Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Tied-arch bridge

From Wikipedia, the free encyclopedia
Type of bridge
Generic tied-arch bridge with amovable support on the right side.
TheFort Pitt Bridge. The arches terminate atop slender raised piers and are tied by the road deck structure.

Atied-arch bridge is anarch bridge in which the outward-directed horizontal forces of the arch(es) are borne as tension by a chord tying the arch ends rather than by the ground or the bridge foundations. This strengthened chord may be the deck structure itself or consist of separate, independent tie-rods.

Description

[edit]
Erkkilä Bridge inTampere,Finland

Thrusts downwards on a tied-arch bridge deck are translated as tension by vertical ties between the deck and the arch, tending to flatten it and thereby to push its tips outward into the abutments, like for other arch bridges. However, in a tied-arch or bowstring bridge, these movements are restrained not by the abutments but by the strengthened chord, which ties these tips together, taking the thrusts as tension, rather like the string of a bow that is being flattened. Therefore, the design is also called abowstring-arch orbowstring-girder bridge.[1][2]

The elimination of horizontal forces at theabutments allows tied-arch bridges to be constructed with less robust foundations; thus they can be situated atop elevated piers or in areas of unstablesoil.[3] In addition, since they do not depend on horizontal compression forces for their integrity, tied-arch bridges can beprefabricated offsite, and subsequently floated, hauled or lifted into place. Notable bridges of this type include theFremont Bridge inPortland, Oregon,[citation needed] and the first "computer-designed" bridge of this type, theFort Pitt Bridge inPittsburgh, Pennsylvania.[4]

Both the tied-arch bridge and theself-anchored suspension bridge place only vertical loads on the anchorage, and so are suitable where large horizontal forces are difficult to anchor.

Variants

[edit]

Shouldered tied-arch

[edit]
Fremont Bridge inPortland, Oregon.
Chaotianmen Bridge inChongqing (lateral view diagram)

Some tied-arch bridges only tie a segment of themain arch directly and prolong the strengthened chord to tie to the top ends ofauxiliary (half-)arches. The latter usually support the deck from below and join their bottom feet to those of the main arch(es). The supporting piers at this point may be slender, because the outward-directed horizontal forces of main and auxiliary arch ends counterbalance. The whole structure isself-anchored. Like the simple case it exclusively places vertical loads on all ground-bound supports.

An example is theFremont Bridge in Portland, Oregon which is the second-longest tied-arch bridge in the world and also classifies as athrough arch bridge. TheChaotianmen Bridge in Chongqing is a tied-arch, through arch and atruss arch bridge.

Contrarily, theHart Bridge uses a cantilevered trussed arch, it isself-anchored, but its arch is non-tied. In particular the bridge deck is suspended, but does not tie the arch ends.

Multi-span discrete tied-arch

[edit]
Godavari Arch Bridge inRajahmundry.
A rail bridge inArgos, Peloponnese featuring multiple tied arches.

Tied arch bridges may consist of successively lined up tied arches in places where a single span is not sufficient. An example for this is theGodavari Arch Bridge in Rajahmundry, India. It has four separate supports on each pier and carries the South Central Railway Line of India. It was designed for 250 km/h rail services.

Multi-span continuous tied-arch

[edit]
Dashengguan Bridge inNanjing (lateral view diagram)
TheInfinity Bridge inStockton-on-Tees lines up two asymmetrically sized tied arches.

Like for multi-span continuous beam bridges the tying chord continually spans over all piers. The arches feet coincide (fuse) at the bridge piers. A good visual indication are shared supports at the piers. Dynamic loads are distributed between spans.

This type may be combined with the shouldered tied-arch design discussed above. An example for this isDashengguan Bridge in Nanjing, China. Its two main arches are shouldered by short auxiliary arches. It is both, a (rigid) tied-arch and a cantilevered trussed arch design. Because the traffic runs through the structural envelope, it is also a through arch bridge.Guandu Bridge in New Taipei, Taiwan is a non-trussed example with three main arches augmented by two auxiliary arch segments at the bridge portals.

TheInfinity Bridge uses two arches of different height and span length that both bifurcate before their apex. Above its single, middle-displaced river pier the deck lies between the arches. Contrarily each abutment on the riverbanks supports a single arch end only, in the middle of the deck. The tying chord(s) consist of a composite deck structure. Four post tensioned coil steel cables, two to each side of the walking deck, are locked in place by orthogonally run steel beams every 7.5 meters. The hangers are joined to each of these beams between each cable pair. Since the beams extend the width of the post-tensioned concrete deck, the tensing cable pairs remain visible.

A close-up of the river pier shows that the structural dead load is tied per span: The larger arch span uses thicker tensing cables and the reflex segments are not suspended from, but supported by steel beams, essentially completing the arches at the river pier. However, for dynamic and non-uniform loads the visually defining arch continuations must not be neglected.[5]

Single tied-arch per span

[edit]
Hoge Brug (or Passerelle Céramique) inMaastricht.

Usually, for a single span, two tied-arches are placed in parallel alongside the deck, so the deck lies in between the arches.Axial tied-arch orsingle tied-arch bridges have at most one tied-arch per span that is usually centered in the middle of the bridge deck.[6] An example for this isHoge Brug in Maastricht. Since it has hinged hangers it might also classify as aNielsen bridge who held a patent on tied-arch bridges with hinged hangers from 1926.

Tilted tied-arch

[edit]

Some designs tilt the arches outward or inward with respect to the axis running along the bridge deck.

Tied-arch twin

[edit]

In analogy totwin bridges, two tied arch bridges erected side by side to increase traffic capacity, but structurally independent, may be referred to bytied arch twin bridges. Each in return may use a single- or multi-span, discrete or continuous tied-arch design.

Differentiation

[edit]

Abowstring truss bridge is similar in appearance to a tied-arch; however, the bowstring truss behaves astruss, not anarch. The visual distinction is a tied-arch bridge will not have substantial diagonal members between the vertical members.

Issues

[edit]
The collapsedNanfang'ao Bridge inYilan County, Taiwan, Republic of China.

In a 1978 advisory issued by theFederal Highway Administration (FHWA), the FHWA noted that tied-arch bridges are susceptible to problems caused by poor welds at the connection between the arch rib and the tie girders, and at the connection between the arch and vertical ties. In addition, problems withelectroslag welds, while not isolated to tied-arch bridges, resulted in costly, time-consuming and inconveniencing repairs. The structure as a whole was described asnonredundant: failure of either of the two tie girders would result in failure of the entire structure.[7]

See also

[edit]

References

[edit]
  1. ^See, e.g., U.S. Patent 14,313 (February 26, 1856) issued to P.C. Guiou of Cincinnati, Ohio, for a Truss Bridge, titled on specification as "Girder for Bridges."
  2. ^For a description of how bowstring arch and bowstring girder bridges are related, see Gayle & Carol Gayle & Carol Gayle, Cast-iron Architecture in America: The Significance of James Bogardus, pages 28-29 (W. W. Norton & Company 1998).
  3. ^For a nontechnical exposition, seeGordon, JE (1978).Structures; or Why Things Don't Fall Down.London:Penguin Books. p. 208f.ISBN 978-0-306-40025-4.OCLC 4004565.
  4. ^"Pittsburgh's bridge". Travel Channel. RetrievedJune 14, 2016.
  5. ^Maskell, Daniel (2009)."A Critical Analysis of North Shore Footbridge, Stockton-on-Tees, UK"(PDF).Proceedings of Bridge Engineering 2 Conference 2009. bath.ac.uk. Retrieved11 December 2009.Under vertical dead loads and uniform imposed loads the arches support the loads under pure axial compression with the deck edge cables acting as horizontal ties.
  6. ^"Axial (single) tied-arch bridges". RetrievedSeptember 26, 2017.
  7. ^Federal Highway Administration (1978-09-28)."TIED ARCH BRIDGES: T 5140.4". Retrieved2008-07-22.

Gallery of tied-arch bridges

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Tied-arch_bridge&oldid=1303303831"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp