Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Ternary fission

From Wikipedia, the free encyclopedia
Nuclear fission yielding three products
icon
This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Ternary fission" – news ·newspapers ·books ·scholar ·JSTOR
(December 2023) (Learn how and when to remove this message)
Fission product yields by mass forthermal neutron fission of235U,239Pu, a combination of the two typical of current nuclear power reactors, and233U used in thethorium cycle

Ternary fission is a comparatively rare (0.2 to 0.4% of events) type ofnuclear fission in which threecharged products are produced rather than two. As in other nuclear fission processes, other uncharged particles such as multipleneutrons andgamma rays are produced in ternary fission.

Ternary fission may happen during neutron-induced fission or inspontaneous fission (a type of radioactive decay). About 25% more ternary fission happens in spontaneous fission than in the same fission system formed after thermal neutron capture,[1] illustrating that these processes remain physically slightly different, even after the absorption of the neutron, possibly due to the extra energy present in thenuclear reaction system of thermal neutron-induced fission.

Quaternary fission, at 1 per 10 million fissions, is also known (see below).

Products

[edit]

The most common nuclear fission process is "binary fission." It produces two charged asymmetricalfission products with maximally probable charged product at 95±15 and 135±15 u atomic mass. However, in this conventional fission of large nuclei, the binary process happens merely because it is the most energetically probable.

In anywhere from 2 to 4 fissions per 1000 in a nuclear reactor, the alternative ternary fission process produces three positively charged fragments (plus neutrons, which are not charged and not counted in this reckoning). The smallest of the charged products may range from so small a charge and mass as a singleproton (Z=1), up to as large a fragment as the nucleus ofargon (Z=18).

Though particles as large as argon nuclei may be produced as the smaller (third) charged product in the usual ternary fission, themost common small fragments from ternary fission are helium-4 nuclei, which make up about 90% of the small fragments. This high incidence is related to the stability (high binding energy) of thealpha particle, which makes more energy available to the reaction. The second-most common particles produced in ternary fission are tritons (tritium nuclei), which make up 7% of the total small fragments, and the third-most arehelium-6 nuclei (which decay in about 0.8 seconds to lithium-6). Protons and larger nuclei are in the small fraction (< 2%) which make up the remainder of the small charged products. The two larger charged particles from ternary fission, particularly when alphas are produced, are quite similar in size distribution to those produced in binary fission.

Product energies

[edit]

The energy of the third much-smaller product usually ranges between 10 and 20 MeV. In keeping with their origin, alpha particles produced by ternary fission typically have mean energies of about ~ 16 MeV (energies this great are never seen in alpha decay). Since these typically have significantly more energy than the ~ 5 MeV alpha particles fromalpha decay, they are accordingly called "long-range alphas" (referring to their longer range in air or other media).

The other two larger fragments carry away, in their kinetic energies, the remainder of the fission kinetic energy (typically totalling ~ 170 MeV in heavy element fission) that does not appear as the 10 to 20 MeV kinetic energy carried away by the third smaller product. Thus, the larger fragments in ternary fission are each less energetic, by a typical 5 to 10 MeV, than they are seen to be in binary fission.

Importance

[edit]

Though ternary fission is less common than binary fission, it still produces significant helium-4 and tritium gas buildup in the fuel rods of modern nuclear reactors.[2] This phenomenon was initially detected in 1957, within the environs of theSavannah River National Laboratory.[3]

True ternary fission

[edit]

A very rare type of ternary fission process is sometimes called "true ternary fission." It produces three nearly equal-sized charged fragments (Z ~ 30) but only happens in about 1 in 100 million fission events. In this type of fission, the product nuclei split the fission energy in three nearly equal parts and have kinetic energies of ~ 60 MeV. True ternary fission has so far only been observed in nuclei bombarded by heavy, high energy ions.[4]

Quaternary fission

[edit]

Another rare fission process, occurring in about 1 in 10 million fissions, is quaternary fission. It is analogous to ternary fission, save thatfour charged products are seen. Typically two of these are light particles, with the most common mode of quaternary fission apparently being two large particles and two alpha particles (rather than one alpha, the most common mode of ternary fission).[5]

References

[edit]
  1. ^https://web-docs.gsi.de/~wolle/FISSION/ternary/ternary.html Fraction ternary fission as a function of different Z and A in fissile isotopes.
  2. ^[1] Comparative study of the ternary particle emission in 243-Cm (nth,f) and 244-Cm(SF). S. Vermote, et al.inDynamical aspects of nuclear fission: proceedings of the 6th International Conference. Ed. J. Kliman, M. G. Itkis, S. Gmuca. World Scientific Publishing Co. Pte. Ltd. Singapore. (2008)
  3. ^Discovery That Nuclear Fission Produces Tritium Edward L. Albenesius, J. Henry Horton Harold M. Kelley, Daniel S. St. John, and Robert S. Ondrejcin
  4. ^"True ternary fission".Romanian Reports in Physics.55 (4):781–786. January 2003.
  5. ^Go¨Nnenwein, F. (5 April 2004)."Ternary and quaternary fission".Nuclear Physics A.734:213–216.Bibcode:2004NuPhA.734..213G.doi:10.1016/j.nuclphysa.2004.01.037.
Science
Fuel
Neutron
Power
Medicine
Imaging
Therapy
Processing
Weapons
Topics
Lists
Waste
Products
Disposal
Debate
Light water
Heavy water
bycoolant
D2O
H2O
Organic
CO2
Water (LWGR)
H2O
Gas
CO2
He
Molten-salt
Fluorides
Generation IV
Others
Magnetic
Inertial
Other
Radiation (physics and health)
Main articles
Non-ionizing radiation
Ionizing radiation
Radiation
and health
Radiation incidents
Related articles
Fundamental
concepts
Types
Energy carriers
Primary energy
Energy system
components
Use and
supply
Misc.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Ternary_fission&oldid=1302829285"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp