Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Thermoproteota

From Wikipedia, the free encyclopedia
Phylum of archaea

Thermoproteota
ArchaeaSulfolobus infected with specific virusSTSV-1.
Scientific classificationEdit this classification
Domain:Archaea
Kingdom:Thermoproteati
Phylum:Thermoproteota
Garrity & Holt 2021[1]
Classes
  • "Culexarchaeia"
  • Methanosuratincolia
  • Methanonezhaarchaeia
  • Thermoprotei
Synonyms
  • "Crenarchaeota"Garrity and Holt 2001
  • "Culexarchaeota"Kohtz et al. 2022
  • "Gearchaeota"corrig. Kozubal et al. 2013
  • "Martarchaeota"corrig. Jay et al. 2018
  • "Methanonezhaarchaeia"Kohtz et al. 2025
  • "Thermoproteaeota"Oren et al. 2015
  • "Thermoproteota"Whitman et al. 2018
  • "Methanosuratincolia"Kohtz et al. 2024

TheThermoproteota arearchaea that have been classified as aphylum of the domainArchaea.[2][3][4] Initially, the Thermoproteota were thought to be sulfur-dependentextremophiles but recent studies have identified characteristic Thermoproteota environmentalrRNA indicating the organisms may be the most abundant archaea in the marine environment.[5] Originally, they were separated from the other archaea based on rRNA sequences; other physiological features, such as lack ofhistones, have supported this division, although some crenarchaea were found to have histones.[6] Until 2005 all cultured Thermoproteota had been thermophilic or hyperthermophilic organisms, some of which have the ability to grow at up to 113 °C.[7] These organisms stainGram negative and are morphologically diverse, having rod,cocci,filamentous and oddly-shaped cells.[8] Recent evidence shows that some members of the Thermoproteota are methanogens.

Thermoproteota were initially classified as a part ofregnumEocyta in 1984,[9] but this classification has been discarded. The term "eocyte" now applies to eitherTACK (formerly Crenarchaeota) or to Thermoproteota.

Sulfolobus

[edit]

One of the best characterized members of the Crenarchaeota isSulfolobus solfataricus. This organism was originally isolated fromgeothermally heated sulfuric springs in Italy, and grows at 80 °C and pH of 2–4.[10] Since its initial characterization by Wolfram Zillig, a pioneer in thermophile and archaean research, similar species in the samegenus have been found around the world. Unlike the vast majority of cultured thermophiles,Sulfolobus growsaerobically andchemoorganotrophically (gaining its energy from organic sources such as sugars). These factors allow a much easier growth under laboratory conditions thananaerobic organisms and have led toSulfolobus becoming a model organism for the study of hyperthermophiles and a large group of diverse viruses that replicate within them.

16S rRNA basedLTP_06_2022[11][12][13]53 marker proteins basedGTDB 10-RS226[14][15][16]
"Korarchaeota"
"Korarchaeia"

"Korarchaeales"

Promethearchaeati

Promethearchaeota

Thermoproteota
"BAT"
"Bathyarchaeia"

"Bifangarchaeales" [B24]

"Xuanwuarculales" [RBG-16-48-13]

"Hecatellales" [B25]

"Houtuarculales" [40CM-2-53-6]

"Wuzhiqiibiales" [TCS64]

"Zhuquarculales" [EX4484-135]

"Bathyarchaeales" [B26-1]

(MCG)
Nitrososphaeria_A

"Caldarchaeales"

Nitrososphaeria

"Geothermarchaeales"

PSMU01

Conexivisphaerales

Nitrososphaerales

"Sulfobacteria"
Methanosuratincolia
"Thermoproteia"

"Gearchaeales"

Thermofilales

Thermoproteales

"Sulfolobia"

Recombinational repair of DNA damage

[edit]

Irradiation ofS. solfataricus cells withultraviolet light strongly induces formation oftype IV pili that can then promote cellular aggregation.[17] Ultraviolet light-induced cellular aggregation was shown by Ajon et al.[18] to mediate high frequency inter-cellularchromosome marker exchange. Cultures that were ultraviolet light-induced had recombination rates exceeding those of uninduced cultures by as much as three orders of magnitude.S. solfataricus cells are only able to aggregate with other members of their own species.[18] Frols et al.[17][19] and Ajon et al.[18] considered that the ultraviolet light-inducible DNA transfer process, followed byhomologous recombinational repair ofdamaged DNA, is an important mechanism for promoting chromosome integrity.

This DNA transfer process can be regarded as a primitive form ofsexual interaction.

Marine species

[edit]

Beginning in 1992, data were published that reported sequences of genes belonging to the Thermoproteota in marine environments.[20][21] Since then, analysis of the abundantlipids from the membranes of Thermoproteota taken from the open ocean have been used to determine the concentration of these “low temperature Crenarchaea” (SeeTEX-86). Based on these measurements of their signature lipids, Thermoproteota are thought to be very abundant and one of the main contributors to thefixation of carbon .[22] DNA sequences from Thermoproteota have also been found in soil and freshwater environments, suggesting that this phylum is ubiquitous to most environments.[23]

In 2005, evidence of the first cultured “low temperature Crenarchaea” was published. NamedNitrosopumilus maritimus, it is anammonia-oxidizing organism isolated from a marine aquarium tank and grown at 28 °C.[24]

Possible connections with eukaryotes

[edit]
Main articles:Eocyte hypothesis andTwo-domain system

The research abouttwo-domain system of classification has paved the possibilities of connections betweencrenarchaea andeukaryotes.[25]

DNA analysis from 2008 (and later, 2017) has shown that eukaryotes evolved from thermoproteota-like organisms. Other candidates for the ancestor of eukaryotes include closely relatedasgards. This could suggest that eukaryotic organisms possibly evolved fromprokaryotes.

These results are similar to theeocyte hypothesis of 1984, proposed byJames A. Lake.[9] The classification according to Lake, states that both crenarchaea and asgards belong to Kingdom Eocyta. Though this has been discarded by scientists, the main concept remains. The term "Eocyta" now either refers to theTACK group or to Phylum Thermoproteota itself.

However, the topic is highly debated and research is still going on.

See also

[edit]

References

[edit]
  1. ^Oren A, Garrity GM (Oct 2021)."Valid publication of the names of forty-two phyla of prokaryotes".International Journal of Systematic and Evolutionary Microbiology.71 (10): 5056.doi:10.1099/ijsem.0.005056.PMID 34694987.S2CID 239887308.
  2. ^See theNCBIwebpage on Crenarchaeota
  3. ^C.Michael Hogan. 2010.Archaea. eds. E.Monosson & C.Cleveland, Encyclopedia of Earth. National Council for Science and the Environment, Washington DC.
  4. ^Data extracted from the"NCBI taxonomy resources".National Center for Biotechnology Information. Retrieved2007-03-19.
  5. ^M M, ed. (2005).Brock Biology of Microorganisms (11th ed.). Prentice Hall.ISBN 978-0-13-144329-7.
  6. ^Cubonova L, Sandman K, Hallam SJ, Delong EF, Reeve JN (Aug 2005)."Histones in Crenarchaea".Journal of Bacteriology.187 (15):5482–5485.doi:10.1128/JB.187.15.5482-5485.2005.PMC 1196040.PMID 16030242.
  7. ^Blochl E, Rachel R, Burggraf S, Hafenbradl D, Jannasch HW, Stetter KO (Feb 1997). "Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 °C".Extremophiles: Life Under Extreme Conditions.1 (1):14–21.doi:10.1007/s007920050010.PMID 9680332.S2CID 29789667.
  8. ^Garrity GM, Boone DR, eds. (2001).Bergey's Manual of Systematic Bacteriology Volume 1: The Archaea and the Deeply Branching and Phototrophic Bacteria (2nd ed.). Springer.ISBN 978-0-387-98771-2.
  9. ^abLake JA, Henderson E, Oakes M, Clark MW (June 1984)."Eocytes: a new ribosome structure indicates a kingdom with a close relationship to eukaryotes".Proceedings of the National Academy of Sciences of the United States of America.81 (12):3786–3790.Bibcode:1984PNAS...81.3786L.doi:10.1073/pnas.81.12.3786.PMC 345305.PMID 6587394.
  10. ^Zillig W, Stetter KO, Wunderl S, Schulz W, Priess H, Scholz I (1980). "The Sulfolobus-"Caldariellard" group: Taxonomy on the basis of the structure of DNA-dependent RNA polymerases".Arch. Microbiol.125 (3):259–269.Bibcode:1980ArMic.125..259Z.doi:10.1007/BF00446886.S2CID 5805400.
  11. ^"The LTP". Retrieved10 May 2023.
  12. ^"LTP_all tree in newick format". Retrieved10 May 2023.
  13. ^"LTP_06_2022 Release Notes"(PDF). Retrieved10 May 2023.
  14. ^"GTDB release 10-RS226".Genome Taxonomy Database. Retrieved1 May 2025.
  15. ^"ar53_r226.sp_label".Genome Taxonomy Database. Retrieved1 May 2025.
  16. ^"Taxon History".Genome Taxonomy Database. Retrieved1 May 2025.
  17. ^abFröls S, Ajon M, Wagner M, Teichmann D, Zolghadr B, Folea M, et al. (November 2008). "UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by pili formation".Molecular Microbiology.70 (4):938–952.doi:10.1111/j.1365-2958.2008.06459.x.PMID 18990182.
  18. ^abcAjon M, Fröls S, van Wolferen M, Stoecker K, Teichmann D, Driessen AJ, et al. (November 2011). "UV-inducible DNA exchange in hyperthermophilic archaea mediated by type IV pili".Molecular Microbiology.82 (4):807–817.doi:10.1111/j.1365-2958.2011.07861.x.PMID 21999488.
  19. ^Fröls S, White MF, Schleper C (February 2009). "Reactions to UV damage in the model archaeon Sulfolobus solfataricus".Biochemical Society Transactions.37 (Pt 1):36–41.doi:10.1042/BST0370036.PMID 19143598.
  20. ^Fuhrman JA, McCallum K, Davis AA (Mar 1992). "Novel major archaebacterial group from marine plankton".Nature.356 (6365):148–149.Bibcode:1992Natur.356..148F.doi:10.1038/356148a0.PMID 1545865.S2CID 4342208.
  21. ^DeLong EF (Jun 1992)."Archaea in coastal marine environments".Proceedings of the National Academy of Sciences of the United States of America.89 (12):5685–5689.Bibcode:1992PNAS...89.5685D.doi:10.1073/pnas.89.12.5685.PMC 49357.PMID 1608980.
  22. ^"Thermoproteota Garrity & Holt, 2021".www.gbif.org. Retrieved2025-06-20.
  23. ^Barns SM, Delwiche CF, Palmer JD, Pace NR (Aug 1996)."Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences".Proceedings of the National Academy of Sciences of the United States of America.93 (17):9188–9193.Bibcode:1996PNAS...93.9188B.doi:10.1073/pnas.93.17.9188.PMC 38617.PMID 8799176.
  24. ^Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (Sep 2005). "Isolation of an autotrophic ammonia-oxidizing marine archaeon".Nature.437 (7058):543–546.Bibcode:2005Natur.437..543K.doi:10.1038/nature03911.PMID 16177789.S2CID 4340386.
  25. ^Yutin N, Makarova KS, Mekhedov SL, Wolf YI, Koonin EV (2008)."The deep archaeal roots of eukaryotes".Molecular Biology and Evolution.25 (8):1619–1630.doi:10.1093/molbev/msn108.PMC 2464739.PMID 18463089.

Scientific journals

[edit]

Scientific handbooks

[edit]

External links

[edit]
Wikimedia Commons has media related toThermoproteota.
Prokaryotes:Archaea classification
Nanobdellati
"Iainarchaeota"
  • "Iainarchaeia"
    • "Forterreales"
    • "Iainarchaeales"
"Micrarchaeota"
  • "Micrarchaeia"
    • "Anstonellales"
    • "Burarchaeales"
    • "Fermentimicrarchaeales"
    • "Gugararchaeales"
    • "Micrarchaeales"
    • "Norongarragalinales"
"Nanohalarchaeota"
  • "Nanohalarchaeia"
    • "Nanohalarchaeales"
    • "Nanohydrothermales"
    • "Nucleotidisoterales"
  • "Nanohalobiia"
    • "Nanohalobiales"
Nanobdellota
  • Nanobdellia
    • "Haiyanarchaeaceae"
    • "Jingweiarchaeales"
    • Nanobdellales
    • "Pacearchaeales"
    • "Parvarchaeales"
    • "Tiddalikarchaeales"
    • "Woesearchaeales"
Promethearchaeati
Promethearchaeota
Thermoproteati
"Korarchaeota"
Thermoproteota
"BAT"
  • Bathyarchaeia
    • "Bathyarchaeales"
    • "Bifangarchaeales"
    • "Hecatellales"
    • "Houtuarculales"
    • "Wuzhiqiibiales"
    • "Xuanwuarculales"
    • "Zhuquarculales"
  • Nitrososphaeria
    • "Ca. Australarchaeum"
    • "Caldarchaeales"
    • Conexivisphaerales
    • "Geothermarchaeales"
    • Nitrososphaerales
"Sulfobacteria"
  • Methanosuratincolia
    • "Culexarchaeles"
    • "Methanohydrogenicales"
    • "Methanomethylarchaeales"
    • "Methanomethylovorales"
    • Methanosuratincolales
    • "Nezhaarchaeales"
  • Thermoproteia
  • "Sulfolobia"
Methanobacteriati
"Methanomada"
"Hadarchaeota"
  • "Hadarchaeia"
    • "Hadarchaeales"
  • "Persephonarchaeia"
"Hydrothermarchaeota"
  • "Hydrothermarchaeia"
    • "Hydrothermarchaeales"
Methanobacteriota
Thermoplasmatota
  • "Izemarchaea"
    • "Thermoprofundales"
  • "Penumbrarchaeia"
    • "Penumbrarchaeales"
  • "Poseidoniia"
    • "Poseidoniales"
  • Thermoplasmata
Halobacteriota
GTDB 10-RS226;LTP_10_2024
Extantlife phyla/divisions by domain
Bacteria
Archaea
Eukaryote
Protist
Fungi
Land plant
Animal
Incertae sedis
Thermoproteota
Crenarchaeota
Verstraetearchaeota
Retrieved from "https://en.wikipedia.org/w/index.php?title=Thermoproteota&oldid=1337650625"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp