Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Thionyl chloride

From Wikipedia, the free encyclopedia
Inorganic compound (SOCl2)
Thionyl chloride
Ball-and-stick model of thionyl chloride
Ball-and-stick model of thionyl chloride
Names
IUPAC name
Thionyl chloride
Other names
  • Thionyl dichloride
  • Sulfurous oxychloride
  • Sulfinyl chloride
  • Sulfinyl dichloride
  • Dichlorosulfoxide
  • Sulfur oxide dichloride
  • Sulfur monoxide dichloride
  • Sulfuryl(IV) chloride
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard100.028.863Edit this at Wikidata
EC Number
  • 231-748-8
RTECS number
  • XM5150000
UNII
UN number1836
  • InChI=1S/Cl2OS/c1-4(2)3 checkY
    Key: FYSNRJHAOHDILO-UHFFFAOYSA-N checkY
  • InChI=1/Cl2OS/c1-4(2)3
    Key: FYSNRJHAOHDILO-UHFFFAOYAN
  • ClS(Cl)=O
Properties
SOCl2
Molar mass118.97 g/mol
AppearanceColourless liquid (yellows on ageing)
OdorPungent and unpleasant
Density1.638 g/cm3, liquid
Melting point−104.5 °C (−156.1 °F; 168.7 K)
Boiling point74.6 °C (166.3 °F; 347.8 K)
Reacts
SolubilitySoluble in most aprotic solvents:toluene,chloroform,diethyl ether. Reacts with protic solvents such as alcohols
Vapor pressure
  • 384 Pa (−40 °C)
  • 4.7 kPa (0 °C)
  • 15.7 kPa (25 °C)[1]
1.517 (20 °C)[2]
Viscosity0.6 cP
Structure
Cs
pyramidal
1.44 D
Thermochemistry
121.0 J/mol (liquid)[3]
309.8 kJ/mol (gas)[3]
−245.6 kJ/mol (liquid)[3]
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Very toxic, corrosive, releasesHCl on contact with water
GHS labelling:
GHS05: CorrosiveGHS07: Exclamation markGHS06: Toxic
Danger
H302,H314,H331
P261,P280,P305+P351+P338,P310
NFPA 704 (fire diamond)
Flash pointNon-flammable
NIOSH (US health exposure limits):
PEL (Permissible)
None[4]
REL (Recommended)
C 1 ppm (5 mg/m3)[4]
IDLH (Immediate danger)
N.D.[4]
Related compounds
Related Thionyl halides
Related compounds
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)
Chemical compound

Thionyl chloride is aninorganic compound with thechemical formulaSOCl2. It is a moderatelyvolatile, colourless liquid with an unpleasant acrid odour. Thionyl chloride is primarily used as achlorinating reagent, with approximately 45,000 tonnes (50,000 short tons) per year being produced during the early 1990s,[5] but is occasionally also used as a solvent.[6][7][8] It is toxic, reacts with water, and is alsolisted under theChemical Weapons Convention as it may be used for the production ofchemical weapons.

Thionyl chloride is sometimes confused withsulfuryl chloride,SO2Cl2, but the properties of these compounds differ significantly. Sulfuryl chloride is a source ofchlorine whereas thionyl chloride is a source ofchloride ions.

Production

[edit]

The major industrial synthesis involves the reaction ofsulfur trioxide andsulfur dichloride.[9] This synthesis can be adapted to the laboratory by heating oleum to slowly distill the sulfur trioxide into a cooled flask of sulfur dichloride.[10]

SO3 + SCl2 → SOCl2 + SO2

Other methods include syntheses from:

SO2 + PCl5 → SOCl2 + POCl3
SO2 + Cl2 + SCl2 → 2 SOCl2
SO3 + Cl2 + 2SCl2 → 3 SOCl2
SO2 + COCl2 → SOCl2 + CO2

The second of the above five reactions also affordsphosphorus oxychloride (phosphoryl chloride), which resembles thionyl chloride in many of its reactions. They may be separated by distillation, since thionyl chloride boils at a much lower temperature than phosphoryl chloride.[citation needed]

Properties and structure

[edit]
Crystal structure of solid SOCl2

SOCl2 adopts atrigonal pyramidal molecular geometry with Csmolecular symmetry. This geometry is attributed to the effects of thelone pair on the central sulfur(IV) center.

In the solid state SOCl2 formsmonoclinic crystals with thespace group P21/c.[11]

Stability

[edit]

Thionyl chloride has a long shelf life, however "aged" samples develop a yellow hue, possibly due to the formation ofdisulfur dichloride. It slowlydecomposes toS2Cl2,SO2 andCl2 at just above the boiling point.[9][12] Thionyl chloride is susceptible tophotolysis, which primarily proceeds via a radical mechanism.[13] Samples showing signs of ageing can be purified by distillation under reduced pressure, to give a colourless liquid.[14]

Impure thionyl chloride, appearing slightly yellow

Reactions

[edit]

Thionyl chloride is mainly used in the industrial production oforganochlorine compounds, which are often intermediates in pharmaceuticals and agrochemicals. It usually is preferred over other reagents, such asphosphorus pentachloride, as its by-products (HCl andSO2) are gaseous, which simplifies purification of the product.

Many of the products of thionyl chloride are themselves highly reactive and as such it is involved in a wide range of reactions.

With water and alcohols

[edit]

Thionyl chloride reacts exothermically with water to formsulfur dioxide andhydrochloric acid:

SOCl2 + H2O → 2 HCl + SO2

By a similar process it also reacts withalcohols to formalkyl chlorides. If the alcohol ischiral the reaction generally proceeds via anSNi mechanism with retention of stereochemistry;[15] however, depending on the exact conditions employed, stereo-inversion can also be achieved. Historically the use ofSOCl2 withpyridine was called theDarzens halogenation, but this name is rarely used by modern chemists.

Conversion of a secondary alcohol to a chloroalkane by thionyl chloride

Reactions with an excess of alcohol producesulfite esters, which can be powerfulmethylation,alkylation and hydroxyalkylation reagents.[16]

SOCl2 + 2 R−OH → (R−O)2SO + 2 HCl

For example, the addition ofSOCl2 toamino acids in methanol selectively yields the corresponding methyl esters.[17]

With carboxylic acids

[edit]

Classically, it convertscarboxylic acids toacyl chlorides:[18][19][20]

SOCl2 + R−COOH → R−COCl + SO2 + HCl

The reaction mechanism has been investigated:[21]

With nitrogen species

[edit]

With primary amines, thionyl chloride givessulfinylamine derivatives (RNSO), one example beingN-sulfinylaniline. Thionyl chloride reacts with primaryformamides to formisocyanides[22] and with secondary formamides to give chloroiminium ions; as such a reaction withdimethylformamide will form theVilsmeier reagent.[23]

By an analogous process, secondaryamides will react with thionyl chloride to formimidoyl chlorides, with tertiary amides giving chloroiminium ions. These species are highly reactive and can be used to catalyse the conversion of carboxylic acids to acyl chlorides;[24] they are also exploited in theBischler–Napieralski reaction as a means of formingisoquinolines.

Primary amides will continue on to formnitriles if heated (Von Braun amide degradation).[25]

Thionyl chloride has also been used to promote theBeckmann rearrangement ofoximes.

With sulfur species

[edit]

With phosphorus species

[edit]

Thionyl chloride convertsphosphonic acids andphosphonates intophosphoryl chlorides. It is for this type of reaction that thionyl chloride is listed as aSchedule 3 compound, as it can be used in the "di-di" method of producing G-seriesnerve agents. For example, thionyl chloride convertsdimethyl methylphosphonate intomethylphosphonic acid dichloride, which can be used in the production ofsarin andsoman.

With metals

[edit]

AsSOCl2 reacts with water it can be used to dehydrate various metal chloride hydrates, suchmagnesium chloride (MgCl2·6H2O),aluminium chloride (AlCl3·6H2O), andiron(III) chloride (FeCl3·6H2O).[9] This conversion involves treatment with refluxing thionyl chloride and follows the following general equation:[31]

MCln•xH2O + SOCl2 → MCln + x SO2 + 2x HCl

If an excess ofSOCl2 is used to dehydrate aluminium trichloride, it will form an adduct (1 molecule of thionyl chloride for each molecule of the aluminium trichloride dimer).

Other reactions

[edit]
  • Thionyl chloride can engage in a range of different electrophilic addition reactions. It adds to alkenes in the presence ofAlCl3 to form an aluminium complex which can be hydrolysed to form asulfinic acid. Both aryl sulfinyl chlorides and diaryl sulfoxides can be prepared from arenes through reaction with thionyl chloride intriflic acid[32] or the presence of catalysts such asBiCl3,Bi(OTf)3,LiClO4 orNaClO4.[33][34]
  • In the laboratory, a reaction between thionyl chloride and an excess ofanhydrous alcohol can be used to produce anhydrous alcoholic solutions ofHCl.
  • Thionyl chloride undergoes halogen exchange reactions to give other thionyl species.
Reactions with fluorinating agents such asantimony trifluoride givethionyl fluoride:
3 SOCl2 + 2 SbF3 → 3 SOF2 + 2 SbCl3
A reaction withhydrogen bromide givesthionyl bromide:
SOCl2 + 2 HBr → SOBr2 + 2 HCl
Thionyl iodide can likewise be prepared by a reaction with potassium iodide, but is reported to be highly unstable.[35][36]

Batteries

[edit]
A selection of lithium–thionyl chloride batteries

Thionyl chloride is a component of lithium–thionyl chloridebatteries,[37] where it acts as the positive electrode (in batteries:cathode) withlithium forming the negative electrode (anode); theelectrolyte is typicallylithium tetrachloroaluminate. The overall discharge reaction is as follows:

4 Li + 2 SOCl2 → 4 LiCl +18S8 + SO2

These non-rechargeable batteries have advantages over other forms of lithium batteries such as a high energy density, a wide operational temperature range, and long storage and operational lifespans. However, their high cost, non-rechargeability, and safety concerns have limited their use. The contents of the batteries are very corrosive, theSO2 is toxic by inhalation, and the batteries therefore require special disposal procedures; additionally, they may explode if shorted. The technology was used on the 1997Sojourner Mars rover.

Safety

[edit]

SOCl2 is highly reactive, releasing hydrochloric acid and sulfur dioxide upon contact with water and alcohols. Inhalation can causepulmonary edema.[38] It is also a controlled substance under theChemical Weapons Convention, where it is listed as aSchedule 3 substance, since it is used in the manufacture of G-seriesnerve agents[citation needed] and the Meyer and Meyer–Clarke methods of producingsulfur-based mustard gases.[39]

History

[edit]

In 1849, the French chemistsJean-François Persoz and Bloch, and the German chemist Peter Kremers (1827–?), independently first synthesized thionyl chloride by reactingphosphorus pentachloride withsulfur dioxide.[40][41] However, their products were impure: both Persoz and Kremers claimed that thionyl chloride contained phosphorus,[42] and Kremers recorded its boiling point as 100 °C (instead of 74.6 °C). In 1857, the German-Italian chemistHugo Schiff subjected crude thionyl chloride to repeated fractional distillations and obtained a liquid which boiled at 82 °C and which he calledThionylchlorid.[43] In 1859, the German chemistGeorg Ludwig Carius noted that thionyl chloride could be used to makeacid anhydrides andacyl chlorides fromcarboxylic acids and to makealkyl chlorides fromalcohols.[44]

See also

[edit]

References

[edit]
  1. ^Thionyl chloride in Linstrom, Peter J.; Mallard, William G. (eds.);NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg (MD) (retrieved 2014-05-11)
  2. ^Patnaik, Pradyot (2003).Handbook of Inorganic Chemicals. New York, NY: McGraw-Hill.ISBN 0-07-049439-8.
  3. ^abcLide, David R.; et al., eds. (1996).CRC Handbook of Chemistry and Physics (76th ed.). Boca Raton, FL: CRC Press. pp. 5–10.ISBN 0-8493-0476-8.
  4. ^abcNIOSH Pocket Guide to Chemical Hazards."#0611".National Institute for Occupational Safety and Health (NIOSH).
  5. ^Lauss, H.-D.; Steffens, W. "Sulfur Halides".Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.doi:10.1002/14356007.a25_623.ISBN 978-3-527-30673-2.
  6. ^Oka, Kitaro (1981). "Some Applications of Thionyl Chloride in Synthetic Organic Chemistry".Synthesis.1981 (9):661–681.doi:10.1055/s-1981-29563.S2CID 94917739.
  7. ^Calderazzo, Fausto; Dell'Amico, Daniela Belli (April 1981). "Syntheses of carbonyl halides of late transition elements in thionyl chloride as solvent. Carbonyl complexes of palladium(II)".Inorganic Chemistry.20 (4):1310–1312.doi:10.1021/ic50218a072.
  8. ^Garber, E. B.; Pease, L. E. D.; Luder, W. F. (20 April 1953). "Titration of Aprotic Acids in Thionyl Chloride".Analytical Chemistry.25 (4):581–583.doi:10.1021/ac60076a012.
  9. ^abcGreenwood, Norman N.; Earnshaw, Alan (1997).Chemistry of the Elements (2nd ed.).Butterworth-Heinemann. p. 694.doi:10.1016/C2009-0-30414-6.ISBN 978-0-08-037941-8.
  10. ^Brauer, George (1963).Handbook of Preparative Inorganic Chemistry. pp. 382–383.doi:10.1016/B978-0-12-395590-6.50015-6.
  11. ^Mootz, D.; Merschenz-Quack, A. (15 May 1988)."Structures of thionyl halides: SOCl2 and SOBr2"(PDF).Acta Crystallographica Section C.44 (5):926–927.Bibcode:1988AcCrC..44..926M.doi:10.1107/S010827018800085X.
  12. ^Brauer, Georg, ed. (1963).Handbook of Preparative Inorganic Chemistry. Vol. 1. Translated by Scripta Technica; Reed, F. (2nd ed.). New York, NY: Academic Press. p. 383.ISBN 978-0121266011.{{cite book}}:ISBN / Date incompatibility (help)
  13. ^Donovan, R. J.; Husain, D.; Jackson, P. T. (1969). "Spectroscopic and kinetic studies of the SO radical and the photolysis of thionyl chloride".Transactions of the Faraday Society.65: 2930.doi:10.1039/TF9696502930.
  14. ^Friedman, L.; Wetter, W. P. (1967). "Purification of thionyl chloride".Journal of the Chemical Society A: Inorganic, Physical, Theoretical: 36.doi:10.1039/J19670000036.
  15. ^Smith, Michael B.;March, Jerry (2007),Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (6th ed.), New York: Wiley-Interscience, p. 469,ISBN 978-0-471-72091-1
  16. ^Van Woerden, H. F. (1963). "Organic Sulfites".Chemical Reviews.63 (6):557–571.doi:10.1021/cr60226a001.
  17. ^Brenner, M.; Huber, W. (1953). "Herstellung von α-Aminosäureestern durch Alkoholyse der Methylester" [Manufacture of α-amino acid esters by alcoholysis of methyl esters].Helvetica Chimica Acta (in German).36 (5):1109–1115.doi:10.1002/hlca.19530360522.
  18. ^Clayden, Jonathan; Greeves, Nick;Warren, Stuart;Wothers, Peter (2001).Organic Chemistry (1st ed.). Oxford University Press. p. 295.ISBN 978-0-19-850346-0.
  19. ^Allen, C. F. H.; Byers, J. R. Jr; Humphlett, W. J. (1963)."Oleoyl chloride".Organic Syntheses;Collected Volumes, vol. 4, p. 739.
  20. ^Rutenberg, M. W.; Horning, E. C. (1963)."1-Methyl-3-ethyloxindole".Organic Syntheses;Collected Volumes, vol. 4, p. 620.
  21. ^Clayden, Jonathan; Greeves, Nick;Warren, Stuart;Wothers, Peter (2001).Organic Chemistry (1st ed.). Oxford University Press.ISBN 978-0-19-850346-0.
  22. ^Niznik, G. E.; Morrison, W. H., III; Walborsky, H. M. (1988)."1-d-Aldehydes from organometallic reagents: 2-methylbutanal-1-d".Organic Syntheses{{cite journal}}: CS1 maint: multiple names: authors list (link);Collected Volumes, vol. 6, p. 751.
  23. ^Arrieta, A.; Aizpurua, J. M.; Palomo, C. (1984). "N,N-Dimethylchlorosulfitemethaniminium chloride (SOCl2-DMF) a versatile dehydrating reagent".Tetrahedron Letters.25 (31):3365–3368.doi:10.1016/S0040-4039(01)81386-1.
  24. ^Clayden, J. (2001).Organic Chemistry. Oxford: Oxford University Press. pp. 276–296.ISBN 0-19-850346-6.
  25. ^Krynitsky, J. A.; Carhart, H. W. (1963)."2-Ethylhexanonitrile".Organic Syntheses;Collected Volumes, vol. 4, p. 436.
  26. ^Hulce, M.; Mallomo, J. P.; Frye, L. L.; Kogan, T. P.; Posner, G. H. (1990)."(S)-(+)-2-(p-toluenesulfinyl)-2-cyclopentenone: Precursor for enantioselective synthesis of 3-substituted cyclopentanones".Organic Syntheses;Collected Volumes, vol. 7, p. 495.
  27. ^Kurzer, F. (1963)."p-Toluenesulfinyl chloride".Organic Syntheses;Collected Volumes, vol. 4, p. 937.
  28. ^Weinreb, S. M.; Chase, C. E.; Wipf, P.; Venkatraman, S. (2004)."2-Trimethylsilylethanesulfonyl chloride (SES-Cl)".Organic Syntheses;Collected Volumes, vol. 10, p. 707.
  29. ^Hazen, G. G.; Bollinger, F. W.; Roberts, F. E.; Russ, W. K.; Seman, J. J.; Staskiewicz, S. (1998)."4-Dodecylbenzenesulfonyl azides".Organic Syntheses;Collected Volumes, vol. 9, p. 400.
  30. ^Hogan, P. J.; Cox, B. G. (2009). "Aqueous Process Chemistry: The Preparation of Aryl Sulfonyl Chlorides".Organic Process Research & Development.13 (5):875–879.doi:10.1021/op9000862.
  31. ^Pray, A. R.; Heitmiller, R. F.; Strycker, S.; Aftandilian, V. D.; Muniyappan, T.; Choudhury, D.; Tamres, M. (1990). "Anhydrous Metal Chlorides".Inorganic Syntheses. Vol. 28. pp. 321–323.doi:10.1002/9780470132593.ch80.ISBN 978-0-470-13259-3.
  32. ^Smith, Michael B.;March, Jerry (2007),Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (6th ed.), New York: Wiley-Interscience, p. 697,ISBN 978-0-471-72091-1
  33. ^Peyronneau, M.; Roques, N.; Mazières, S.; Le Roux, C. (2003). "Catalytic Lewis Acid Activation of Thionyl Chloride: Application to the Synthesis of Aryl Sulfinyl Chlorides Catalyzed by Bismuth(III) Salts".Synlett (5):0631–0634.doi:10.1055/s-2003-38358.
  34. ^Bandgar, B. P.; Makone, S. S. (2004). "Lithium/Sodium Perchlorate Catalyzed Synthesis of Symmetrical Diaryl Sulfoxides".Synthetic Communications.34 (4):743–750.doi:10.1081/SCC-120027723.S2CID 96348273.
  35. ^Rao, M. R. Aswathanarayana (March 1940). "Thionyl iodide: Part I. Formation of thionyl iodide".Proceedings of the Indian Academy of Sciences - Section A.11 (3):185–200.doi:10.1007/BF03046547.S2CID 104552644.
  36. ^Rao, M. R. Aswathanarayana (March 1940). "Thionyl iodide: Part II. Rate of decomposition and spectroscopic".Proceedings of the Indian Academy of Sciences - Section A.11 (3):201–205.doi:10.1007/BF03046548.S2CID 104752226.
  37. ^Gangadharan, R.; Namboodiri, P.N.N.; Prasad, K.V.; Viswanathan, R. (January 1979). "The lithium—thionyl chloride battery — a review".Journal of Power Sources.4 (1):1–9.Bibcode:1979JPS.....4....1G.doi:10.1016/0378-7753(79)80032-4.
  38. ^Thionyl chloride, International Chemical Safety Card 1409, Geneva: International Programme on Chemical Safety
  39. ^Institute of Medicine (1993). "Chapter 5: Chemistry of Sulfur Mustard and Lewisite".Veterans at Risk: The Health Effects of Mustard Gas and Lewisite. The National Academies Press.ISBN 0-309-04832-X.
  40. ^See:
  41. ^Kremers, P. (1849)."Ueber schwefligsaures Phosphorchlorid" [On sulfurous phosphorus pentachloride].Annalen der Chemie und Pharmacie (in German).70 (3):297–300.doi:10.1002/jlac.18490700311.
  42. ^The German chemistGeorg Ludwig Carius noted that, when the reaction mixture that produced thionyl chloride was distilled, the crude mixture initially released substantial quantities of gas, so thatphosphoryl chloride (POCl3) was carried into the receiver.Carius, L. (1859)."Ueber die Chloride des Schwefels und deren Derivate" [On sulfur chloride and its derivatives].Annalen der Chemie und Pharmacie (in German).111:93–113.doi:10.1002/jlac.18591110111. From p. 94:" … dabei ist jedoch die Vorsicht zu gebrauchen, … und nie reines Chlorthionyl erhalten wird." ( … however, during that [i.e., the fractional distillation], caution must be used, [so] that one carefully avoids a concentration of hydrogen chloride or excess sulfurous acid in the liquid that is to be distilled, as otherwise, by the evolution of gas that occurs at the start of the distillation, much phosphoryl chloride is transferred and pure thionyl chloride is never obtained.)
  43. ^Schiff, Hugo (1857)."Ueber die Einwirkung des Phosphorsuperchlorids auf einige anorganische Säuren" [On the reaction of phosphorus pentachloride with some inorganic acids].Annalen der Chemie und Pharmacie (in German).102:111–118.doi:10.1002/jlac.18571020116. The boiling point of thionyl chloride which Schiff observed, appears on p. 112. The nameThionylchlorid is coined on p. 113.
  44. ^Carius, L. (1859)."Ueber die Chloride des Schwefels und deren Derivate" [On sulfur chloride and its derivatives].Annalen der Chemie und Pharmacie (in German).111:93–113.doi:10.1002/jlac.18591110111. On p. 94, Carius notes that thionyl chloride can be" … mit Vortheil zur Darstellung wasserfreier Säuren verwenden." ( … used advantageously for the preparation of acid anhydrides.) Also on p. 94, Carius shows chemical equations in which thionyl chloride is used to transformbenzoic acid (OC7H5OH) intobenzoyl chloride (ClC7H5O) and to transformsodium benzoate intobenzoic anhydride. On p. 96, he mentions that thionyl chloride will transformmethanol intomethyl chloride (Chlormethyl). Thionyl chloride behaves likephosphoryl chloride: from pp. 94-95:"Die Einwirkung des Chlorthionyls … die Reaction des Chlorthionyls weit heftiger statt." (The reaction of thionyl chloride with [organic] substances containing oxygen proceeds in general parallel to that of phosphoryl chloride; where the latter exerts an effect, thionyl chloride usually does so also, only in nearly all cases the reaction occurs far more vigorously.)
Blood agents
Blister agents
Arsenicals
Sulfur mustards
Nitrogen mustards
Nettle agents
Other
Nerve agents
G-agents
V-agents
GV agents
Novichok agents
Carbamates
Other
Precursors
Neurotoxins
Pulmonary/
choking agents
Vomiting agents
Incapacitating
agents
Lachrymatory
agents
Malodorant agents
Cornea-clouding agents
Biological toxins
Tumor promoting agents
Other
Sulfides and
disulfides
Sulfurhalides
Sulfuroxides
andoxyhalides
Sulfites
Sulfates
Sulfurnitrides
Thiocyanates
Polythionates
Organic compounds
Thiol
Organic sulfide
Heterocycles
Sulfonium
Disulfide
Heterocycles
Trisulfide
Thiosulfinate
Sulfinic acid
Sulfone
Sulfonate
Organic thiocyanates
Retrieved from "https://en.wikipedia.org/w/index.php?title=Thionyl_chloride&oldid=1328591224"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp