This article presents a detailedtimeline of events in the history ofcomputing software and hardware: from prehistory until 1949. For narratives explaining the overall developments, seeHistory of computing.
| History of computing |
|---|
| Hardware |
| Software |
| Computer science |
| Modern concepts |
| By country |
| Timeline of computing |
| Glossary of computer science |
| Date | Event |
|---|---|
| c. 910 BC | Thesouth-pointing chariot was invented inancient China. It was the first known geared mechanism to use adifferential gear. The chariot was a two-wheeled vehicle, upon which is a pointing figure connected to the wheels by means of differential gearing. Through careful selection of wheel size, track and gear ratios, the figure atop the chariot always pointed in the same direction. |
| Date | Event |
|---|---|
| c. 125 BC | TheAntikythera mechanism: A clockwork,analog computer believed to have been designed and built in the Corinthian colony ofSyracuse. The mechanism contained adifferential gear and was capable of tracking the relative positions of all then-known heavenly bodies. |
| Date | Event |
|---|---|
| 725 | Chinese inventorLiang Lingzan built the world's first fully mechanical clock;water clocks, some of them extremely accurate, had been known for centuries previous to this. This was an important technological leap forward; the earliest true computers, made a thousand years later, used technology based on that of clocks.[citation needed] |
| 850 | TheBanū Mūsā brothers, in theirBook of Ingenious Devices, invented "the earliest known mechanicalmusical instrument", in this case ahydropoweredorgan which played interchangeable cylinders automatically. This "cylinder with raised pins on the surface remained the basic device to produce and reproduce music mechanically until the second half of the nineteenth century."[1] They also invented anautomaticflute player which appears to have been the firstprogrammable machine.[2] |
| c. 1000 | Abū Rayhān al-Bīrūnī invented thePlanisphere, ananalog computer.[3] He also invented the firstmechanicallunisolar calendar which employed agear train and eightgear-wheels.[4] This was an early example of a fixed-wired knowledge processingmachine.[5][dubious –discuss] |
| c. 1015 | Arab astronomer,Abū Ishāq Ibrāhīm al-Zarqālī (Arzachel) ofal-Andalus, invented theEquatorium[citation needed], a mechanicalanalog computer device used for finding thelongitudes and positions of the Moon, Sun and planets without calculation, using a geometrical model to represent thecelestial body's mean and anomalistic position.[6] |
| c. 1150 | Arab astronomer,Jabir ibn Aflah (Geber), may have invented or inspired theTorquetum, an observational instrument and mechanicalanalog computer device used to transform betweenspherical coordinate systems.[7] It was designed to take and convert measurements made in three sets of coordinates:horizon,equatorial, andecliptic. |
| 1206 | Arab engineer,Al-Jazari, invented numerousautomata and made numerous other technological innovations. One of these is a design for aprogrammablehumanoid-shapedmannequin: this seems to have been the first serious, scientific (as opposed to magical) plan for arobot.[8] He also invented the "castle clock", anastronomical clock which is considered to be the earliestprogrammableanalog computer.[citation needed] It displayed thezodiac, thesolar andlunar orbits, acrescent moon-shapedpointer travelling across a gateway causing automatic doors to open every hour,[9][10] and fiverobotic musicians who play music when struck by levers operated by acamshaft attached to awater wheel. The length of day and night could be re-programmed every day in order to account for the changing lengths of day and night throughout the year.[11] |
| 1235 | Persian astronomer Abi Bakr ofIsfahan invented a brassastrolabe with agearedcalendar movement based on the design ofAbū Rayhān al-Bīrūnī's mechanical calendaranalog computer.[12] Abi Bakr's geared astrolabe uses a set ofgear-wheels and is the oldest surviving complete mechanical gearedmachine in existence.[13][14] |
| 1300 | Ramon Llull invented the Lullian Circle: a notional machine for calculating answers to philosophical questions (in this case, to do with Christianity) via logical combinatorics. This idea was taken up byLeibniz centuries later, and is thus one of the founding elements in computing andinformation science. |
| c. 1416 | Jamshīd al-Kāshī invented thePlate of Conjunctions, ananalog computer instrument used to determine the time of day at whichplanetary conjunctions will occur,[15] and for performinglinear interpolation. He also invented a mechanical "planetary computer" which he called thePlate of Zones, which could graphically solve a number of planetary problems, including the prediction of the true positions inlongitude of the Sun and Moon,[16] and theplanets;[17] thelatitudes of the Sun, Moon, and planets; and theecliptic of the Sun. The instrument also incorporated analhidade andruler.[18] |
| 1493 | Leonardo da Vinci produced drawings of a device consisting of interlocking cog wheels which can be interpreted as amechanical calculator capable of addition and subtraction. A working model inspired by this plan was built in 1968 but it remains controversial whether Leonardo really had a calculator in mind.[19] Da Vinci also made plans for a mechanical man: an early design for arobot. |
| 1614 | ScotsmanJohn Napier reinvented a form of logarithms and an ingenious system of movable rods (1617, referred to as Napier's Rods orNapier's bones). These rods were based on thelattice or gelosia multiplication algorithm and allowed the operator to multiply, divide, and calculate square and cube roots by moving the rods around and placing them in specially constructed boards. |
| 1622 | William Oughtred developedslide rules based onlogarithms as developed byJohn Napier. |
| 1623 | GermanpolymathWilhelm Schickard drew a device that he called acalculating clock on two letters that he sent toJohannes Kepler; one in 1623 and the other in 1624. A fire later destroyed the machine as it was being built in 1624 and he decided to abandon his project.[20] This machine became known to the world only in 1957 when the two letters were discovered. Some replicas were built in 1961.[21] This machine had no impact on the development of mechanical calculators.[22] |
| Date | Place | Event |
|---|---|---|
| 1642 | France | French polymathBlaise Pascal invented the mechanical calculator.[23] Calledmachine arithmétique, Pascal's calculator and eventuallyPascaline, its public introduction in 1645 started the development of mechanical calculators first in Europe and then in the rest of the world. It was the first machine to have a controlled carry mechanism.[24] Pascal built 50 prototypes before releasing his first machine (eventually twenty machines were built). The Pascaline inspired the works ofGottfried Leibniz (1671),Thomas de Colmar (1820) andDorr E. Felt (1887). |
| 1666 | United Kingdom | SirSamuel Morland (1625–1695), of England, produced a non-decimal adding machine,[25] suitable for use withEnglish money. Instead of a carry mechanism, it registered carries on auxiliary dials, from which the user re-entered them as addends. |
| 1672 | Germany | Germanmathematician,Gottfried Leibniz started designing a machine which multiplied, the 'Stepped Reckoner'. It could multiply numbers of up to 5 and 12 digits to give a 16 digit result. Two machines were built, one in 1694 (it was discovered in an attic in 1879), and one in 1706.[26] |
| 1685 | Germany | In an article titled"Machina arithmetica in qua non additio tantum et subtractio sed et multiplicatio nullo, diviso vero paene nullo animi labore peragantur",Gottfried Leibniz described a machine that usedwheels with movable teeth which, when coupled to a Pascaline, could perform all four mathematical operations.[27] There is no evidence that Leibniz ever constructed this pinwheel machine. |
| 1709 | Italy | Giovanni Poleni was the first to build a calculator that used apinwheel design. It was made of wood and was built in the shape of acalculating clock.[28] |
| 1726 | United Kingdom | Jonathan Swift described (satirically) a machine ("engine") in hisGulliver's Travels. The "engine" consisted of a wooden frame with wooden blocks containing parts of speech. When the engine's 40 levers are simultaneously turned, the machine displayed grammatical sentence fragments. |
| 1774 | Germany | Philipp Matthäus Hahn, in what is now Germany, made a successful portable calculator able to perform all four mathematical operations. |
| 1775 | United Kingdom | Charles Stanhope, 3rd Earl Stanhope, of England, designed and constructed a successful multiplying calculator similar to Leibniz's. |
| 1786 | Germany | J. H. Müller, an engineer in the Hessian army, first conceived of the idea of adifference engine (first written reference to the basic principles of a difference machine is dated to 1784). |
| 1801[29] | France | Joseph-Marie Jacquard developed theJacquard loom, an automatic loom controlled bypunched cards. |
| 1820 | France | Charles Xavier Thomas de Colmar invented the 'Arithmometer' which after thirty more years of development became, in 1851, the first mass-produced mechanical calculator. An operator could performlong multiplications and divisions quickly and effectively by using a movable accumulator for the result. This machine was based on the earlier works of Pascal and Leibniz. |
| Date | Event | |
|---|---|---|
| 1822 | United Kingdom | Charles Babbage designed his first mechanical computer, the first prototype of the decimaldifference engine for tabulating polynomials. |
| 1831 | Italy | Giovanni Plana designed aPerpetual Calendar machine, which can calculate the precise calendar for over 4000 years, accounting for leap years and variation in day length. |
| 1832 | Russia | Semen Korsakov proposed the usage ofpunched cards[citation needed] for information storage and search. He designed several machines to demonstrate his ideas, including the so-calledlinear homeoscope. |
| 1832 | United Kingdom | Babbage andJoseph Clement produced a prototype segment of hisdifference engine,[30] which operated on 6-digit numbers and second-order differences (i.e., it could tabulate quadratic polynomials). The complete engine, which would have been room-sized, was planned to operate both on sixth-order differences with numbers of about 20 digits, and on third-order differences with numbers of 30 digits. Each addition would have been done in two phases, the second one taking care of any carries generated in the first. The output digits were to be punched into a soft metal plate, from which a printing plate might have been made. But there were various difficulties, and no more than this prototype piece was ever finished. |
| c. 1833 | United Kingdom | Babbage conceived, and began to design, his decimal 'Analytical Engine'.[31] Aprogram for it was to bestored onread-only memory, in the form ofpunched cards. Babbage continued to work on the design for years, though after about 1840 design changes seem to have been minor. The machine would have operated on 40-digit numbers; the 'mill' (CPU) would have had 2 mainaccumulators and some auxiliary ones for specific purposes, while the 'store' (memory) would have held a thousand 50-digit numbers. There would have been several punched card readers, for both programs anddata; the cards were to be chained and the motion of each chain reversible. The machine would have performed conditional jumps. There would also have been a form ofmicrocoding: the meaning ofinstructions were to depend on the positioning of metal studs in a slotted barrel, called the "control barrel". The machine envisioned would have been capable of an addition in 3 seconds and a multiplication or division in 2–4 minutes. It was to be powered by asteam engine. In the end, no more than a few parts were actually built. |
| 1835 | United States | Joseph Henry invented the electromechanicalrelay. |
| 1840 | Italy | Charles Babbage's first public exposition about his Analytical Engine atAccademia delle Scienze,Turin.[32] |
| 1842 | France | Timoleon Maurel patented theArithmaurel, a mechanical calculator with a very intuitive user interface, especially for multiplying and dividing numbers because the result was displayed as soon as the operands were entered. It received a gold medal at the French national show in Paris in 1849.[33] Unfortunately its complexity and the fragility of its design prevented it from being manufactured.[34] |
| 1842 | United Kingdom | Construction of Babbage'sdifference engine was cancelled as an official project.[35] The cost overruns had been considerable (£17,470 was spent, which, in 2025 money, would be about £1,677,000[36]). |
| 1843 | Sweden | Per Georg Scheutz and his son Edvard produced a 5-digit numbers and third-order model of thedifference engine with printer; the Swedish government agreed to fund their next development in 1851. |
| 1846 | United Kingdom | Babbage began to work on an improveddifference engine (the Difference Engine No.2), producing a completely executed set of plans by 1849.[37] The machine would have operated on 7th-order differences and 31-digit numbers, but nobody was found to pay to have it built. In 1989–1991 a team at London's Science Museum did build one from the surviving plans. They built components using modern methods, but with tolerances no better than Clement could have provided... and, after a bit of tinkering and detail-debugging, they found that the machine works properly. In 2000, the printer was also completed. |
| 1847 | United Kingdom | British MathematicianGeorge Boole developed binary algebra (Boolean algebra)[38] which has been widely used in binary computer design and operation, beginning about a century later. See 1939. |
| Date | Place | Event |
|---|---|---|
| 1851 | France | After 30 years of development,Thomas de Colmar launched the mechanical calculator industry by starting the manufacturing of a much simplifiedArithmometer (invented in 1820). Aside from its clones, which started thirty years later,[39] it was the only calculating machine available anywhere in the world for forty years (Dorr E. Felt only sold one hundredcomptometers and a fewcomptographs from 1887 to 1890[40]). Its simplicity made it the most reliable calculator to date. It was a big machine (a 20 digit arithmometer was long enough to occupy most of a desktop). Even though the arithmometer was only manufactured until 1915, twenty European companies manufactured improved clones of its design until the beginning of WWII. Prominent clone manufacturers included Burkhardt, Layton, Saxonia, Gräber, Peerless, Mercedes-Euklid, XxX, and Archimedes. |
| 1853 | Sweden | To Babbage's delight, theScheutzes completed the first full-scaledifference engine, which they called a Tabulating Machine. It operated on 15-digit numbers and 4th-order differences, and produced printed output just as Babbage's would have. A second machine was later built in 1859 to the same design by the firm ofBryan Donkin of London. |
| 1856 | United States | The first Tabulating Machine (see 1853) was bought by the Dudley Observatory inAlbany, New York, and the second was ordered in 1857 by the British government. The Albany machine was used to produce a set of astronomical tables; but the Observatory's director was fired for this extravagant purchase, and the machine never seriously used again, eventually ending up in a museum. The second machine had a long and useful life. |
| c. 1859 | Sweden | Martin Wiberg produced a reworkeddifference-engine-like machine intended to prepare interest rates (first publication in 1860) andlogarithmic tables (first publication in 1875). |
| 1866 | United Kingdom | The first practical logic machine (logical abacus) was built byWilliam Stanley Jevons. |
| 1871 | United Kingdom | Babbage produced a prototype section of theAnalytical Engine's mill and printer.[41] |
| 1878 | Spain | Ramón Verea, living in New York City, invented a calculator with an internal multiplication table; this was much faster than the shifting carriage, or other digital methods of the time. He wasn't interested in putting it into production, however; it seems he just wanted to show that a Spaniard could invent as well as an American. |
| 1878 | United Kingdom | A committee investigated the feasibility of completing theAnalytical Engine, and concluded that it would be impossible now that Babbage was dead. The project was then largely forgotten, except by a very few;Howard Aiken was a notable exception. |
| 1884 | United States | Dorr Felt, of Chicago, developed hisComptometer. This was the first calculator in which operands are entered by pressing keys rather than having to be, for example, dialled in. It was feasible because of Felt's invention of a carry mechanism fast enough to act while the keys return from being pressed. Felt and Tarrant started a partnership to manufacture the comptometer in 1887. |
| 1886 | United States | First use ofHerman Hollerith tabulating system in the Baltimore Department of Health. |
| 1887 | United States | Herman Hollerith filed a patent application for anintegrating tabulator (granted in 1890), which could add numbers encoded onpunched cards. First recorded use of this device was in 1889 in the Office of the Surgeon General of the Army. In 1896 Hollerith introduced improved model.[42] |
| 1889 | United States | Dorr Felt invented the first printing desk calculator. |
| 1890 | United States Sweden Russia | A multiplying calculator more compact than the Arithmometer entered mass production.[43][44] The design was the independent, and more or less simultaneous, invention ofFrank S. Baldwin, of the United States, andWillgodt Theophil Odhner, a Swede living in Russia. Fluted drums were replaced by a "variable-toothed gear" design: a disk with radial pegs that could be made to protrude or retract from it. |
| 1890 | United States | The1880 US census had taken 7 years to complete since all processing had been done by hand from journal sheets. The increasing population suggested that by the1890 census, data processing would take longer than the 10 years before the next census—so a competition was held to find a better method. It was won by a Census Department employee,Herman Hollerith, who went on to found theTabulating Machine Company, later to becomeIBM. He invented the recording of data on a medium that could then be read by a machine. Prior uses of machine readable media had been for control (Automatons,Piano rolls,looms, ...), not data. "After some initial trials with paper tape, he settled onpunched cards..."[45] His machines used mechanicalrelays to increment mechanical counters. This method was used in the 1890 census. The net effect of the many changes from the 1880 census: the larger population, the data items to be collected, the Census Bureau headcount, the scheduled publications, and the use of Hollerith's electromechanical tabulators, was to reduce the time required to process the census from eight years for the1880 census to six years for the 1890 census.[46] The inspiration for this invention was Hollerith's observation of railroad conductors during a trip in theWestern United States; they encoded a crude description of the passenger (tall, bald, male) in the way they punched the ticket. |
| 1891 | United States | William S. Burroughs of St. Louis invented a machine similar to Felt's (see 1884) in 1885 but unlike the comptometer it was a 'key-set' machine which only processed each number after a crank handle was pulled. The true manufacturing of this machine started in 1891 even though Burroughs had started hisAmerican Arithmometer Company in 1886 (it later becameBurroughs Corporation and is now calledUnisys). |
| 1899 | Japan | Ryōichi Yazu began[citation needed] the development of a mechanical calculating machine (automatic abacus).[47] Ryoichi independently conducted research on calculating machines, and it took three years to complete hisbiquinary mechanical desktop calculating machine, before applying for a patent in 1902.[48] It was Japan's first successful mechanical computer.[49][dubious –discuss][48] |
| c. 1900 | United States | TheStandard Adding Machine Company released the first 10-key adding machine in about 1900. The inventor, William Hopkins, filed his first patent on October 4, 1892. The 10 keys were set on a single row. |
| 1902 | United States | First model of Dalton adding machine is built.[50] Remington advertised the Dalton adding machine as the first 10-key printing adding machine.[51] The 10 keys were set on two rows. Six machines had been manufactured by the end of 1906. |
| 1905 | Japan | Ichitaro Kawaguchi, an engineer at theMinistry of Communications and Transportation, built the Kawaguchi Electric Tabulation Machine,[49] used to tabulate some of the results of the 1904 Demographics Statistical Study.[52] |
| 1906 | United Kingdom | Henry Babbage, Charles's son, with the help of the firm of R. W. Munro, completed the 'mill' from his father'sAnalytical Engine, to show that it would have worked. It does. The complete machine was not produced. |
| 1906 | United States | Audion (vacuum tube orthermionic valve) invented byLee De Forest. |
| 1906 | United States | Herman Hollerith introduces a tabulator with aplugboard that can be rewired to adapt the machine for different applications. Plugboards were widely used to direct machine calculations until displaced bystored programs in the 1950s.[53] |
| 1909 | Republic of Ireland | Following Babbage, although unaware of his earlier work,Percy Ludgate in 1909 published the 2nd of the only two designs for mechanical analytical engines in history.[54] |
| 1913 | Spain | In his workEssays on Automatics (1913),Leonardo Torres y Quevedo formulates what will be a new branch of engineering:automation and designed a Babbage type of calculating machine that used electromechanical parts which introduced the idea offloating-point arithmetic.[55] |
| 1919 | United Kingdom | William Henry Eccles andF. W. Jordan published the firstflip-flop circuit design. |
| 1924 | Germany | Walther Bothe built anANDlogic gate - thecoincidence circuit, for use in physics experiments, for which he received theNobel Prize in Physics 1954. Digital circuitries of all kinds make heavy use of this technique. |
| 1928 | United States | IBM standardizes onpunched cards with 80 columns of data and rectangular holes. Widely known as IBM Cards, they dominate the data processing industry for almost half a century. |
| 1929 | United States | Westinghouse AC Calculating board. AnAC network analyzer used foralternating current (AC) electrical transmission line simulations up until the 1960s. |
| c. 1930 | United States | Vannevar Bush built a partly electronicdifferential analyzer capable of solvingdifferential equations. |
| c. 1930 | United Kingdom | Welsh physicistC. E. Wynn-Williams, atCambridge, England, used a ring ofthyratron tubes to construct a binary digital counter that counted emittedalpha particles.[56] |
| Date | Place | Event |
|---|---|---|
| 1931 | Austria | Kurt Gödel ofVienna University, Austria, published a paper on a universal formal language based on arithmetic operations. He used it to encode arbitrary formal statements and proofs, and showed thatformal systems such as traditional mathematics are either inconsistent in a certain sense, or contain unprovable but true statements. This result is often called the fundamental result of theoretical computer science. |
| 1931 | United States | IBM introduced theIBM 601 Multiplying Punch, an electromechanical machine that could read two numbers, up to 8 digits long, from a card and punch their product onto the same card.[57] |
| 1934 | Japan, | From 1934 to 1937,NEC engineerAkira Nakashima,Claude Shannon andViktor Shestakov published a series of papers introducingswitching circuit theory.[58][59][60][61] |
| 1934 | United States | Wallace Eckert ofColumbia University connects an IBM 285 Tabulator, an 016 Duplicating Punch and an IBM 601 Multiplying Punch with acam-controlled sequencer switch that he designed. The combined system was used to automate the integration ofdifferential equations.[62] |
| 1936 | United Kingdom | Alan Turing ofCambridge University, England, published a paper on 'computable numbers'[63] which reformulatedKurt Gödel's results (see related work byAlonzo Church). His paper addressed the famous 'Entscheidungsproblem' whose solution was sought in the paper by reasoning (as a mathematical device) about a simple and theoretical computer, known today as aTuring machine. In many ways, this device was more convenient than Gödel's arithmetics-based universal formal system. |
| 1937 | United States | George Stibitz of the Bell Telephone Laboratories (Bell Labs), New York City, constructed a demonstration 1-bit binary adder using relays. This was one of the first binary computers, although at this stage it was only a demonstration machine; improvements continued leading to theComplex Number Calculator of January 1940. |
| 1937 | United States | Claude E. Shannon published a paper on the implementation of symbolic logic using relays as his MIT Master's thesis. |
| 1938 | Germany | Konrad Zuse of Berlin, completed the 'Z1', the first mechanical binary programmable computer. It was based on Boolean Algebra and had some of the basic ingredients of modern machines, using the binary system andfloating-point arithmetic. Zuse's 1936 patent application (Z23139/GMD Nr. 005/021) also suggested a 'von Neumann' architecture (re-invented about 1945) with program and data modifiable in storage. Originally the machine was called the 'V1' but retroactively renamed after the war, to avoid confusion with theV-1 flying bomb. It worked with floating-point numbers (7-bit exponent, 16-bit mantissa, and sign bit). The memory used sliding metal parts to store 16 such numbers, and worked well; but the arithmetic unit was less successful, occasionally suffering from certain mechanical engineering problems. The program was read from holes punched in discarded 35 mm movie film. Data values could have been entered from a numeric keyboard, and outputs were displayed on electric lamps. The machine was not a general purpose computer (i.e.,Turing complete) because it lacked loop capabilities. |
| 1939 | United States | William Hewlett andDavid Packard established theHewlett-Packard Company in Packard's garage inPalo Alto, California with an initial investment of $538 (equivalent to $12,018 in 2024); this was considered to be the symbolic founding ofSilicon Valley. HP would grow to become one of thelargest technology companies in the world today. |
| 1939 Nov | United States | John Vincent Atanasoff and graduate studentClifford Berry of Iowa State College (now theIowa State University), Ames, Iowa, completed a prototype 16-bit adder. This was the first machine to calculate using vacuum tubes. |
| 1939 - 1940 | Germany | Helmut Schreyer completed a prototype 10-bit adder[citation needed] using vacuum tubes, and a prototype memory using neon lamps.[citation needed] |
| 1940 | United States | AtBell Labs, Samuel Williams andGeorge Stibitz completed a calculator which could operate oncomplex numbers, and named it the 'Complex Number Calculator'; it was later known as the 'Model I Relay Calculator'. It used telephone switching parts for logic: 450 relays and 10 crossbar switches. Numbers were represented in 'plus 3 BCD'; that is, for each decimal digit, 0 is represented by binary 0011, 1 by 0100, and so on up to 1100 for 9; this scheme requires fewer relays than straight BCD. Rather than requiring users to come to the machine to use it, the calculator was provided with three remote keyboards, at various places in the building, in the form of teletypes. Only one could be used at a time, and the output was automatically displayed on the same one. On 9 September 1940, a teletype was set up at aDartmouth College inHanover, New Hampshire, with a connection to New York, and those attending the conference could use the machine remotely. |
| 1940 | Germany | Konrad Zuse completed the 'Z2' (originally 'V2'), which combined the Z1's existing mechanical memory unit with a new arithmetic unit using relay logic. Like the Z1, the Z2 lacked loop capabilities. The project was interrupted for a year when Zuse was drafted in 1939, but continued after he was released. In 1940 Zuse presented the Z2 to an audience of theDeutsche Versuchsanstalt für Luftfahrt ("German Laboratory for Aviation") in Berlin-Adlershof. |
| Date | Place | Event |
|---|---|---|
| 1941 May 11 | Germany | Now working with limited backing from the DVL (German Aeronautical Research Institute),Konrad Zuse completed the 'Z3' (originally 'V3'): the first operational programmable computer. One major improvement overCharles Babbage's non-functional device is the use ofLeibniz's binary system (Babbage and others unsuccessfully tried to build decimal programmable computers). Zuse's machine also featured floating-point numbers with a 7-bit exponent, 14-bit mantissa (with a '1' bit automatically prefixed unless the number is 0), and a sign bit. The memory held 64 of these words and therefore required over 1400 relays; there were 1200 more in the arithmetic and control units. It also featured parallel adders. The program, input, and output were implemented as described above for the Z1. Although conditional jumps were not available, it has been shown that Zuse's Z3 is, in principle, capable of functioning as a universal computer.[64][65] The machine could do 3–4 additions per second, and took 3–5 seconds for a multiplication. The Z3 was destroyed in 1943 during an Allied bombardment of Berlin, and had no impact on computer technology in America and England. |
| 1942 Summer | United States | Atanasoff and Berry completed a special-purpose calculator for solving systems of simultaneous linear equations, later called the 'ABC' ('Atanasoff–Berry Computer'). This had 60 50-bit words of memory in the form ofcapacitors (with refresh circuits—the first regenerative memory) mounted on two revolving drums. The clock speed was 60 Hz, and an addition took 1 second. For secondary memory it used punched cards, moved around by the user. The holes were not actually punched in the cards, but burned. The punched card system's error rate was never reduced beyond 0.001%, and this was inadequate. Atanasoff left Iowa State after the U.S. entered the war, ending his work on digital computing machines. |
| 1942 | Germany | Helmut Hölzer built ananalog computer to calculate and simulate[66]V-2 rocket trajectories.[67][68][69] |
| 1942 | Germany | Konrad Zuse developed the S1, the world's first process computer, used byHenschel to measure the surface of wings. |
| 1943 Apr | United Kingdom | Max Newman,C. E. Wynn-Williams and their team at the secret Government Code and Cypher School ('Station X'),Bletchley Park, Bletchley, England, completed the 'Heath Robinson'. This was a specialized counting machine used for cipher-breaking, not a general-purpose calculator or computer, but a logic device using a combination of electronics and relay logic. It read data optically at 2000 characters per second from two closed loops of paper tape. It was significant as it was the forerunner of Colossus. Newman knew Turing fromCambridge University (Turing was a student of Newman's), and had been the first person to see a draft of Turing's 1936 paper.[63]Heath Robinson is the name of a Britishcartoonist known for drawings of comical machines, like the AmericanRube Goldberg. Two later machines in the series were named after London stores with 'Robinson' in their names. |
| 1943 Sep | United States | Williams and Stibitz completed the 'Relay Interpolator', later called the 'Model II Relay Calculator'. This was a programmable calculator; again, the program and data were read from paper tapes. An innovative feature was that, for greater reliability (error-detecting/self-checking), numbers were represented in abiquinary format using seven relays for each digit, of which exactly two should be "on": 01 00001 for 0, 01 00010 for 1, and so on up to 10 10000 for 9. Some of the later machines in this series would use the biquinary notation for the digits of floating-point numbers. |
| 1943 Dec | United Kingdom | The Mark 1Colossus was completed, byTommy Flowers atThe Post Office Research Laboratories in London, to assist in the cracking of the GermanLorenz SZ42 cipher at Bletchley Park. It was a binary digital machine that contained 1500vacuum tubes (valves), and applied a programmable logical function to a stream of characters, read and re-read from a loop ofpunched paper tape at a rate of 5000 characters a second. It had 501bits of memory, the program being set on switches and plug panels. Colossus was used atBletchley Park during World War II—as a follow on from the less productive Heath Robinson machines. |
| 1944 June | United Kingdom | The first Mark 2 Colossus was commissioned. It was a development of the Mark 1 machine and contained 2400 vacuum tubes. It had five identical parallel processors fed from ashift register that enabled processing of 25,000 characters a second. Colossus could evaluate a wide range ofBoolean algebraic functions for helping to establish the rotor settings of the Lorenz SZ42 machine. Ten Mark 2 Colossi were in use at Bletchley Park by the end of the war in Europe in May 1945. All but two of the machines were then dismantled into such small parts that it was not possible to infer their use, so as to maintain the secrecy of the work. The remaining two were dismantled atGCHQ Cheltenham in the 1960s. |
| 1944 August 7 | United States | TheIBM Automatic Sequence Controlled Calculator was turned over toHarvard University, which called it theHarvard Mark I. It was designed byHoward Aiken and his team, financed and built by IBM—it became the second program-controlled machine (afterKonrad Zuse's). The whole machine was 51 feet (16 m) long, weighed 5 (short) tons (4.5 tonnes), and incorporated 750,000 parts. It used 3304 electromechanical relays as on-off switches, had 72 accumulators (each with its own arithmetic unit), as well as a mechanical register with a capacity of 23 digits plus sign. The arithmetic was fixed-point and decimal, with acontrol panel setting determining the number of decimal places. Input–output facilities include card readers, a card punch, paper tape readers, and typewriters. There were 60 sets of rotary switches, each of which could be used as a constant register—sort of mechanicalread-only memory. The program was read from one paper tape; data could be read from the other tapes, or the card readers, or from the constant registers. Conditional jumps were not available. However, in later years, the machine was modified to support multiple paper tape readers for the program, with the transfer from one to another being conditional, rather like a conditional subroutine call. Another addition allowed the provision of plug-board wired subroutines callable from the tape. Used to create ballistics tables for theUS Navy. |
| 1945 | Germany | Konrad Zuse developedPlankalkül, the first higher-level programming language. He also presented theZ4 in March. |
| 1945 | United States | Vannevar Bush developed the theory of thememex, ahypertext device linked to a library of books and films. |
| 1945 | United States | John von Neumann drafted a report describing the future computer eventually built as theEDVAC (Electronic Discrete Variable Automatic Computer).First Draft of a Report on the EDVAC includes the first published description of the design of astored-program computer, giving rise to the termvon Neumann architecture. It directly or indirectly influenced nearly all subsequent projects, especiallyEDSAC. The design team includedJohn W. Mauchly andJ. Presper Eckert. |
| 1946 February 14 | United States | ENIAC (Electronic Numerical Integrator and Computer): One of the first totally electronic, vacuum tube, digital, program-controlled computers was unveiled although it was shut down on 9 November 1946 for a refurbishment and a memory upgrade, and was transferred to Aberdeen Proving Ground, Maryland in 1947. Development had started in 1943 at theBallistic Research Laboratory, USA, byJohn W. Mauchly andJ. Presper Eckert. It weighed 30 tonnes and contained 18,000 vacuum tubes, consuming around 160 kW of electrical power. It could do 5,000 basic calculations a second. It was used for calculating ballistic trajectories and testing theories behind the hydrogen bomb. |
| 1946 February 19 | United Kingdom | ACE (Automatic Computing Engine):Alan Turing presented a detailed paper to theNational Physical Laboratory (NPL) Executive Committee, giving the first reasonably complete design of a stored-program computer. However, because of the strict and long-lasting secrecy around his wartime work atBletchley Park, he was prohibited (having signed theOfficial Secrets Act) from explaining that he knew that his ideas could be implemented in an electronic device. |
| 1946 | United Kingdom | Thetrackball was invented as part of a radar plotting system namedComprehensive Display System (CDS) byRalph Benjamin when working for the BritishRoyal Navy Scientific Service.[70][71] Benjamin's project usedanalog computers to calculate the future position of target aircraft based on several initial input points provided by a user with ajoystick. Benjamin felt that a more elegant input device was needed and invented aball tracker[70][71] system called theroller ball[70] for this purpose in 1946.[70][71] The device was patented in 1947,[70] but only a prototype was ever built[71] and the device was kept as a secret outside military.[71] |
| 1947 September | United Kingdom | Development of the firstassembly language byKathleen Booth atBirkbeck, University of London following work withJohn von Neumann andHerman Goldstine at theInstitute for Advanced Study.[72][73] |
| 1947 December 16 | United States | Invention of thetransistor atBell Laboratories, USA, byWilliam B. Shockley,John Bardeen andWalter Brattain. |
| 1947 | United States | Howard Aiken completed theHarvard Mark II. |
| 1947 | United States | TheAssociation for Computing Machinery (ACM), was founded as the world's first scientific and educational computing society. It remains to this day with a membership currently around 78,000. Its headquarters are in New York City. |
| 1948 January 27 | United States | IBM finished theSSEC (Selective Sequence Electronic Calculator). It was the first computer to modify a stored program. "About 1300 vacuum tubes were used to construct the arithmetic unit and eight very high-speed registers, while 23000 relays were used in the control structure and 150 registers of slower memory." |
| 1948 May 12 | United Kingdom | TheBirkbeck ARC, the first of three machines developed atBirkbeck, University of London byAndrew Booth andKathleen Booth, officially came online on this date. The control was entirely electromechanical and the memory was based on arotating magnetic drum.[73] This was the first rotating drum storage device in existence.[74] |
| 1948 June 21 | United Kingdom | TheManchester Baby was built at theUniversity of Manchester. It ran its first program on this date. It was the first computer to store both its programs and data inRAM, as modern computers do. By 1949 the 'Baby' had grown, and acquired amagnetic drum for morepermanent storage, and it became theManchester Mark 1. |
| 1948 | United States | ANACOM fromWestinghouse was an AC-energized electricalanalog computer system used up until the early 1990s for problems in mechanical and structural design, fluidics, and various transient problems. |
| 1948 | United States | IBM introduced the '604', the first machine to featureField Replaceable Units (FRUs), which cut downtime as entire pluggable units can simply be replaced instead of troubleshot. |
| 1948 | The firstCurta handheld mechanical calculator was sold. The Curta computed with 11 digits of decimal precision on input operands up to 8 decimal digits. The Curta was about the size of a handheld pepper grinder. | |
| 1949 Mar | United States | John Presper Eckert andJohn William Mauchly construct theBINAC forNorthrop. |
| 1949 May 6 | United Kingdom | Maurice Wilkes and a team atCambridge University executed the first stored program on theEDSAC computer, which used paper tape input–output. Based on ideas fromJohn von Neumann about stored program computers, the EDSAC was the first complete, fully functional von Neumann architecture computer. |
| 1949 Oct | United Kingdom | TheManchester Mark 1 final specification is completed; this machine was notably in being the first computer to use the equivalent of base/index registers, a feature not entering common computer architecture until the second generation around 1955. |
| 1949 | Australia | CSIR Mk I (later known asCSIRAC), Australia's first computer, ran its first test program. It was a vacuum-tube-based electronic general-purpose computer. Its main memory stored data as a series of acoustic pulses in 5 ft (1.5 m) long tubes filled with mercury. |
| 1949 | United Kingdom | MONIAC (Monetary National Income Analogue Computer) also known as the Phillips Hydraulic Computer, was created in 1949 to model the national economic processes of the United Kingdom. The MONIAC consisted of a series of transparent plastic tanks and pipes. It is thought that twelve to fourteen machines were built. |
{{cite journal}}:Cite journal requires|journal= (help)In Lyon, France, Joseph Marie Jacquard (1752-1834) demonstrated in 1801 a loom that enabled unskilled workers to weave complex patterns in silk.
At an industrial exhibition in Paris in 1801, Jacquard demonstrated
En 1801, cet ingénieur de Lyon équipe le métier à tisser d'un mécanisme en fonte qui sélectionne les fils de chaîne grâce à un programme inscrit sur une carte perforée.
Until the invention of the Jacquard attachment to the loom in the year 1801, embroidered silk goods were called brocades.
{{cite book}}: CS1 maint: others (link){{cite web}}: CS1 maint: others (link){{cite book}}: CS1 maint: location missing publisher (link) (3+207+1 pages)10:00 min