Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Thrust-specific fuel consumption

From Wikipedia, the free encyclopedia
Fuel efficiency of an engine design with respect to thrust output

Thrust-specific fuel consumption (TSFC) is thefuel efficiency of anengine design with respect tothrust output. TSFC may also be thought of as fuel consumption (grams/second) per unit of thrust (newtons, or N), hencethrust-specific. This figure is inversely proportional tospecific impulse, which is the amount of thrust produced per unit fuel consumed.

TSFC or SFC forthrust engines (e.g.turbojets,turbofans,ramjets,rockets, etc.) is the mass offuel needed to provide the net thrust for a given period e.g. lb/(h·lbf) (pounds of fuel per hour-pound of thrust) or g/(s·kN) (grams of fuel per second-kilonewton). Mass of fuel is used, rather than volume (gallons or litres) for the fuel measure, since it is independent of temperature.[1]

Specific fuel consumption of air-breathing jet engines at their maximum efficiency is more or less proportional to exhaust speed. The fuel consumptionper mile orper kilometre is a more appropriate comparison for aircraft that travel at very different speeds.[not in body]Power-specific fuel consumption, the thrust-specific fuel consumption divided by speed, can have units of pounds per hour per horsepower.

Significance of SFC

[edit]

SFC is dependent on engine design, but differences in the SFC between different engines using the same underlying technology tend to be quite small. Increasingoverall pressure ratio on jet engines tends to decrease SFC.

In practical applications, other factors are usually highly significant in determining the fuel efficiency of a particular engine design in that particular application. For instance, in aircraft, turbine (jet and turboprop) engines are typically much smaller and lighter than equivalently powerful piston engine designs, both properties reducing the levels ofdrag on the plane and reducing the amount of power needed to move the aircraft. Therefore, turbines are more efficient for aircraft propulsion than might be indicated by a simplistic look at the table below.

SFC varies with throttle setting, altitude, climate. For jet engines, air flight speed is an important factor too. Air flight speed counteracts the jet's exhaust speed. (In an artificial and extreme case with the aircraft flying exactly at the exhaust speed, one can easily imagine why the jet's net thrust should be near zero.) Moreover, since work is force (i.e., thrust) times distance, mechanical power is force times speed. Thus, although the nominal SFC is a useful measure of fuel efficiency, it should be divided by speed when comparing engines at different speeds.

For example,Concorde cruised at 1354 mph, or 7.15 million feet per hour, with its engines giving an SFC of 1.195 lb/(lbf·h) (see below); this means the engines transferred 5.98 millionfoot pounds per pound of fuel (17.9 MJ/kg), equivalent to an SFC of 0.50 lb/(lbf·h) for a subsonic aircraft flying at 570 mph, which would be better than even modern engines; theOlympus 593 used in the Concorde was the world's most efficient jet engine.[2][3] However, Concorde ultimately has a heavier airframe and, due to being supersonic, is less aerodynamically efficient, i.e., thelift to drag ratio is far lower. In general, the total fuel burn of a complete aircraft is of far more importance to the customer.

Units

[edit]
This sectionmay beconfusing or unclear to readers. In particular, Unclear what the table is all about. How should it be used? For what should it be used? If it is supposed to state the units for different quantities, then established definitions for unit name, unit symbol, quantity name and so on should be used. See examples inInternational System of Units#Derived units. Please helpclarify the section. There might be a discussion about this onthe talk page.(February 2020) (Learn how and when to remove this message)
Specific impulse
(by weight)
Specific impulse
(by mass)
Effective
exhaust velocity
Specific fuel consumption
SI=X seconds=9.8066X N·s/kg=9.8066X m/s=101,972 (1/X) g/(kN·s) / {g/(kN·s)=s/m}
Imperial units=X seconds=X lbf·s/lb=32.16X ft/s=3,600 (1/X) lb/(lbf·h)

Typical values of SFC for thrust engines

[edit]
Rocket engines invacuum
ModelTypeFirst
run
ApplicationTSFCIsp(by weight)Isp(by mass)
lb/lbf·hg/kN·ssm/s
Avio P80solid fuel2006Vega stage 1133602802700
Avio Zefiro 23solid fuel2006Vega stage 212.52354.7287.52819
Avio Zefiro 9Asolid fuel2008Vega stage 312.20345.4295.22895
Merlin 1Dliquid fuel2013Falcon 9123303103000
RD-843liquid fuel2012Vega upper stage11.41323.2315.53094
Kuznetsov NK-33liquid fuel1970sN-1F,Soyuz-2-1v stage 110.9308331[4]3250
NPO Energomash RD-171Mliquid fuel1985Zenit-2M,-3SL,-3SLB,-3F stage 110.73033373300
LE-7Acryogenic2001H-IIA,H-IIB stage 18.222334384300
Snecma HM-7Bcryogenic1979Ariane 2,3,4,5 ECA upper stage8.097229.4444.64360
LE-5B-2cryogenic2009H-IIA,H-IIB upper stage8.052284474380
Aerojet Rocketdyne RS-25cryogenic1981Space Shuttle,SLS stage 17.95225453[5]4440
Aerojet Rocketdyne RL-10B-2cryogenic1998Delta III,Delta IV,SLS upper stage7.734219.1465.54565
NERVA NRX A6nuclear1967869
Jet engines withReheat, static,sea level
ModelTypeFirst
run
ApplicationTSFCIsp(by weight)Isp(by mass)
lb/lbf·hg/kN·ssm/s
Turbo-Union RB.199turbofanTornado2.5[6]70.8144014120
GE F101-GE-102turbofan1970sB-1B2.4670146014400
Tumansky R-25-300turbojetMIG-21bis2.206[6]62.5163216000
GE J85-GE-21turbojetF-5E/F2.13[6]60.3169016570
GE F110-GE-132turbofanF-16E/F2.09[6]59.2172216890
Honeywell/ITEC F125turbofanF-CK-12.06[6]58.4174817140
Snecma M53-P2turbofanMirage 2000C/D/N2.05[6]58.1175617220
Snecma Atar 09CturbojetMirage III2.03[6]57.5177017400
Snecma Atar 09K-50turbojetMirage IV,50,F11.991[6]56.4180817730
GE J79-GE-15turbojetF-4E/EJ/F/G,RF-4E1.96555.7183217970
Saturn AL-31FturbofanSu-27/P/K1.96[7]55.5183718010
GE F110-GE-129turbofanF-16C/D,F-15EX1.9[6]53.8189518580
Soloviev D-30F6turbofanMiG-31, S-37/Su-471.863[6]52.8193218950
Lyulka AL-21F-3turbojetSu-17, Su-221.86[6]52.7193518980
Klimov RD-33turbofan1974MiG-291.8552.4194619080
Saturn AL-41F-1SturbofanSu-35S/T-10BM1.81951.5197919410
Volvo RM12turbofan1978Gripen A/B/C/D1.78[6]50.4202219830
GE F404-GE-402turbofanF/A-18C/D1.74[6]49207020300
Kuznetsov NK-32turbofan1980Tu-144LL,Tu-1601.748210021000
Snecma M88-2turbofan1989Rafale1.66347.11216521230
Eurojet EJ200turbofan1991Eurofighter1.66–1.7347–49[8]2080–217020400–21300
Dryjet engines, static, sea level
ModelTypeFirst
run
ApplicationTSFCIsp(by weight)Isp(by mass)
lb/lbf·hg/kN·ssm/s
GE J85-GE-21turbojetF-5E/F1.24[6]35.1290028500
Snecma Atar 09CturbojetMirage III1.01[6]28.6356035000
Snecma Atar 09K-50turbojetMirage IV,50,F10.981[6]27.8367036000
Snecma Atar 08K-50turbojetSuper Étendard0.971[6]27.5371036400
Tumansky R-25-300turbojetMIG-21bis0.961[6]27.2375036700
Lyulka AL-21F-3turbojetSu-17, Su-220.8624.4419041100
GE J79-GE-15turbojetF-4E/EJ/F/G,RF-4E0.8524.1424041500
Snecma M53-P2turbofanMirage 2000C/D/N0.85[6]24.1424041500
Volvo RM12turbofan1978Gripen A/B/C/D0.824[6]23.3437042800
RR Turbomeca Adourturbofan1999Jaguarretrofit0.8123440044000
Honeywell/ITEC F124turbofan1979L-159,X-450.81[6]22.9444043600
Honeywell/ITEC F125turbofanF-CK-10.8[6]22.7450044100
PW J52-P-408turbojetA-4M/N,TA-4KU,EA-6B0.7922.4456044700
Saturn AL-41F-1SturbofanSu-35S/T-10BM0.7922.4456044700
Snecma M88-2turbofan1989Rafale0.78222.14460045100
Klimov RD-33turbofan1974MiG-290.7721.8468045800
RR Pegasus 11-61turbofanAV-8B+0.7621.5474046500
Eurojet EJ200turbofan1991Eurofighter0.74–0.8121–23[8]4400–490044000–48000
GE F414-GE-400turbofan1993F/A-18E/F0.724[9]20.5497048800
Kuznetsov NK-32turbofan1980Tu-144LL,Tu-1600.72-0.7320–214900–500048000–49000
Soloviev D-30F6turbofanMiG-31, S-37/Su-470.716[6]20.3503049300
Snecma Larzacturbofan1972Alpha Jet0.71620.3503049300
IHI F3turbofan1981Kawasaki T-40.719.8514050400
Saturn AL-31FturbofanSu-27 /P/K0.666-0.78[7][9]18.9–22.14620–541045300–53000
RR Spey RB.168turbofanAMX0.66[6]18.7545053500
GE F110-GE-129turbofanF-16C/D,F-150.64[9]18560055000
GE F110-GE-132turbofanF-16E/F0.64[9]18560055000
Turbo-Union RB.199turbofanTornado ECR0.637[6]18.0565055400
PW F119-PW-100turbofan1992F-220.61[9]17.3590057900
Turbo-Union RB.199turbofanTornado0.598[6]16.9602059000
GE F101-GE-102turbofan1970sB-1B0.56215.9641062800
PW TF33-P-3turbofanB-52H, NB-52H0.52[6]14.7692067900
RR AE 3007HturbofanRQ-4,MQ-4C0.39[6]11.0920091000
GE F118-GE-100turbofan1980sB-20.375[6]10.6960094000
GE F118-GE-101turbofan1980sU-2S0.375[6]10.6960094000
General Electric CF6-50C2turbofanA300,DC-10-300.371[6]10.5970095000
GE TF34-GE-100turbofanA-100.37[6]10.5970095000
CFM CFM56-2B1turbofanC-135,RC-1350.36[10]101000098000
Progress D-18Tturbofan1980An-124,An-2250.3459.810400102000
PW F117-PW-100turbofanC-170.34[11]9.610600104000
PW PW2040turbofanBoeing 7570.33[11]9.310900107000
CFM CFM56-3C1turbofan737 Classic0.339.311000110000
GE CF6-80C2turbofan744,767,MD-11,A300/310,C-5M0.307-0.3448.7–9.710500–11700103000–115000
EA GP7270turbofanA380-8610.299[9]8.512000118000
GE GE90-85Bturbofan777-200/200ER/3000.298[9]8.4412080118500
GE GE90-94Bturbofan777-200/200ER/3000.2974[9]8.4212100118700
RR Trent 970-84turbofan2003A380-8410.295[9]8.3612200119700
GE GEnx-1B70turbofan787-80.2845[9]8.0612650124100
RR Trent 1000Cturbofan2006787-90.273[9]7.713200129000
Jet engines,cruise
ModelTypeFirst
run
ApplicationTSFCIsp(by weight)Isp(by mass)
lb/lbf·hg/kN·ssm/s
RamjetMach 14.51308007800
J-58turbojet1958SR-71 at Mach 3.2 (Reheat)1.9[6]53.8189518580
RR/Snecma Olympusturbojet1966Concorde at Mach 21.195[12]33.8301029500
PW JT8D-9turbofan737 Original0.8[13]22.7450044100
Honeywell ALF502R-5GTFBAe 1460.72[11]20.4500049000
Soloviev D-30KP-2turbofanIl-76,Il-780.71520.3503049400
Soloviev D-30KU-154turbofanTu-154M0.70520.0511050100
RR Tay RB.183turbofan1984Fokker 70,Fokker 1000.6919.5522051200
GE CF34-3turbofan1982Challenger,CRJ100/2000.6919.5522051200
GE CF34-8EturbofanE170/1750.6819.3529051900
Honeywell TFE731-60GTFFalcon 9000.679[14]19.2530052000
CFM CFM56-2C1turbofanDC-8 Super 700.671[11]19.0537052600
GE CF34-8CturbofanCRJ700/900/10000.67-0.6819–195300–540052000–53000
CFM CFM56-3C1turbofan737 Classic0.66718.9540052900
CFM CFM56-2A2turbofan1974E-3,E-60.66[10]18.7545053500
RR BR725turbofan2008G650/ER0.65718.6548053700
CFM CFM56-2B1turbofanC-135,RC-1350.65[10]18.4554054300
GE CF34-10AturbofanARJ210.6518.4554054300
CFE CFE738-1-1Bturbofan1990Falcon 20000.645[11]18.3558054700
RR BR710turbofan1995G. V/G550,Global Express0.6418560055000
GE CF34-10EturbofanE190/1950.6418560055000
General Electric CF6-50C2turbofanA300B2/B4/C4/F4,DC-10-300.63[11]17.8571056000
PowerJet SaM146turbofanSuperjet LR0.62917.8572056100
CFM CFM56-7B24turbofan737 NG0.627[11]17.8574056300
RR BR715turbofan19977170.6217.6581056900
GE CF6-80C2-B1Fturbofan747-4000.605[12]17.1595058400
CFM CFM56-5A1turbofanA3200.59616.9604059200
Aviadvigatel PS-90A1turbofanIl-96-4000.59516.9605059300
PW PW2040turbofan757-2000.582[11]16.5619060700
PW PW4098turbofan777-3000.581[11]16.5620060800
GE CF6-80C2-B2turbofan7670.576[11]16.3625061300
IAE V2525-D5turbofanMD-900.574[15]16.3627061500
IAE V2533-A5turbofanA321-2310.574[15]16.3627061500
RR Trent 700turbofan1992A3300.562[16]15.9641062800
RR Trent 800turbofan1993777-200/200ER/3000.560[16]15.9643063000
Progress D-18Tturbofan1980An-124,An-2250.54615.5659064700
CFM CFM56-5B4turbofanA320-2140.54515.4661064800
CFM CFM56-5C2turbofanA340-2110.54515.4661064800
RR Trent 500turbofan1999A340-500/6000.542[16]15.4664065100
CFM LEAP-1Bturbofan2014737 MAX0.53-0.5615–166400–680063000–67000
Aviadvigatel PD-14turbofan2014MC-21-3100.52614.9684067100
RR Trent 900turbofan2003A3800.522[16]14.8690067600
GE GE90-85Bturbofan777-200/200ER0.52[11][17]14.7692067900
GE GEnx-1B76turbofan2006787-100.512[13]14.5703069000
PW PW1400GGTFMC-210.51[18]14.4710069000
CFM LEAP-1Cturbofan2013C9190.5114.4710069000
CFM LEAP-1Aturbofan2013A320neo family0.51[18]14.4710069000
RR Trent 7000turbofan2015A330neo0.506[a]14.3711069800
RR Trent 1000turbofan20067870.506[b]14.3711069800
RR Trent XWB-97turbofan2014A350-10000.478[c]13.5753073900
PW 1127GGTF2012A320neo0.463[13]13.1778076300
Civil engines[19]
ModelSL thrustBPROPRSL SFCcruise SFCWeightLayoutcost ($M)Introduction
GE GE9090,000 lbf
400 kN
8.439.30.545 lb/(lbf⋅h)
15.4 g/(kN⋅s)
16,644 lb
7,550 kg
1+3LP 10HP
2HP 6LP
111995
RR Trent71,100–91,300 lbf
316–406 kN
4.89-5.7436.84-42.70.557–0.565 lb/(lbf⋅h)
15.8–16.0 g/(kN⋅s)
10,550–13,133 lb
4,785–5,957 kg
1LP 8IP 6HP
1HP 1IP 4/5LP
11-11.71995
PW400052,000–84,000 lbf
230–370 kN
4.85-6.4127.5-34.20.348–0.359 lb/(lbf⋅h)
9.9–10.2 g/(kN⋅s)
9,400–14,350 lb
4,260–6,510 kg
1+4-6LP 11HP
2HP 4-7LP
6.15-9.441986-1994
RB21143,100–60,600 lbf
192–270 kN
4.3025.8-330.570–0.598 lb/(lbf⋅h)
16.1–16.9 g/(kN⋅s)
7,264–9,670 lb
3,295–4,386 kg
1LP 6/7IP 6HP
1HP 1IP 3LP
5.3-6.81984-1989
GE CF652,500–67,500 lbf
234–300 kN
4.66-5.3127.1-32.40.32–0.35 lb/(lbf⋅h)
9.1–9.9 g/(kN⋅s)
0.562–0.623 lb/(lbf⋅h)
15.9–17.6 g/(kN⋅s)
8,496–10,726 lb
3,854–4,865 kg
1+3/4LP 14HP
2HP 4/5LP
5.9-71981-1987
D-1851,660 lbf
229.8 kN
5.6025.00.570 lb/(lbf⋅h)
16.1 g/(kN⋅s)
9,039 lb
4,100 kg
1LP 7IP 7HP
1HP 1IP 4LP
1982
PW200038,250 lbf
170.1 kN
631.80.33 lb/(lbf⋅h)
9.3 g/(kN⋅s)
0.582 lb/(lbf⋅h)
16.5 g/(kN⋅s)
7,160 lb
3,250 kg
1+4LP 11HP
2HP 5LP
41983
PS-9035,275 lbf
156.91 kN
4.6035.50.595 lb/(lbf⋅h)
16.9 g/(kN⋅s)
6,503 lb
2,950 kg
1+2LP 13HP
2 HP 4LP
1992
IAE V250022,000–33,000 lbf
98–147 kN
4.60-5.4024.9-33.400.34–0.37 lb/(lbf⋅h)
9.6–10.5 g/(kN⋅s)
0.574–0.581 lb/(lbf⋅h)
16.3–16.5 g/(kN⋅s)
5,210–5,252 lb
2,363–2,382 kg
1+4LP 10HP
2HP 5LP
1989-1994
CFM5620,600–31,200 lbf
92–139 kN
4.80-6.4025.70-31.500.32–0.36 lb/(lbf⋅h)
9.1–10.2 g/(kN⋅s)
0.545–0.667 lb/(lbf⋅h)
15.4–18.9 g/(kN⋅s)
4,301–5,700 lb
1,951–2,585 kg
1+3/4LP 9HP
1HP 4/5LP
3.20-4.551986-1997
D-3023,850 lbf
106.1 kN
2.420.700 lb/(lbf⋅h)
19.8 g/(kN⋅s)
5,110 lb
2,320 kg
1+3LP 11HP
2HP 4LP
1982
JT8D21,700 lbf
97 kN
1.7719.20.519 lb/(lbf⋅h)
14.7 g/(kN⋅s)
0.737 lb/(lbf⋅h)
20.9 g/(kN⋅s)
4,515 lb
2,048 kg
1+6LP 7HP
1HP 3LP
2.991986
BR70014,845–19,883 lbf
66.03–88.44 kN
4.00-4.7025.7-32.10.370–0.390 lb/(lbf⋅h)
10.5–11.0 g/(kN⋅s)
0.620–0.640 lb/(lbf⋅h)
17.6–18.1 g/(kN⋅s)
3,520–4,545 lb
1,597–2,062 kg
1+1/2LP 10HP
2HP 2/3LP
1996
D-43616,865 lbf
75.02 kN
4.9525.20.610 lb/(lbf⋅h)
17.3 g/(kN⋅s)
3,197 lb
1,450 kg
1+1L 6I 7HP
1HP 1IP 3LP
1996
RR Tay13,850–15,400 lbf
61.6–68.5 kN
3.04-3.0715.8-16.60.43–0.45 lb/(lbf⋅h)
12–13 g/(kN⋅s)
0.690 lb/(lbf⋅h)
19.5 g/(kN⋅s)
2,951–3,380 lb
1,339–1,533 kg
1+3LP 12HP
2HP 3LP
2.61988-1992
RR Spey9,900–11,400 lbf
44–51 kN
0.64-0.7115.5-18.40.56 lb/(lbf⋅h)
16 g/(kN⋅s)
0.800 lb/(lbf⋅h)
22.7 g/(kN⋅s)
2,287–2,483 lb
1,037–1,126 kg
4/5LP 12HP
2HP 2LP
1968-1969
GE CF349,220 lbf
41.0 kN
210.35 lb/(lbf⋅h)
9.9 g/(kN⋅s)
1,670 lb
760 kg
1F 14HP
2HP 4LP
1996
AE30077,150 lbf
31.8 kN
24.00.390 lb/(lbf⋅h)
11.0 g/(kN⋅s)
1,581 lb
717 kg
ALF502/LF5076,970–7,000 lbf
31.0–31.1 kN
5.60-5.7012.2-13.80.406–0.408 lb/(lbf⋅h)
11.5–11.6 g/(kN⋅s)
0.414–0.720 lb/(lbf⋅h)
11.7–20.4 g/(kN⋅s)
1,336–1,385 lb
606–628 kg
1+2L 7+1HP
2HP 2LP
1.661982-1991
CFE7385,918 lbf
26.32 kN
5.3023.00.369 lb/(lbf⋅h)
10.5 g/(kN⋅s)
0.645 lb/(lbf⋅h)
18.3 g/(kN⋅s)
1,325 lb
601 kg
1+5LP+1CF
2HP 3LP
1992
PW3005,266 lbf
23.42 kN
4.5023.00.391 lb/(lbf⋅h)
11.1 g/(kN⋅s)
0.675 lb/(lbf⋅h)
19.1 g/(kN⋅s)
993 lb
450 kg
1+4LP+1HP
2HP 3LP
1990
JT15D3,045 lbf
13.54 kN
3.3013.10.560 lb/(lbf⋅h)
15.9 g/(kN⋅s)
0.541 lb/(lbf⋅h)
15.3 g/(kN⋅s)
632 lb
287 kg
1+1LP+1CF
1HP 2LP
1983
WI FJ44-4A1,900 lbf
8.5 kN
3.2812.800.456 lb/(lbf⋅h)
12.9 g/(kN⋅s)
0.75 lb/(lbf⋅h)
21 g/(kN⋅s)
445 lb
202 kg
1+1L 1C 1H
1HP 2LP
1992
WI FJ33-5A1,000–1,800 lbf
4.4–8.0 kN
0.486 lb/(lbf⋅h)
13.8 g/(kN⋅s)
300 lb
140 kg
2016

The following table gives the efficiency for several engines when running at 80% throttle, which is approximately what is used in cruising, giving a minimum SFC. The efficiency is the amount of power propelling the plane divided by the rate ofenergy consumption. Since the power equals thrust times speed, the efficiency is given by

η=V/(SFC×h){\displaystyle \eta =V/(SFC\times h)}

where V is speed and h is the energy content per unit mass of fuel (thehigher heating value is used here, and at higher speeds the kinetic energy of the fuel or propellant becomes substantial and must be included).

typical subsonic cruise, 80% throttle, min SFC[20]
Turbofanefficiency
GE9036.1%
PW400034.8%
PW203735.1% (M.87 40K)
PW203733.5% (M.80 35K)
CFM56-230.5%
TFE731-223.4%

See also

[edit]
  • Brake specific fuel consumption – Measure of the fuel efficiency of internal combustion enginesPages displaying short descriptions of redirect targets
  • Energies per unit mass – Energy per volumePages displaying short descriptions of redirect targets
  • Specific impulse – Change in velocity per amount of fuel
  • Vehicle metrics – Metrics that denote the relative capabilities of various vehiclesPages displaying short descriptions of redirect targets

Notes

[edit]
  1. ^10% better than Trent 700
  2. ^10% better than Trent 700
  3. ^15 per cent fuel consumption advantage over the original Trent engine

References

[edit]
  1. ^Specific Fuel Consumption.
  2. ^Supersonic Dream
  3. ^"The turbofan engineArchived 2015-04-18 at theWayback Machine", page 5.SRM Institute of Science and Technology, Department of aerospace engineering
  4. ^"NK33". Encyclopedia Astronautica.
  5. ^"SSME". Encyclopedia Astronautica.
  6. ^abcdefghijklmnopqrstuvwxyzaaabacadaeafagNathan Meier (21 Mar 2005)."Military Turbojet/Turbofan Specifications". Archived fromthe original on 11 February 2021.
  7. ^ab"Flanker".AIR International Magazine. 23 March 2017.
  8. ^ab"EJ200 turbofan engine"(PDF). MTU Aero Engines. April 2016.
  9. ^abcdefghijkKottas, Angelos T.; Bozoudis, Michail N.; Madas, Michael A."Turbofan Aero-Engine Efficiency Evaluation: An Integrated Approach Using VSBM Two-Stage Network DEA"(PDF).doi:10.1016/j.omega.2019.102167.
  10. ^abcÉlodie Roux (2007)."Turbofan and Turbojet Engines: Database Handbook"(PDF). p. 126.ISBN 9782952938013.
  11. ^abcdefghijkNathan Meier (3 Apr 2005)."Civil Turbojet/Turbofan Specifications". Archived fromthe original on 17 August 2021.
  12. ^abIlan Kroo."Data on Large Turbofan Engines".Aircraft Design: Synthesis and Analysis. Stanford University. Archived fromthe original on 11 January 2017.
  13. ^abcDavid Kalwar (2015)."Integration of turbofan engines into the preliminary design of a high-capacity short-and medium-haul passenger aircraft and fuel efficiency analysis with a further developed parametric aircraft design software"(PDF).
  14. ^"Purdue School of Aeronautics and Astronautics Propulsion Web Page - TFE731".
  15. ^abLloyd R. Jenkinson & al. (30 Jul 1999)."Civil Jet Aircraft Design: Engine Data File". Elsevier/Butterworth-Heinemann.
  16. ^abcd"Gas Turbine Engines"(PDF).Aviation Week. 28 January 2008. pp. 137–138.
  17. ^Élodie Roux (2007)."Turbofan and Turbojet Engines: Database Handbook".ISBN 9782952938013.
  18. ^abVladimir Karnozov (August 19, 2019)."Aviadvigatel Mulls Higher-thrust PD-14s To Replace PS-90A".AIN Online.
  19. ^Lloyd R. Jenkinson; et al. (30 Jul 1999)."Civil Jet Aircraft Design: Engine Data File". Elsevier/Butterworth-Heinemann.
  20. ^Ilan Kroo."Specific Fuel Consumption and Overall Efficiency".Aircraft Design: Synthesis and Analysis. Stanford University. Archived fromthe original on November 24, 2016.

External links

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Thrust-specific_fuel_consumption&oldid=1311964369"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp