods, reptiles, amphibians, and multituberculate mammals. Many modern mammal groups begin to appear: firstglyptodonts,ground sloths,canids,peccaries, and the firsteagles andhawks. Diversity intoothed andbaleen whales.
33 MaEvolution of thethylacinidmarsupials (Badjcinus).
30 MaFirstbalanids andeucalypts, extinction ofembrithopod and brontothere mammals, earliestpigs andcats.
28 MaParaceratherium appears in the fossil record, the largest terrestrial mammal that ever lived. Firstpelicans.
25 MaPelagornis sandersi appears in the fossil record, the largest flying bird that ever lived.
25 MaFirstdeer.
24 MaFirstpinnipeds.
23 MaEarliestostriches, trees representative of most major groups ofoaks have appeared by now.[103]
20 MaFirstgiraffes,hyenas, andgiant anteaters, increase in bird diversity.
17 MaFirst birds of the genusCorvus (crows).
15 MaGenusMammut appears in the fossil record, firstbovids andkangaroos, diversity inAustralian megafauna.
10 MaGrasslands andsavannas are established, diversity in insects, especially ants andtermites,horses increase in body size and develophigh-crowned teeth, major diversification in grassland mammals and snakes.
9.5 Ma
[dubiousdiscuss]
Great American Interchange, where various land and freshwater faunas migrated between North andSouth America. Armadillos,opossums,hummingbirdsPhorusrhacids,Ground Sloths,Glyptodonts, andMeridiungulates traveled to North America, whilehorses,tapirs,saber-toothed cats,jaguars,bears,coaties,ferrets,otters,skunks and deer entered South America.
9 MaFirstplatypuses.
6.5 MaFirsthominins (Sahelanthropus).
6 MaAustralopithecines diversify (Orrorin,Ardipithecus).
5 MaFirsttree sloths andhippopotami, diversification of grazing herbivores likezebras andelephants, large carnivorous mammals likelions and the genusCanis, burrowing rodents, kangaroos, birds, and small carnivores,vultures increase in size, decrease in the number of perissodactyl mammals. Extinction of nimravid carnivores. Firstleopard seals.
4.8 MaMammoths appear in the fossil record.
4.5 MaMarine iguanas diverge from land iguanas.
4 MaAustralopithecus evolves.Stupendemys appears in the fossil record as the largest freshwater turtle, first modern elephants, giraffes, zebras, lions, rhinoceros andgazelles appear in the fossil record
3.6 MaBlue whales grow to modern size.
3 MaEarliestswordfish.
2.7 MaParanthropus evolves.
2.5 MaEarliest species ofArctodus andSmilodon evolve.
2 MaFirst members of genusHomo,Homo Habilis, appear in the fossil record. Diversification of conifers in high latitudes. The eventual ancestor of cattle,aurochs (Bos primigenus), evolves in India.
1.7 MaAustralopithecines go extinct.
1.2 MaEvolution ofHomo antecessor. The last members ofParanthropus die out.
1.0 MaFirstcoyotes.
810 kaFirstwolves
600 kaEvolution ofHomo heidelbergensis.
400 kaFirstpolar bears.
350 kaEvolution ofNeanderthals.
300 kaGigantopithecus, a giant relative of theorangutan fromAsia dies out.
250 kaAnatomically modern humans appear inAfrica.[104][105][106] Around 50 ka they start colonising the other continents, replacing Neanderthals inEurope and other hominins in Asia.
70 kaGenetic bottleneck in humans (Toba catastrophe theory).
40 kaLast giant monitor lizards (Varanus priscus) die out.
35–25 kaExtinction ofNeanderthals. Domestication ofdogs.
15 kaLastwoolly rhinoceros (Coelodonta antiquitatis) are believed to have gone extinct.
11 kaShort-faced bears vanish from North America, with the lastgiant ground sloths dying out. AllEquidae become extinct in North America. Domestication of variousungulates.
10 kaHoloceneepoch starts[107] after theLast Glacial Maximum. Last mainland species ofwoolly mammoth (Mammuthus primigenus) die out, as does the lastSmilodon species.
8 kaThegiant lemur dies out.

See also

[edit]

References

[edit]
  1. ^McKinney 1997, p. 110
  2. ^Stearns, Beverly Peterson; Stearns, S. C.; Stearns, Stephen C. (2000).Watching, from the Edge of Extinction.Yale University Press. p. preface x.ISBN 978-0-300-08469-6. Retrieved30 May 2017.
  3. ^Novacek, Michael J. (November 8, 2014)."Prehistory's Brilliant Future".The New York Times. New York.ISSN 0362-4331. Archived fromthe original on 2022-01-01. Retrieved2014-12-25.
  4. ^Miller & Spoolman 2012, p. 62
  5. ^Mora, Camilo; Tittensor, Derek P.; Adl, Sina; et al. (August 23, 2011)."How Many Species Are There on Earth and in the Ocean?".PLOS Biology.9 (8) e1001127.doi:10.1371/journal.pbio.1001127.ISSN 1545-7885.PMC 3160336.PMID 21886479.
  6. ^Staff (2 May 2016)."Researchers find that Earth may be home to 1 trillion species".National Science Foundation. Retrieved11 April 2018.
  7. ^Hickman, Crystal; Starn, Autumn."The Burgess Shale & Models of Evolution".Reconstructions of the Burgess Shale and What They Mean... Morgantown, WV:West Virginia University. Archived fromthe original on 2021-02-25. Retrieved2015-10-18.
  8. ^Barton et al. 2007,Figure 10.20 Four diagrams of evolutionary models
  9. ^"Measuring the sixth mass extinction - Cosmos".cosmosmagazine.com. Archived fromthe original on 2019-05-10. Retrieved2016-08-09.
  10. ^ab"History of life on Earth". Archived fromthe original on 2016-08-16. Retrieved2016-08-09.
  11. ^"The big five mass extinctions - Cosmos".cosmosmagazine.com. 5 July 2015.
  12. ^Mitchell, C. E.; Melchin, M. J.; Cameron, C. B.; Maletz, J. (2013). "Phylogenetic analysis reveals thatRhabdopleura is an extant graptolite".Lethaia.46 (1):34–56.Bibcode:2013Letha..46...34M.doi:10.1111/j.1502-3931.2012.00319.x.
  13. ^Myers, Norman;Knoll, Andrew H. (May 8, 2001)."The biotic crisis and the future of evolution".Proc. Natl. Acad. Sci. U.S.A.98 (1):5389–5392.Bibcode:2001PNAS...98.5389M.doi:10.1073/pnas.091092498.ISSN 0027-8424.PMC 33223.PMID 11344283.
  14. ^Moskowitz, Clara (March 29, 2012)."Life's Building Blocks May Have Formed in Dust Around Young Sun".Space.com. Salt Lake City, UT:Purch. Retrieved2012-03-30.
  15. ^Dalrymple, G. Brent (2001)."The age of the Earth in the twentieth century: a problem (mostly) solved".Geological Society, London, Special Publications.190 (1):205–221.Bibcode:2001GSLSP.190..205D.doi:10.1144/gsl.sp.2001.190.01.14.S2CID 130092094. Retrieved2022-10-03.
  16. ^Herres, Gregg;Hartmann, William K (2010-09-07)."The Origin of the Moon".Planetary Science Institute. Tucson, AZ. Retrieved2015-03-04.
  17. ^Barboni, Melanie; Boehnke, Patrick; Keller, Brenhin; Kohl, Issaku E.; Schoene, Blair; Young, Edward D.; McKeegan, Kevin D. (2017-01-11)."Early formation of the Moon 4.51 billion years ago".Science Advances.3 (1) e1602365.Bibcode:2017SciA....3E2365B.doi:10.1126/sciadv.1602365.ISSN 2375-2548.PMC 5226643.PMID 28097222.
  18. ^Astrobio (September 24, 2001)."Making the Moon".Astrobiology Magazine (Based on aSouthwest Research Institute press release).ISSN 2152-1239. Archived from the original on 2015-09-08. Retrieved2015-03-04.Because the Moon helps stabilize the tilt of the Earth's rotation, it prevents the Earth from wobbling between climatic extremes. Without the Moon, seasonal shifts would likely outpace even the most adaptable forms of life.
  19. ^Wilde, Simon A.; Valley, John W.; Peck, William H.; Graham, Colin M. (January 11, 2001)."Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago"(PDF).Nature.409 (6817):175–178.Bibcode:2001Natur.409..175W.doi:10.1038/35051550.ISSN 1476-4687.PMID 11196637.S2CID 4319774.
  20. ^Dodd, Matthew S.; Papineau, Dominic; Grenne, Tor; Slack, John F.; Rittner, Martin; Pirajno, Franco; O'Neil, Jonathan; Little, Crispin T. S. (2 March 2017)."Evidence for early life in Earth's oldest hydrothermal vent precipitates"(PDF).Nature.543 (7643):60–64.Bibcode:2017Natur.543...60D.doi:10.1038/nature21377.PMID 28252057.S2CID 2420384.
  21. ^Zimmer, Carl (1 March 2017)."Scientists Say Canadian Bacteria Fossils May Be Earth's Oldest".The New York Times. Archived fromthe original on 2022-01-01. Retrieved2 March 2017.
  22. ^Ghosh, Pallab (1 March 2017)."Earliest evidence of life on Earth 'found'".BBC News. Retrieved2 March 2017.
  23. ^Dunham, Will (1 March 2017)."Canadian bacteria-like fossils called oldest evidence of life".Reuters. Archived fromthe original on March 2, 2017. Retrieved1 March 2017.
  24. ^"4.1-billion-year-old crystal may hold earliest signs of life". 2015-10-19. Retrieved2023-08-08.
  25. ^Bell, Elizabeth A.; Boehnke, Patrick; Harrison, T. Mark; Mao, Wendy L. (2015-11-24)."Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon".Proceedings of the National Academy of Sciences.112 (47):14518–14521.Bibcode:2015PNAS..11214518B.doi:10.1073/pnas.1517557112.ISSN 0027-8424.PMC 4664351.PMID 26483481.
  26. ^Abramov, Oleg; Mojzsis, Stephen J. (May 21, 2009)."Microbial habitability of the Hadean Earth during the late heavy bombardment"(PDF).Nature.459 (7245):419–422.Bibcode:2009Natur.459..419A.doi:10.1038/nature08015.ISSN 0028-0836.PMID 19458721.S2CID 3304147. Archived fromthe original(PDF) on 2015-11-12. Retrieved2015-03-04.
  27. ^Borenstein, Seth (October 19, 2015)."Hints of life on what was thought to be desolate early Earth".Excite. Yonkers, NY:Mindspark Interactive Network.Associated Press. Archived fromthe original on 2015-10-23. Retrieved2015-10-20.
  28. ^Bell, Elizabeth A.; Boehnike, Patrick; Harrison, T. Mark; et al. (November 24, 2015)."Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon"(PDF).Proc. Natl. Acad. Sci. U.S.A.112 (47):14518–14521.Bibcode:2015PNAS..11214518B.doi:10.1073/pnas.1517557112.ISSN 0027-8424.PMC 4664351.PMID 26483481. Retrieved2015-12-30.
  29. ^abcBjornerud 2005
  30. ^Woese, Carl;Gogarten, J. Peter (October 21, 1999)."When did eukaryotic cells (cells with nuclei and other internal organelles) first evolve? What do we know about how they evolved from earlier life-forms?".Scientific American.ISSN 0036-8733. Retrieved2015-03-04.
  31. ^Nicole Mortilanno."Oldest traces of life on Earth found in Quebec, dating back roughly 3.8 billion years".CBC News.
  32. ^Ohtomo, Yoko; Kakegawa, Takeshi; Ishida, Akizumi; et al. (January 2014). "Evidence for biogenic graphite in early Archaean Isua metasedimentary rocks".Nature Geoscience.7 (1):25–28.Bibcode:2014NatGe...7...25O.doi:10.1038/ngeo2025.ISSN 1752-0894.
  33. ^Borenstein, Seth (November 13, 2013)."Oldest fossil found: Meet your microbial mom".Excite. Yonkers, NY: Mindspark Interactive Network. Associated Press. Retrieved2013-11-15.
  34. ^Noffke, Nora; Christian, Daniel; Wacey, David;Hazen, Robert M. (November 8, 2013)."Microbially Induced Sedimentary Structures Recording an Ancient Ecosystem in the ca. 3.48 Billion-Year-Old Dresser Formation, Pilbara, Western Australia".Astrobiology.13 (12):1103–1124.Bibcode:2013AsBio..13.1103N.doi:10.1089/ast.2013.1030.ISSN 1531-1074.PMC 3870916.PMID 24205812.
  35. ^Doolittle, W. Ford (February 2000)."Uprooting the Tree of Life"(PDF).Scientific American.282 (2):90–95.Bibcode:2000SciAm.282b..90D.doi:10.1038/scientificamerican0200-90.ISSN 0036-8733.PMID 10710791. Archived fromthe original(PDF) on 2006-09-07. Retrieved2015-04-05.
  36. ^Glansdorff, Nicolas; Ying Xu; Labedan, Bernard (July 9, 2008)."The Last Universal Common Ancestor: emergence, constitution and genetic legacy of an elusive forerunner".Biology Direct.3 29.doi:10.1186/1745-6150-3-29.ISSN 1745-6150.PMC 2478661.PMID 18613974.
  37. ^Hahn, Jürgen; Haug, Pat (May 1986). "Traces of Archaebacteria in ancient sediments".Systematic and Applied Microbiology.7 (2–3):178–183.Bibcode:1986SyApM...7..178H.doi:10.1016/S0723-2020(86)80002-9.ISSN 0723-2020.
  38. ^Olson, John M. (May 2006). "Photosynthesis in the Archean era".Photosynthesis Research.88 (2):109–117.Bibcode:2006PhoRe..88..109O.doi:10.1007/s11120-006-9040-5.ISSN 0166-8595.PMID 16453059.S2CID 20364747.
  39. ^"Proton Gradient, Cell Origin, ATP Synthase - Learn Science at Scitable".www.nature.com.
  40. ^Romano, Antonio H.; Conway, Tyrrell (July–September 1996)."Evolution of carbohydrate metabolic pathways".Research in Microbiology.147 (6–7):448–455.doi:10.1016/0923-2508(96)83998-2.ISSN 0923-2508.PMID 9084754.
  41. ^Knowles, Jeremy R. (July 1980). "Enzyme-Catalyzed Phosphoryl Transfer Reactions".Annual Review of Biochemistry.49:877–919.doi:10.1146/annurev.bi.49.070180.004305.ISSN 0066-4154.PMID 6250450.
  42. ^abBuick, Roger (August 27, 2008)."When did oxygenic photosynthesis evolve?".Philosophical Transactions of the Royal Society B.363 (1504):2731–2743.Bibcode:2008RSPTB.363.2731B.doi:10.1098/rstb.2008.0041.ISSN 0962-8436.PMC 2606769.PMID 18468984.
  43. ^abBeraldi-Campesi, Hugo (February 23, 2013)."Early life on land and the first terrestrial ecosystems"(PDF).Ecological Processes.2 (1) 1: 4.Bibcode:2013EcoPr...2....1B.doi:10.1186/2192-1709-2-1.ISSN 2192-1709.S2CID 44199693.
  44. ^Huber, M. S.; Kovaleva, E.; Rae, A. S. P; Tisato, N.; Gulick, S. P. S (August 2023)."Can Archean Impact Structures Be Discovered? A Case Study From Earth's Largest, Most Deeply Eroded Impact Structure".Journal of Geophysical Research: Planets.128 (8) e2022JE007721.Bibcode:2023JGRE..12807721H.doi:10.1029/2022JE007721.ISSN 2169-9097.
  45. ^Bernstein, Harris; Bernstein, Carol (May 1989)."Bacteriophage T4 genetic homologies with bacteria and eucaryotes".Journal of Bacteriology.171 (5):2265–2270.doi:10.1128/jb.171.5.2265-2270.1989.ISSN 0021-9193.PMC 209897.PMID 2651395.
  46. ^Bjornerud 2005, p. 151
  47. ^Knoll, Andrew H.; Javaux, Emmanuelle J.; Hewitt, David; et al. (June 29, 2006)."Eukaryotic organisms in Proterozoic oceans".Philosophical Transactions of the Royal Society B.361 (1470):1023–1038.doi:10.1098/rstb.2006.1843.ISSN 0962-8436.PMC 1578724.PMID 16754612.
  48. ^Fedonkin, Mikhail A. (March 31, 2003)."The origin of the Metazoa in the light of the Proterozoic fossil record".Paleontological Research.7 (1):9–41.Bibcode:2003PalRe...7....9F.doi:10.2517/prpsj.7.9.ISSN 1342-8144.S2CID 55178329.
  49. ^Franz G., Lyckberg P., Khomenko V., Chournousenko V., Schulz H.-M., Mahlstedt N., Wirth R., Glodny J., Gernert U., Nissen J. (2022)."Fossilization of Precambrian microfossils in the Volyn pegmatite, Ukraine"(PDF).Biogeosciences.19 (6):1795–1811.Bibcode:2022BGeo...19.1795F.doi:10.5194/bg-19-1795-2022.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  50. ^"First Land Plants and Fungi Changed Earth's Climate, Paving the Way for Explosive Evolution of Land Animals, New Gene Study Suggests".science.psu.edu. Archived fromthe original on 2018-04-08. Retrieved10 April 2018.The researchers found that land plants had evolved on Earth by about 700 million years ago and land fungi by about 1,300 million years ago — much earlier than previous estimates of around 480 million years ago, which were based on the earliest fossils of those organisms.
  51. ^Bernstein, Bernstein & Michod 2012, pp. 1–50
  52. ^Bernstein, Harris; Byerly, Henry C.; Hopf, Frederic A.; Michod, Richard E. (October 7, 1984). "Origin of sex".Journal of Theoretical Biology.110 (3):323–351.Bibcode:1984JThBi.110..323B.doi:10.1016/S0022-5193(84)80178-2.ISSN 0022-5193.PMID 6209512.
  53. ^Butterfield, Nicholas J. (Summer 2000)."Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes".Paleobiology.26 (3):386–404.Bibcode:2000Pbio...26..386B.doi:10.1666/0094-8373(2000)026<0386:BPNGNS>2.0.CO;2.ISSN 0094-8373.S2CID 36648568.
  54. ^Strother, Paul K.; Battison, Leila; Brasier, Martin D.; Wellman, Charles H. (26 May 2011). "Earth's earliest non-marine eukaryotes".Nature.473 (7348):505–509.Bibcode:2011Natur.473..505S.doi:10.1038/nature09943.PMID 21490597.S2CID 4418860.
  55. ^Zimmer, Carl (27 November 2019)."Is This the First Fossil of an Embryo? - Mysterious 609-million-year-old balls of cells may be the oldest animal embryos — or something else entirely".The New York Times. Archived fromthe original on 2022-01-01. Retrieved28 November 2019.
  56. ^Cunningham, John A.; et al. (5 December 2016)."The origin of animals: Can molecular clocks and the fossil record be reconciled?".BioEssays.39 (1) e201600120.doi:10.1002/bies.201600120.PMID 27918074.
  57. ^Hoffman, Paul F.; Kaufman, Alan J.; Halverson, Galen P.;Schrag, Daniel P. (August 28, 1998)."A Neoproterozoic Snowball Earth"(PDF).Science.281 (5381):1342–1346.Bibcode:1998Sci...281.1342H.doi:10.1126/science.281.5381.1342.ISSN 0036-8075.PMID 9721097.S2CID 13046760. Retrieved2007-05-04.
  58. ^Kirschvink 1992, pp. 51–52
  59. ^"First Land Plants and Fungi Changed Earth's Climate, Paving the Way for Explosive Evolution of Land Animals, New Gene Study Suggests".www.sciencedaily.com. Retrieved25 May 2022.
  60. ^Žárský, J.; Žárský, V.; Hanáček, M.; Žárský, V. (2022-01-27)."Cryogenian Glacial Habitats as a Plant Terrestrialisation Cradle – The Origin of the Anydrophytes and Zygnematophyceae Split".Frontiers in Plant Science.12 735020.Frontiers.Bibcode:2022FrPS...1235020Z.doi:10.3389/fpls.2021.735020.ISSN 1664-462X.PMC 8829067.PMID 35154170.
  61. ^Boyle, Richard A.;Lenton, Timothy M.; Williams, Hywel T. P. (December 2007)."Neoproterozoic 'snowball Earth' glaciations and the evolution of altruism"(PDF).Geobiology.5 (4):337–349.Bibcode:2007Gbio....5..337B.doi:10.1111/j.1472-4669.2007.00115.x.ISSN 1472-4677.S2CID 14827354. Archived fromthe original(PDF) on 2008-09-10. Retrieved2015-03-09.
  62. ^Corsetti, Frank A.;Awramik, Stanley M.; Pierce, David (April 15, 2003)."A complex microbiota from snowball Earth times: Microfossils from the Neoproterozoic Kingston Peak Formation, Death Valley, USA".Proc. Natl. Acad. Sci. U.S.A.100 (8):4399–4404.Bibcode:2003PNAS..100.4399C.doi:10.1073/pnas.0730560100.ISSN 0027-8424.PMC 153566.PMID 12682298.
  63. ^Corsetti, Frank A.; Olcott, Alison N.; Bakermans, Corien (March 22, 2006). "The biotic response to Neoproterozoic snowball Earth".Palaeogeography, Palaeoclimatology, Palaeoecology.232 (2–4):114–130.Bibcode:2006PPP...232..114C.doi:10.1016/j.palaeo.2005.10.030.ISSN 0031-0182.
  64. ^"Formation of the Ozone Layer".Goddard Earth Sciences Data and Information Services Center. NASA. September 9, 2009. Retrieved2013-05-26.
  65. ^Narbonne, Guy (January 2008)."The Origin and Early Evolution of Animals". Kingston, Ontario, Canada:Queen's University. Archived fromthe original on 2015-07-24. Retrieved2007-03-10.
  66. ^Waggoner, Ben M.; Collins, Allen G.; et al. (November 22, 1994). Rieboldt, Sarah; Smith, Dave (eds.)."The Cambrian Period".Tour of geologic time (Online exhibit). Berkeley, CA:University of California Museum of Paleontology. Retrieved2015-03-09.
  67. ^Lane, Abby (January 20, 1999)."Timing".The Cambrian Explosion. Bristol, England:University of Bristol. Retrieved2015-03-09.
  68. ^Chen, Jun-Yuan; Schopf, J. William; Bottjer, David J.; Zhang, Chen-Yu; Kudryavtsev, Anatoliy B.; Tripathi, Abhishek B.; Wang, Xiu-Qiang; Yang, Yong-Hua; Gao, Xiang; Yang, Ying (2007-04-10)."Raman spectra of a Lower Cambrian ctenophore embryo from southwestern Shaanxi, China".Proceedings of the National Academy of Sciences of the United States of America.104 (15):6289–6292.Bibcode:2007PNAS..104.6289C.doi:10.1073/pnas.0701246104.ISSN 0027-8424.PMC 1847456.PMID 17404242.
  69. ^Müller, W. E. G.; Jinhe Li; Schröder, H. C.; Li Qiao; Xiaohong Wang (2007-05-03)."The unique skeleton of siliceous sponges (Porifera; Hexactinellida and Demospongiae) that evolved first from the Urmetazoa during the Proterozoic: a review".Biogeosciences.4 (2):219–232.Bibcode:2007BGeo....4..219M.doi:10.5194/bg-4-219-2007.ISSN 1726-4170.S2CID 15471191.
  70. ^"Corals and sea anemones (anthozoa)".Smithsonian's National Zoo. 2018-12-11. Retrieved2022-09-24.
  71. ^Grazhdankin, Dima (February 8, 2016)."Patterns of distribution in the Ediacaran biotas: facies versus biogeography and evolution".Paleobiology.30 (2):203–221.doi:10.1666/0094-8373(2004)030<0203:PODITE>2.0.CO;2.ISSN 0094-8373.S2CID 129376371.
  72. ^Lindgren, A.R.; Giribet, G.; Nishiguchi, M.K. (2004)."A combined approach to the phylogeny of Cephalopoda (Mollusca)"(PDF).Cladistics.20 (5):454–486.CiteSeerX 10.1.1.693.2026.doi:10.1111/j.1096-0031.2004.00032.x.PMID 34892953.S2CID 85975284. Archived fromthe original(PDF) on 2015-02-10.
  73. ^"Palaeos Paleozoic: Cambrian: The Cambrian Period - 2". Archived fromthe original on 2009-04-29. Retrieved2009-04-20.
  74. ^"Pteridopsida: Fossil Record". University of California Museum of Paleontology. Retrieved2014-03-11.
  75. ^Clarke, Tom (April 30, 2002)."Oldest fossil footprints on land".Nature.doi:10.1038/news020429-2.ISSN 1744-7933. Retrieved2015-03-09.The oldest fossils of footprints ever found on land hint that animals may have beaten plants out of the primordial seas. Lobster-sized, centipede-like animals made the prints wading out of the ocean and scuttling over sand dunes about 530 million years ago. Previous fossils indicated that animals didn't take this step until 40 million years later.
  76. ^"Graptolites".British Geological Survey. Retrieved2022-09-24.
  77. ^Leutwyler, Kristin."511-Million-Year-Old Fossil Suggests Pre-Cambrian Origins for Crustaceans".Scientific American. Retrieved2022-09-24.
  78. ^Garwood, Russell J.; Edgecombe, Gregory D. (September 2011)."Early Terrestrial Animals, Evolution, and Uncertainty".Evolution: Education and Outreach.4 (3):489–501.doi:10.1007/s12052-011-0357-y.ISSN 1936-6426.
  79. ^Landing, Ed; Westrop, Stephen R. (September 1, 2006)."Lower Ordovician Faunas, Stratigraphy, and Sea-Level History of the Middle Beekmantown Group, Northeastern New York".Journal of Paleontology.80 (5):958–980.doi:10.1666/0022-3360(2006)80[958:LOFSAS]2.0.CO;2.ISSN 0022-3360.S2CID 130848432.
  80. ^Serb, Jeanne M.; Eernisse, Douglas J. (September 25, 2008)."Charting Evolution's Trajectory: Using Molluscan Eye Diversity to Understand Parallel and Convergent Evolution".Evolution: Education and Outreach.1 (4):439–447.doi:10.1007/s12052-008-0084-1.ISSN 1936-6434.S2CID 2881223.
  81. ^Niedźwiedzki, Grzegorz; Szrek, Piotr; Narkiewicz, Katarzyna; Narkiewicz, Marek; Ahlberg, Per E. (January 1, 2010)."Tetrapod trackways from the early Middle Devonian period of Poland"(PDF).Nature.463 (7277):43–48.Bibcode:2010Natur.463...43N.doi:10.1038/nature08623.ISSN 1476-4687.PMID 20054388.S2CID 4428903. Archived fromthe original(PDF) on September 25, 2022. RetrievedSeptember 25, 2022.
  82. ^"Details of Evolutionary Transition from Fish to Land Animals Revealed".www.nsf.gov. Retrieved2022-09-25.
  83. ^Clack, Jennifer A. (November 21, 2005)."Getting a Leg Up on Land".Scientific American.293 (6):100–107.Bibcode:2005SciAm.293f.100C.doi:10.1038/scientificamerican1205-100.PMID 16323697. Archived fromthe original on 2007-02-25.
  84. ^Martin, R. Aidan."Evolution of a Super Predator".Biology of Sharks and Rays. North Vancouver, BC, Canada: ReefQuest Centre for Shark Research. Retrieved2015-03-10.The ancestry of sharks dates back more than 200 million years before the earliest known dinosaur.
  85. ^"Devonian Fossil Forest Unearthed in China | Paleontology | Sci-News.com".Breaking Science News | Sci-News.com. Retrieved2019-09-28.
  86. ^"Amphibia".paleobiodb.org. Retrieved2022-10-07.
  87. ^Benton, M.J.; Donoghue, P.C.J. (2006)."Palaeontological evidence to date the tree of life".Molecular Biology and Evolution.24 (1):26–53.doi:10.1093/molbev/msl150.PMID 17047029.
  88. ^"Origin and Early Evolution of Amniotes | Frontiers Research Topic".www.frontiersin.org. Retrieved2022-10-07.
  89. ^"Amniota".Palaeos. Retrieved2015-03-09.
  90. ^Kemp, T. S. (February 16, 2006)."The origin and early radiation of the therapsid mammal-like reptiles: a palaeobiological hypothesis".Journal of Evolutionary Biology.19 (4):1231–1247.doi:10.1111/j.1420-9101.2005.01076.x.ISSN 1010-061X.PMID 16780524.S2CID 3184629.
  91. ^Sahney, Sarda;Benton, Michael J. (April 7, 2008)."Recovery from the most profound mass extinction of all time".Proceedings of the Royal Society B.275 (1636):759–765.doi:10.1098/rspb.2007.1370.ISSN 0962-8452.PMC 2596898.PMID 18198148.
  92. ^Rybicki, Ed (April 2008)."Origins of Viruses".Introduction of Molecular Virology (Lecture). Cape Town, Western Cape, South Africa:University of Cape Town. Archived fromthe original on 2009-05-09. Retrieved2015-03-10.Viruses of nearly all the major classes of organisms - animals, plants, fungi and bacteria / archaea - probably evolved with their hosts in the seas, given that most of the evolution of life on this planet has occurred there. This means that viruses also probably emerged from the waters with their different hosts, during the successive waves of colonisation of the terrestrial environment.
  93. ^US Department of Commerce, National Oceanic and Atmospheric Administration."What are the vampire squid and the vampire fish?".oceanservice.noaa.gov. Retrieved2019-09-27.
  94. ^Dell'Amore, Christine (April 24, 2014)."Meet Kryptodrakon: Oldest Known Pterodactyl Found in China".National Geographic News. Washington, D.C.: National Geographic Society. Archived fromthe original on April 25, 2014. Retrieved2014-04-25.
  95. ^Greshko, Michael (2020-02-11)."Oldest evidence of modern bees found in Argentina".National Geographic. Archived fromthe original on February 23, 2021. Retrieved2022-06-22.The model shows that modern bees started diversifying at a breakneck pace about 114 million years ago, right around the time that eudicots—the plant group that comprises 75 percent of flowering plants—started branching out. The results, which confirm some earlier genetic studies, strengthen the case that flowering plants and pollinating bees have coevolved from the very beginning.
  96. ^Moreau, Corrie S.; Bell, Charles D.; Vila, Roger; Archibald, S. Bruce; Pierce, Naomi E. (2006-04-07)."Phylogeny of the Ants: Diversification in the Age of Angiosperms".Science.312 (5770):101–104.Bibcode:2006Sci...312..101M.doi:10.1126/science.1124891.ISSN 0036-8075.PMID 16601190.S2CID 20729380.
  97. ^Sereno, P. C.; Myhrvold, N.; Henderson, D. M.; Fish, F. E.; Vidal, D.; Baumgart, S. L.; Keillor, T. M.; Formoso, K. K.; Conroy, L. L. (2022-10-05)."Spinosaurus is not an aquatic dinosaur".eLife.11 e80092.doi:10.7554/eLife.80092.PMC 9711522.PMID 36448670.
  98. ^"Mindat.org".www.mindat.org. Retrieved2022-10-03.
  99. ^Grossnickle, David M.; Newham, Elis (2016-06-15)."Therian mammals experience an ecomorphological radiation during the Late Cretaceous and selective extinction at the K–Pg boundary".Proceedings of the Royal Society B: Biological Sciences.283 (1832) 20160256.doi:10.1098/rspb.2016.0256.PMC 4920311.
  100. ^"Mammals began their takeover long before the death of the dinosaurs".ScienceDaily. Retrieved2022-09-25.
  101. ^Finds, Study (2021-12-02)."T-rex fossil reveals dinosaur from 68 million years ago likely had a terrible toothache!".Study Finds. Retrieved2022-09-24.
  102. ^Chiappe, Luis M.;Dyke, Gareth J. (November 2002). "The Mesozoic Radiation of Birds".Annual Review of Ecology and Systematics.33 (1):91–124.Bibcode:2002AnRES..33...91C.doi:10.1146/annurev.ecolsys.33.010802.150517.ISSN 1545-2069.
  103. ^"About > The Origins of Oaks".www.oaksofchevithornebarton.com. Retrieved2019-09-28.
  104. ^Karmin M, Saag L, Vicente M, et al. (April 2015)."A recent bottleneck of Y chromosome diversity coincides with a global change in culture".Genome Research.25 (4):459–466.doi:10.1101/gr.186684.114.ISSN 1088-9051.PMC 4381518.PMID 25770088.
  105. ^Brown, Frank;Fleagle, John;McDougall, Ian (February 16, 2005)."The Oldest Homo sapiens" (Press release). Salt Lake City, UT:University of Utah. Archived fromthe original on 2015-08-02. Retrieved2015-03-10.
  106. ^Alemseged, Zeresenay;Coppens, Yves; Geraads, Denis (February 2002)."Hominid cranium from Homo: Description and taxonomy of Homo-323-1976-896"(PDF).American Journal of Physical Anthropology.117 (2):103–112.doi:10.1002/ajpa.10032.ISSN 0002-9483.PMID 11815945.
  107. ^"International Stratigraphic Chart (v 2014/10)"(PDF). Beijing, China:International Commission on Stratigraphy. Retrieved2015-03-11.

Bibliography

[edit]

Further reading

[edit]

External links

[edit]
Evolution
Population
genetics
Development
Oftaxa
Oforgans
Ofprocesses
Tempo and modes
Speciation
History
Philosophy
Related
Atmosphere
Climate
Continents
Culture and society
Environment
Geodesy
Geophysics
Geology
Oceans
Planetary science
Portals:
Retrieved from "https://en.wikipedia.org/w/index.php?title=Timeline_of_life&oldid=1315197221"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp