Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Tensors in curvilinear coordinates

From Wikipedia, the free encyclopedia

Curvilinear coordinates can be formulated intensor calculus, with important applications inphysics andengineering, particularly for describing transportation of physical quantities and deformation of matter influid mechanics andcontinuum mechanics.

Vector and tensor algebra in three-dimensional curvilinear coordinates

[edit]
Note: theEinstein summation convention of summing on repeated indices is used below.

Elementary vector and tensor algebra in curvilinear coordinates is used in some of the older scientific literature inmechanics andphysics and can be indispensable to understanding work from the early and mid 1900s, for example the text by Green and Zerna.[1] Some useful relations in the algebra of vectors and second-order tensors in curvilinear coordinates are given in this section. The notation and contents are primarily from Ogden,[2] Naghdi,[3] Simmonds,[4] Green and Zerna,[1] Basar and Weichert,[5] and Ciarlet.[6]

Coordinate transformations

[edit]

Consider two coordinate systems with coordinate variables(Z1,Z2,Z3){\displaystyle (Z^{1},Z^{2},Z^{3})} and(Z1´,Z2´,Z3´){\displaystyle (Z^{\acute {1}},Z^{\acute {2}},Z^{\acute {3}})}, which we shall represent in short as justZi{\displaystyle Z^{i}} andZi´{\displaystyle Z^{\acute {i}}} respectively and always assume our indexi{\displaystyle i} runs from 1 through 3. We shall assume that these coordinates systems are embedded in the three-dimensional euclidean space. CoordinatesZi{\displaystyle Z^{i}} andZi´{\displaystyle Z^{\acute {i}}} may be used to explain each other, because as we move along the coordinate line in one coordinate system we can use the other to describe our position. In this way CoordinatesZi{\displaystyle Z^{i}} andZi´{\displaystyle Z^{\acute {i}}} are functions of each other

Zi=fi(Z1´,Z2´,Z3´){\displaystyle Z^{i}=f^{i}(Z^{\acute {1}},Z^{\acute {2}},Z^{\acute {3}})} fori=1,2,3{\displaystyle i=1,2,3}

which can be written as

Zi=Zi(Z1´,Z2´,Z3´)=Zi(Zi´){\displaystyle Z^{i}=Z^{i}(Z^{\acute {1}},Z^{\acute {2}},Z^{\acute {3}})=Z^{i}(Z^{\acute {i}})} fori´,i=1,2,3{\displaystyle {\acute {i}},i=1,2,3}

These three equations together are also called a coordinate transformation fromZi´{\displaystyle Z^{\acute {i}}} toZi{\displaystyle Z^{i}}. Let us denote this transformation byT{\displaystyle T}. We will therefore represent the transformation from the coordinate system with coordinate variablesZi´{\displaystyle Z^{\acute {i}}} to the coordinate system with coordinatesZi{\displaystyle Z^{i}} as:

Z=T(z´){\displaystyle Z=T({\acute {z}})}

Similarly we can representZi´{\displaystyle Z^{\acute {i}}} as a function ofZi{\displaystyle Z^{i}} as follows:

Zi´=gi´(Z1,Z2,Z3){\displaystyle Z^{\acute {i}}=g^{\acute {i}}(Z^{1},Z^{2},Z^{3})} fori´=1,2,3{\displaystyle {\acute {i}}=1,2,3}

and we can write the free equations more compactly as

Zi´=Zi´(Z1,Z2,Z3)=Zi´(Zi){\displaystyle Z^{\acute {i}}=Z^{\acute {i}}(Z^{1},Z^{2},Z^{3})=Z^{\acute {i}}(Z^{i})} fori´,i=1,2,3{\displaystyle {\acute {i}},i=1,2,3}

These three equations together are also called a coordinate transformation fromZi{\displaystyle Z^{i}} toZi´{\displaystyle Z^{\acute {i}}}. Let us denote this transformation byS{\displaystyle S}. We will represent the transformation from the coordinate system with coordinate variablesZi{\displaystyle Z^{i}} to the coordinate system with coordinatesZi´{\displaystyle Z^{\acute {i}}} as:

z´=S(z){\displaystyle {\acute {z}}=S(z)}

If the transformationT{\displaystyle T} is bijective then we call the image of the transformation, namelyZi{\displaystyle Z^{i}}, a set ofadmissible coordinates forZi´{\displaystyle Z^{\acute {i}}}. IfT{\displaystyle T} is linear the coordinate systemZi{\displaystyle Z^{i}} will be called anaffine coordinate system, otherwiseZi{\displaystyle Z^{i}} is called acurvilinear coordinate system.

The Jacobian

[edit]

As we now see that the CoordinatesZi{\displaystyle Z^{i}} andZi´{\displaystyle Z^{\acute {i}}} are functions of each other, we can take the derivative of the coordinate variableZi{\displaystyle Z^{i}} with respect to the coordinate variableZi´{\displaystyle Z^{\acute {i}}}.

Consider

ZiZi´=defJi´i{\displaystyle {\frac {\partial {Z^{i}}}{\partial {Z^{\acute {i}}}}}\;{\overset {\underset {\mathrm {def} }{}}{=}}\;J_{\acute {i}}^{i}} fori´,i=1,2,3{\displaystyle {\acute {i}},i=1,2,3}, these derivatives can be arranged in a matrix, sayJ{\displaystyle J}, in whichJi´i{\displaystyle J_{\acute {i}}^{i}} is the element in thei{\displaystyle i}-th row andi´{\displaystyle {\acute {i}}}-th column

J=(J1´1J2´1J3´1J1´2J2´2J3´2J1´3J2´3J3´3)=(Z1Z1´Z1Z2´Z1Z3´Z2Z1´Z2Z2´Z2Z3´Z3Z1´Z3Z2´Z3Z3´){\displaystyle J={\begin{pmatrix}J_{\acute {1}}^{1}&J_{\acute {2}}^{1}&J_{\acute {3}}^{1}\\J_{\acute {1}}^{2}&J_{\acute {2}}^{2}&J_{\acute {3}}^{2}\\J_{\acute {1}}^{3}&J_{\acute {2}}^{3}&J_{\acute {3}}^{3}\end{pmatrix}}={\begin{pmatrix}{\partial {Z^{1}} \over \partial {Z^{\acute {1}}}}&{\partial {Z^{1}} \over \partial {Z^{\acute {2}}}}&{\partial {Z^{1}} \over \partial {Z^{\acute {3}}}}\\{\partial {Z^{2}} \over \partial {Z^{\acute {1}}}}&{\partial {Z^{2}} \over \partial {Z^{\acute {2}}}}&{\partial {Z^{2}} \over \partial {Z^{\acute {3}}}}\\{\partial {Z^{3}} \over \partial {Z^{\acute {1}}}}&{\partial {Z^{3}} \over \partial {Z^{\acute {2}}}}&{\partial {Z^{3}} \over \partial {Z^{\acute {3}}}}\end{pmatrix}}}

The resultant matrix is called the Jacobian matrix.

Vectors in curvilinear coordinates

[edit]

Let(b1,b2,b3){\displaystyle (\mathbf {b} _{1},\mathbf {b} _{2},\mathbf {b} _{3})} be an arbitrary basis for three-dimensional Euclidean space. In general, the basis vectors areneither unit vectors nor mutually orthogonal. However, they are required to be linearly independent. Then a vectorv{\displaystyle \mathbf {v} } can be expressed as[4]: 27 v=vkbk{\displaystyle \mathbf {v} =v^{k}\,\mathbf {b} _{k}}The componentsvk{\displaystyle v^{k}} are thecontravariant components of the vectorv{\displaystyle \mathbf {v} }.

Thereciprocal basis(b1,b2,b3){\displaystyle (\mathbf {b} ^{1},\mathbf {b} ^{2},\mathbf {b} ^{3})} is defined by the relation[4]: 28–29 bibj=δji{\displaystyle \mathbf {b} ^{i}\cdot \mathbf {b} _{j}=\delta _{j}^{i}}whereδji{\displaystyle \delta _{j}^{i}} is theKronecker delta.

The vectorv{\displaystyle \mathbf {v} } can also be expressed in terms of the reciprocal basis:v=vk bk{\displaystyle \mathbf {v} =v_{k}~\mathbf {b} ^{k}}The componentsvk{\displaystyle v_{k}} are thecovariant components of the vectorv{\displaystyle \mathbf {v} }.

Second-order tensors in curvilinear coordinates

[edit]

A second-order tensor can be expressed asS=Sij bibj=S ji bibj=Si j bibj=Sij bibj{\displaystyle {\boldsymbol {S}}=S^{ij}~\mathbf {b} _{i}\otimes \mathbf {b} _{j}=S_{~j}^{i}~\mathbf {b} _{i}\otimes \mathbf {b} ^{j}=S_{i}^{~j}~\mathbf {b} ^{i}\otimes \mathbf {b} _{j}=S_{ij}~\mathbf {b} ^{i}\otimes \mathbf {b} ^{j}}The componentsSij{\displaystyle S^{ij}} are called thecontravariant components,S ji{\displaystyle S_{~j}^{i}} themixed right-covariant components,Si j{\displaystyle S_{i}^{~j}} themixed left-covariant components, andSij{\displaystyle S_{ij}} thecovariant components of the second-order tensor.

Metric tensor and relations between components

[edit]

The quantitiesgij{\displaystyle g_{ij}},gij{\displaystyle g^{ij}} are defined as[4]: 39 

gij=bibj=gji ;  gij=bibj=gji{\displaystyle g_{ij}=\mathbf {b} _{i}\cdot \mathbf {b} _{j}=g_{ji}~;~~g^{ij}=\mathbf {b} ^{i}\cdot \mathbf {b} ^{j}=g^{ji}}From the above equations we havevi=gik vk ;  vi=gik vk ;  bi=gij bj ;  bi=gij bj{\displaystyle v^{i}=g^{ik}~v_{k}~;~~v_{i}=g_{ik}~v^{k}~;~~\mathbf {b} ^{i}=g^{ij}~\mathbf {b} _{j}~;~~\mathbf {b} _{i}=g_{ij}~\mathbf {b} ^{j}}

The components of a vector are related by[4]: 30–32 vbi=vk bkbi=vk δki=vi{\displaystyle \mathbf {v} \cdot \mathbf {b} ^{i}=v^{k}~\mathbf {b} _{k}\cdot \mathbf {b} ^{i}=v^{k}~\delta _{k}^{i}=v^{i}}vbi=vk bkbi=vk δik=vi{\displaystyle \mathbf {v} \cdot \mathbf {b} _{i}=v_{k}~\mathbf {b} ^{k}\cdot \mathbf {b} _{i}=v_{k}~\delta _{i}^{k}=v_{i}}Also,vbi=vk bkbi=gki vk{\displaystyle \mathbf {v} \cdot \mathbf {b} _{i}=v^{k}~\mathbf {b} _{k}\cdot \mathbf {b} _{i}=g_{ki}~v^{k}}vbi=vk bkbi=gki vk{\displaystyle \mathbf {v} \cdot \mathbf {b} ^{i}=v_{k}~\mathbf {b} ^{k}\cdot \mathbf {b} ^{i}=g^{ki}~v_{k}}

The components of the second-order tensor are related bySij=gik Sk j=gjk S ki=gik gjl Skl{\displaystyle S^{ij}=g^{ik}~S_{k}^{~j}=g^{jk}~S_{~k}^{i}=g^{ik}~g^{jl}~S_{kl}}

The alternating tensor

[edit]

In an orthonormal right-handed basis, the third-orderalternating tensor is defined asE=εijk eiejek{\displaystyle {\boldsymbol {\mathcal {E}}}=\varepsilon _{ijk}~\mathbf {e} ^{i}\otimes \mathbf {e} ^{j}\otimes \mathbf {e} ^{k}}In a general curvilinear basis the same tensor may be expressed asE=Eijk bibjbk=Eijk bibjbk{\displaystyle {\boldsymbol {\mathcal {E}}}={\mathcal {E}}_{ijk}~\mathbf {b} ^{i}\otimes \mathbf {b} ^{j}\otimes \mathbf {b} ^{k}={\mathcal {E}}^{ijk}~\mathbf {b} _{i}\otimes \mathbf {b} _{j}\otimes \mathbf {b} _{k}}It can be shown thatEijk=[bi,bj,bk]=(bi×bj)bk ;  Eijk=[bi,bj,bk]{\displaystyle {\mathcal {E}}_{ijk}=\left[\mathbf {b} _{i},\mathbf {b} _{j},\mathbf {b} _{k}\right]=(\mathbf {b} _{i}\times \mathbf {b} _{j})\cdot \mathbf {b} _{k}~;~~{\mathcal {E}}^{ijk}=\left[\mathbf {b} ^{i},\mathbf {b} ^{j},\mathbf {b} ^{k}\right]}Now,bi×bj=J εijp bp=g εijp bp{\displaystyle \mathbf {b} _{i}\times \mathbf {b} _{j}=J~\varepsilon _{ijp}~\mathbf {b} ^{p}={\sqrt {g}}~\varepsilon _{ijp}~\mathbf {b} ^{p}}Hence,Eijk=J εijk=g εijk{\displaystyle {\mathcal {E}}_{ijk}=J~\varepsilon _{ijk}={\sqrt {g}}~\varepsilon _{ijk}}Similarly, we can show thatEijk=1J εijk=1g εijk{\displaystyle {\mathcal {E}}^{ijk}={\cfrac {1}{J}}~\varepsilon ^{ijk}={\cfrac {1}{\sqrt {g}}}~\varepsilon ^{ijk}}

Vector operations

[edit]

Identity map

[edit]

The identity mapI{\displaystyle \mathbf {I} } defined byIv=v{\displaystyle \mathbf {I} \cdot \mathbf {v} =\mathbf {v} } can be shown to be:[4]: 39 

I=gijbibj=gijbibj=bibi=bibi{\displaystyle \mathbf {I} =g^{ij}\mathbf {b} _{i}\otimes \mathbf {b} _{j}=g_{ij}\mathbf {b} ^{i}\otimes \mathbf {b} ^{j}=\mathbf {b} _{i}\otimes \mathbf {b} ^{i}=\mathbf {b} ^{i}\otimes \mathbf {b} _{i}}

Scalar (dot) product

[edit]

The scalar product of two vectors in curvilinear coordinates is[4]: 32 

uv=uivi=uivi=gijuivj=gijuivj{\displaystyle \mathbf {u} \cdot \mathbf {v} =u^{i}v_{i}=u_{i}v^{i}=g_{ij}u^{i}v^{j}=g^{ij}u_{i}v_{j}}

Vector (cross) product

[edit]

Thecross product of two vectors is given by:[4]: 32–34 

u×v=εijkujvkei{\displaystyle \mathbf {u} \times \mathbf {v} =\varepsilon _{ijk}u_{j}v_{k}\mathbf {e} _{i}}

whereεijk{\displaystyle \varepsilon _{ijk}} is thepermutation symbol andei{\displaystyle \mathbf {e} _{i}} is a Cartesianbasis vector. In curvilinear coordinates, the equivalent expression is:

u×v=[(bm×bn)bs]umvnbs=Esmnumvnbs{\displaystyle \mathbf {u} \times \mathbf {v} =[(\mathbf {b} _{m}\times \mathbf {b} _{n})\cdot \mathbf {b} _{s}]u^{m}v^{n}\mathbf {b} ^{s}={\mathcal {E}}_{smn}u^{m}v^{n}\mathbf {b} ^{s}}

whereEijk{\displaystyle {\mathcal {E}}_{ijk}} is thethird-order alternating tensor. Thecross product of two vectors is given by:

u×v=εijku^jv^kei{\displaystyle \mathbf {u} \times \mathbf {v} =\varepsilon _{ijk}{\hat {u}}_{j}{\hat {v}}_{k}\mathbf {e} _{i}}

whereεijk{\displaystyle \varepsilon _{ijk}} is thepermutation symbol andei{\displaystyle \mathbf {e} _{i}} is a Cartesian basis vector. Therefore,

ep×eq=εipqei{\displaystyle \mathbf {e} _{p}\times \mathbf {e} _{q}=\varepsilon _{ipq}\mathbf {e} _{i}}

and

bm×bn=xqm×xqn=(xpep)qm×(xqeq)qn=xpqmxqqnep×eq=εipqxpqmxqqnei.{\displaystyle \mathbf {b} _{m}\times \mathbf {b} _{n}={\frac {\partial \mathbf {x} }{\partial q^{m}}}\times {\frac {\partial \mathbf {x} }{\partial q^{n}}}={\frac {\partial (x_{p}\mathbf {e} _{p})}{\partial q^{m}}}\times {\frac {\partial (x_{q}\mathbf {e} _{q})}{\partial q^{n}}}={\frac {\partial x_{p}}{\partial q^{m}}}{\frac {\partial x_{q}}{\partial q^{n}}}\mathbf {e} _{p}\times \mathbf {e} _{q}=\varepsilon _{ipq}{\frac {\partial x_{p}}{\partial q^{m}}}{\frac {\partial x_{q}}{\partial q^{n}}}\mathbf {e} _{i}.}

Hence,

(bm×bn)bs=εipqxpqmxqqnxiqs{\displaystyle (\mathbf {b} _{m}\times \mathbf {b} _{n})\cdot \mathbf {b} _{s}=\varepsilon _{ipq}{\frac {\partial x_{p}}{\partial q^{m}}}{\frac {\partial x_{q}}{\partial q^{n}}}{\frac {\partial x_{i}}{\partial q^{s}}}}

Returning to the vector product and using the relations:

u^j=xjqmum,v^k=xkqnvn,ei=xiqsbs,{\displaystyle {\hat {u}}_{j}={\frac {\partial x_{j}}{\partial q^{m}}}u^{m},\quad {\hat {v}}_{k}={\frac {\partial x_{k}}{\partial q^{n}}}v^{n},\quad \mathbf {e} _{i}={\frac {\partial x_{i}}{\partial q^{s}}}\mathbf {b} ^{s},}

gives us:

u×v=εijku^jv^kei=εijkxjqmxkqnxiqsumvnbs=[(bm×bn)bs]umvnbs=Esmnumvnbs{\displaystyle \mathbf {u} \times \mathbf {v} =\varepsilon _{ijk}{\hat {u}}_{j}{\hat {v}}_{k}\mathbf {e} _{i}=\varepsilon _{ijk}{\frac {\partial x_{j}}{\partial q^{m}}}{\frac {\partial x_{k}}{\partial q^{n}}}{\frac {\partial x_{i}}{\partial q^{s}}}u^{m}v^{n}\mathbf {b} ^{s}=[(\mathbf {b} _{m}\times \mathbf {b} _{n})\cdot \mathbf {b} _{s}]u^{m}v^{n}\mathbf {b} ^{s}={\mathcal {E}}_{smn}u^{m}v^{n}\mathbf {b} ^{s}}

Tensor operations

[edit]

Identity map

[edit]

Theidentity mapI{\displaystyle {\mathsf {I}}} defined byIv=v{\displaystyle {\mathsf {I}}\cdot \mathbf {v} =\mathbf {v} } can be shown to be[4]: 39 

I=gijbibj=gijbibj=bibi=bibi{\displaystyle {\mathsf {I}}=g^{ij}\mathbf {b} _{i}\otimes \mathbf {b} _{j}=g_{ij}\mathbf {b} ^{i}\otimes \mathbf {b} ^{j}=\mathbf {b} _{i}\otimes \mathbf {b} ^{i}=\mathbf {b} ^{i}\otimes \mathbf {b} _{i}}

Action of a second-order tensor on a vector

[edit]

The actionv=Su{\displaystyle \mathbf {v} ={\boldsymbol {S}}\mathbf {u} } can be expressed in curvilinear coordinates as

vibi=Sijujbi=Sjiujbi;vibi=Sijujbi=Sijujbi{\displaystyle v^{i}\mathbf {b} _{i}=S^{ij}u_{j}\mathbf {b} _{i}=S_{j}^{i}u^{j}\mathbf {b} _{i};\qquad v_{i}\mathbf {b} ^{i}=S_{ij}u^{j}\mathbf {b} ^{i}=S_{i}^{j}u_{j}\mathbf {b} ^{i}}

Inner product of two second-order tensors

[edit]

Theinner product of two second-order tensorsU=ST{\displaystyle {\boldsymbol {U}}={\boldsymbol {S}}\cdot {\boldsymbol {T}}} can be expressed in curvilinear coordinates as

Uijbibj=SikT.jkbibj=Si.kTkjbibj{\displaystyle U_{ij}\mathbf {b} ^{i}\otimes \mathbf {b} ^{j}=S_{ik}T_{.j}^{k}\mathbf {b} ^{i}\otimes \mathbf {b} ^{j}=S_{i}^{.k}T_{kj}\mathbf {b} ^{i}\otimes \mathbf {b} ^{j}}

Alternatively,

U=SijT.nmgjmbibn=S.miT.nmbibn=SijTjnbibn{\displaystyle {\boldsymbol {U}}=S^{ij}T_{.n}^{m}g_{jm}\mathbf {b} _{i}\otimes \mathbf {b} ^{n}=S_{.m}^{i}T_{.n}^{m}\mathbf {b} _{i}\otimes \mathbf {b} ^{n}=S^{ij}T_{jn}\mathbf {b} _{i}\otimes \mathbf {b} ^{n}}

Determinant of a second-order tensor

[edit]

IfS{\displaystyle {\boldsymbol {S}}} is a second-order tensor, then thedeterminant is defined by the relation

[Su,Sv,Sw]=detS[u,v,w]{\displaystyle \left[{\boldsymbol {S}}\mathbf {u} ,{\boldsymbol {S}}\mathbf {v} ,{\boldsymbol {S}}\mathbf {w} \right]=\det {\boldsymbol {S}}\left[\mathbf {u} ,\mathbf {v} ,\mathbf {w} \right]}

whereu,v,w{\displaystyle \mathbf {u} ,\mathbf {v} ,\mathbf {w} } are arbitrary vectors and

[u,v,w]:=u(v×w).{\displaystyle \left[\mathbf {u} ,\mathbf {v} ,\mathbf {w} \right]:=\mathbf {u} \cdot (\mathbf {v} \times \mathbf {w} ).}

Relations between curvilinear and Cartesian basis vectors

[edit]

Let(e1,e2,e3){\displaystyle (\mathbf {e} _{1},\mathbf {e} _{2},\mathbf {e} _{3})} be the usual Cartesian basis vectors for the Euclidean space of interest and letbi=Fei{\displaystyle \mathbf {b} _{i}={\boldsymbol {F}}\mathbf {e} _{i}}whereF{\displaystyle {\boldsymbol {F}}} is a second-order transformation tensor that mapsei{\displaystyle \mathbf {e} _{i}} tobi{\displaystyle \mathbf {b} _{i}}. Then,biei=(Fei)ei=F(eiei)=F .{\displaystyle \mathbf {b} _{i}\otimes \mathbf {e} _{i}=({\boldsymbol {F}}\mathbf {e} _{i})\otimes \mathbf {e} _{i}={\boldsymbol {F}}(\mathbf {e} _{i}\otimes \mathbf {e} _{i})={\boldsymbol {F}}~.}From this relation we can show thatbi=FTei ;  gij=[F1FT]ij ;  gij=[gij]1=[FTF]ij{\displaystyle \mathbf {b} ^{i}={\boldsymbol {F}}^{-{\rm {T}}}\mathbf {e} ^{i}~;~~g^{ij}=[{\boldsymbol {F}}^{-{\rm {1}}}{\boldsymbol {F}}^{-{\rm {T}}}]_{ij}~;~~g_{ij}=[g^{ij}]^{-1}=[{\boldsymbol {F}}^{\rm {T}}{\boldsymbol {F}}]_{ij}}LetJ:=detF{\displaystyle J:=\det {\boldsymbol {F}}} be the Jacobian of the transformation. Then, from the definition of the determinant,[b1,b2,b3]=detF[e1,e2,e3] .{\displaystyle \left[\mathbf {b} _{1},\mathbf {b} _{2},\mathbf {b} _{3}\right]=\det {\boldsymbol {F}}\left[\mathbf {e} _{1},\mathbf {e} _{2},\mathbf {e} _{3}\right]~.}Since[e1,e2,e3]=1{\displaystyle \left[\mathbf {e} _{1},\mathbf {e} _{2},\mathbf {e} _{3}\right]=1}we haveJ=detF=[b1,b2,b3]=b1(b2×b3){\displaystyle J=\det {\boldsymbol {F}}=\left[\mathbf {b} _{1},\mathbf {b} _{2},\mathbf {b} _{3}\right]=\mathbf {b} _{1}\cdot (\mathbf {b} _{2}\times \mathbf {b} _{3})}A number of interesting results can be derived using the above relations.

First, considerg:=det[gij]{\displaystyle g:=\det[g_{ij}]}Theng=det[FT]det[F]=JJ=J2{\displaystyle g=\det[{\boldsymbol {F}}^{\rm {T}}]\cdot \det[{\boldsymbol {F}}]=J\cdot J=J^{2}}Similarly, we can show thatdet[gij]=1J2{\displaystyle \det[g^{ij}]={\cfrac {1}{J^{2}}}}Therefore, using the fact that[gij]=[gij]1{\displaystyle [g^{ij}]=[g_{ij}]^{-1}},ggij=2 J Jgij=g gij{\displaystyle {\cfrac {\partial g}{\partial g_{ij}}}=2~J~{\cfrac {\partial J}{\partial g_{ij}}}=g~g^{ij}}

Another interesting relation is derived below. Recall thatbibj=δjib1b1=1, b1b2=b1b3=0b1=A (b2×b3){\displaystyle \mathbf {b} ^{i}\cdot \mathbf {b} _{j}=\delta _{j}^{i}\quad \Rightarrow \quad \mathbf {b} ^{1}\cdot \mathbf {b} _{1}=1,~\mathbf {b} ^{1}\cdot \mathbf {b} _{2}=\mathbf {b} ^{1}\cdot \mathbf {b} _{3}=0\quad \Rightarrow \quad \mathbf {b} ^{1}=A~(\mathbf {b} _{2}\times \mathbf {b} _{3})}whereA{\displaystyle A} is a, yet undetermined, constant. Thenb1b1=A b1(b2×b3)=AJ=1A=1J{\displaystyle \mathbf {b} ^{1}\cdot \mathbf {b} _{1}=A~\mathbf {b} _{1}\cdot (\mathbf {b} _{2}\times \mathbf {b} _{3})=AJ=1\quad \Rightarrow \quad A={\cfrac {1}{J}}}This observation leads to the relationsb1=1J(b2×b3) ;  b2=1J(b3×b1) ;  b3=1J(b1×b2){\displaystyle \mathbf {b} ^{1}={\cfrac {1}{J}}(\mathbf {b} _{2}\times \mathbf {b} _{3})~;~~\mathbf {b} ^{2}={\cfrac {1}{J}}(\mathbf {b} _{3}\times \mathbf {b} _{1})~;~~\mathbf {b} ^{3}={\cfrac {1}{J}}(\mathbf {b} _{1}\times \mathbf {b} _{2})}In index notation,εijk bk=1J(bi×bj)=1g(bi×bj){\displaystyle \varepsilon _{ijk}~\mathbf {b} ^{k}={\cfrac {1}{J}}(\mathbf {b} _{i}\times \mathbf {b} _{j})={\cfrac {1}{\sqrt {g}}}(\mathbf {b} _{i}\times \mathbf {b} _{j})}whereεijk{\displaystyle \varepsilon _{ijk}} is the usualpermutation symbol.

We have not identified an explicit expression for the transformation tensorF{\displaystyle {\boldsymbol {F}}} because an alternative form of the mapping between curvilinear and Cartesian bases is more useful. Assuming a sufficient degree of smoothness in the mapping (and a bit of abuse of notation), we havebi=xqi=xxj xjqi=ej xjqi{\displaystyle \mathbf {b} _{i}={\cfrac {\partial \mathbf {x} }{\partial q^{i}}}={\cfrac {\partial \mathbf {x} }{\partial x_{j}}}~{\cfrac {\partial x_{j}}{\partial q^{i}}}=\mathbf {e} _{j}~{\cfrac {\partial x_{j}}{\partial q^{i}}}}Similarly,ei=bj qjxi{\displaystyle \mathbf {e} _{i}=\mathbf {b} _{j}~{\cfrac {\partial q^{j}}{\partial x_{i}}}}From these results we haveekbi=xkqixkqi bi=ek(bibi)=ek{\displaystyle \mathbf {e} ^{k}\cdot \mathbf {b} _{i}={\frac {\partial x_{k}}{\partial q^{i}}}\quad \Rightarrow \quad {\frac {\partial x_{k}}{\partial q^{i}}}~\mathbf {b} ^{i}=\mathbf {e} ^{k}\cdot (\mathbf {b} _{i}\otimes \mathbf {b} ^{i})=\mathbf {e} ^{k}}andbk=qkxi ei{\displaystyle \mathbf {b} ^{k}={\frac {\partial q^{k}}{\partial x_{i}}}~\mathbf {e} ^{i}}

Vector and tensor calculus in three-dimensional curvilinear coordinates

[edit]
Note: theEinstein summation convention of summing on repeated indices is used below.

Simmonds,[4] in his book ontensor analysis, quotesAlbert Einstein saying[7]

The magic of this theory will hardly fail to impose itself on anybody who has truly understood it; it represents a genuine triumph of the method of absolute differential calculus, founded by Gauss, Riemann, Ricci, and Levi-Civita.

Vector and tensor calculus in general curvilinear coordinates is used in tensor analysis on four-dimensional curvilinearmanifolds ingeneral relativity,[8] in themechanics of curvedshells,[6] in examining theinvariance properties ofMaxwell's equations which has been of interest inmetamaterials[9][10] and in many other fields.

Some useful relations in the calculus of vectors and second-order tensors in curvilinear coordinates are given in this section. The notation and contents are primarily from Ogden,[2] Simmonds,[4] Green and Zerna,[1] Basar and Weichert,[5] and Ciarlet.[6]

Basic definitions

[edit]

Let the position of a point in space be characterized by three coordinate variables(q1,q2,q3){\displaystyle (q^{1},q^{2},q^{3})}.

Thecoordinate curveq1{\displaystyle q^{1}} represents a curve on whichq2{\displaystyle q^{2}} andq3{\displaystyle q^{3}} are constant. Letx{\displaystyle \mathbf {x} } be theposition vector of the point relative to some origin. Then, assuming that such a mapping and its inverse exist and are continuous, we can write[2]: 55 x=φ(q1,q2,q3) ;  qi=ψi(x)=[φ1(x)]i{\displaystyle \mathbf {x} ={\boldsymbol {\varphi }}(q^{1},q^{2},q^{3})~;~~q^{i}=\psi ^{i}(\mathbf {x} )=[{\boldsymbol {\varphi }}^{-1}(\mathbf {x} )]^{i}}The fieldsψi(x){\displaystyle \psi ^{i}(\mathbf {x} )} are called thecurvilinear coordinate functions of thecurvilinear coordinate systemψ(x)=φ1(x){\displaystyle {\boldsymbol {\psi }}(\mathbf {x} )={\boldsymbol {\varphi }}^{-1}(\mathbf {x} )}.

Theqi{\displaystyle q^{i}}coordinate curves are defined by the one-parameter family of functions given byxi(α)=φ(α,qj,qk) ,  ijk{\displaystyle \mathbf {x} _{i}(\alpha )={\boldsymbol {\varphi }}(\alpha ,q^{j},q^{k})~,~~i\neq j\neq k}withqj{\displaystyle q^{j}},qk{\displaystyle q^{k}} fixed.

Tangent vector to coordinate curves

[edit]

Thetangent vector to the curvexi{\displaystyle \mathbf {x} _{i}} at the pointxi(α){\displaystyle \mathbf {x} _{i}(\alpha )} (or to the coordinate curveqi{\displaystyle q_{i}} at the pointx{\displaystyle \mathbf {x} }) isdxidαxqi{\displaystyle {\cfrac {\rm {{d}\mathbf {x} _{i}}}{\rm {{d}\alpha }}}\equiv {\cfrac {\partial \mathbf {x} }{\partial q^{i}}}}

Gradient

[edit]

Scalar field

[edit]

Letf(x){\displaystyle f(\mathbf {x} )} be a scalar field in space. Thenf(x)=f[φ(q1,q2,q3)]=fφ(q1,q2,q3){\displaystyle f(\mathbf {x} )=f[{\boldsymbol {\varphi }}(q^{1},q^{2},q^{3})]=f_{\varphi }(q^{1},q^{2},q^{3})}The gradient of the fieldf{\displaystyle f} is defined by[f(x)]c=ddαf(x+αc)|α=0{\displaystyle [{\boldsymbol {\nabla }}f(\mathbf {x} )]\cdot \mathbf {c} ={\cfrac {\rm {d}}{\rm {{d}\alpha }}}f(\mathbf {x} +\alpha \mathbf {c} ){\biggr |}_{\alpha =0}}wherec{\displaystyle \mathbf {c} } is an arbitrary constant vector. If we define the componentsci{\displaystyle c^{i}} ofc{\displaystyle \mathbf {c} } are such thatqi+α ci=ψi(x+α c){\displaystyle q^{i}+\alpha ~c^{i}=\psi ^{i}(\mathbf {x} +\alpha ~\mathbf {c} )}then[f(x)]c=ddαfφ(q1+α c1,q2+α c2,q3+α c3)|α=0=fφqi ci=fqi ci{\displaystyle [{\boldsymbol {\nabla }}f(\mathbf {x} )]\cdot \mathbf {c} ={\cfrac {\rm {d}}{\rm {{d}\alpha }}}f_{\varphi }(q^{1}+\alpha ~c^{1},q^{2}+\alpha ~c^{2},q^{3}+\alpha ~c^{3}){\biggr |}_{\alpha =0}={\cfrac {\partial f_{\varphi }}{\partial q^{i}}}~c^{i}={\cfrac {\partial f}{\partial q^{i}}}~c^{i}}

If we setf(x)=ψi(x){\displaystyle f(\mathbf {x} )=\psi ^{i}(\mathbf {x} )}, then sinceqi=ψi(x){\displaystyle q^{i}=\psi ^{i}(\mathbf {x} )}, we have[ψi(x)]c=ψiqj cj=ci{\displaystyle [{\boldsymbol {\nabla }}\psi ^{i}(\mathbf {x} )]\cdot \mathbf {c} ={\cfrac {\partial \psi ^{i}}{\partial q^{j}}}~c^{j}=c^{i}}which provides a means of extracting the contravariant component of a vectorc{\displaystyle \mathbf {c} }.

Ifbi{\displaystyle \mathbf {b} _{i}} is the covariant (or natural) basis at a point, and ifbi{\displaystyle \mathbf {b} ^{i}} is the contravariant (or reciprocal) basis at that point, then[f(x)]c=fqi ci=(fqi bi)(ci bi)f(x)=fqi bi{\displaystyle [{\boldsymbol {\nabla }}f(\mathbf {x} )]\cdot \mathbf {c} ={\cfrac {\partial f}{\partial q^{i}}}~c^{i}=\left({\cfrac {\partial f}{\partial q^{i}}}~\mathbf {b} ^{i}\right)\left(c^{i}~\mathbf {b} _{i}\right)\quad \Rightarrow \quad {\boldsymbol {\nabla }}f(\mathbf {x} )={\cfrac {\partial f}{\partial q^{i}}}~\mathbf {b} ^{i}}A brief rationale for this choice of basis is given in the next section.

Vector field

[edit]

A similar process can be used to arrive at the gradient of a vector fieldf(x){\displaystyle \mathbf {f} (\mathbf {x} )}. The gradient is given by[f(x)]c=fqi ci{\displaystyle [{\boldsymbol {\nabla }}\mathbf {f} (\mathbf {x} )]\cdot \mathbf {c} ={\cfrac {\partial \mathbf {f} }{\partial q^{i}}}~c^{i}}If we consider the gradient of the position vector fieldr(x)=x{\displaystyle \mathbf {r} (\mathbf {x} )=\mathbf {x} }, then we can show thatc=xqi ci=bi(x) ci ;  bi(x):=xqi{\displaystyle \mathbf {c} ={\cfrac {\partial \mathbf {x} }{\partial q^{i}}}~c^{i}=\mathbf {b} _{i}(\mathbf {x} )~c^{i}~;~~\mathbf {b} _{i}(\mathbf {x} ):={\cfrac {\partial \mathbf {x} }{\partial q^{i}}}}The vector fieldbi{\displaystyle \mathbf {b} _{i}} is tangent to theqi{\displaystyle q^{i}} coordinate curve and forms anatural basis at each point on the curve. This basis, as discussed at the beginning of this article, is also called thecovariant curvilinear basis. We can also define areciprocal basis, orcontravariant curvilinear basis,bi{\displaystyle \mathbf {b} ^{i}}. All the algebraic relations between the basis vectors, as discussed in the section on tensor algebra, apply for the natural basis and its reciprocal at each pointx{\displaystyle \mathbf {x} }.

Sincec{\displaystyle \mathbf {c} } is arbitrary, we can writef(x)=fqibi{\displaystyle {\boldsymbol {\nabla }}\mathbf {f} (\mathbf {x} )={\cfrac {\partial \mathbf {f} }{\partial q^{i}}}\otimes \mathbf {b} ^{i}}

Note that the contravariant basis vectorbi{\displaystyle \mathbf {b} ^{i}} is perpendicular to the surface of constantψi{\displaystyle \psi ^{i}} and is given bybi=ψi{\displaystyle \mathbf {b} ^{i}={\boldsymbol {\nabla }}\psi ^{i}}

Christoffel symbols of the first kind

[edit]

TheChristoffel symbols of the first kind are defined asbi,j=biqj:=Γijk bkbi,jbl=Γijl{\displaystyle \mathbf {b} _{i,j}={\frac {\partial \mathbf {b} _{i}}{\partial q^{j}}}:=\Gamma _{ijk}~\mathbf {b} ^{k}\quad \Rightarrow \quad \mathbf {b} _{i,j}\cdot \mathbf {b} _{l}=\Gamma _{ijl}}To expressΓijk{\displaystyle \Gamma _{ijk}} in terms ofgij{\displaystyle g_{ij}} we note thatgij,k=(bibj),k=bi,kbj+bibj,k=Γikj+Γjkigik,j=(bibk),j=bi,jbk+bibk,j=Γijk+Γkjigjk,i=(bjbk),i=bj,ibk+bjbk,i=Γjik+Γkij{\displaystyle {\begin{aligned}g_{ij,k}&=(\mathbf {b} _{i}\cdot \mathbf {b} _{j})_{,k}=\mathbf {b} _{i,k}\cdot \mathbf {b} _{j}+\mathbf {b} _{i}\cdot \mathbf {b} _{j,k}=\Gamma _{ikj}+\Gamma _{jki}\\g_{ik,j}&=(\mathbf {b} _{i}\cdot \mathbf {b} _{k})_{,j}=\mathbf {b} _{i,j}\cdot \mathbf {b} _{k}+\mathbf {b} _{i}\cdot \mathbf {b} _{k,j}=\Gamma _{ijk}+\Gamma _{kji}\\g_{jk,i}&=(\mathbf {b} _{j}\cdot \mathbf {b} _{k})_{,i}=\mathbf {b} _{j,i}\cdot \mathbf {b} _{k}+\mathbf {b} _{j}\cdot \mathbf {b} _{k,i}=\Gamma _{jik}+\Gamma _{kij}\end{aligned}}}Sincebi,j=bj,i{\displaystyle \mathbf {b} _{i,j}=\mathbf {b} _{j,i}} we haveΓijk=Γjik{\displaystyle \Gamma _{ijk}=\Gamma _{jik}}. Using these to rearrange the above relations givesΓijk=12(gik,j+gjk,igij,k)=12[(bibk),j+(bjbk),i(bibj),k]{\displaystyle \Gamma _{ijk}={\frac {1}{2}}(g_{ik,j}+g_{jk,i}-g_{ij,k})={\frac {1}{2}}[(\mathbf {b} _{i}\cdot \mathbf {b} _{k})_{,j}+(\mathbf {b} _{j}\cdot \mathbf {b} _{k})_{,i}-(\mathbf {b} _{i}\cdot \mathbf {b} _{j})_{,k}]}

Christoffel symbols of the second kind

[edit]

TheChristoffel symbols of the second kind are defined asΓijk=Γjik{\displaystyle \Gamma _{ij}^{k}=\Gamma _{ji}^{k}}in which

biqj=Γijk bk{\displaystyle {\cfrac {\partial \mathbf {b} _{i}}{\partial q^{j}}}=\Gamma _{ij}^{k}~\mathbf {b} _{k}}

This implies thatΓijk=biqjbk=bibkqj{\displaystyle \Gamma _{ij}^{k}={\cfrac {\partial \mathbf {b} _{i}}{\partial q^{j}}}\cdot \mathbf {b} ^{k}=-\mathbf {b} _{i}\cdot {\cfrac {\partial \mathbf {b} ^{k}}{\partial q^{j}}}}Other relations that follow arebiqj=Γjki bk ;  bi=Γijk bkbj ;  bi=Γjki bkbj{\displaystyle {\cfrac {\partial \mathbf {b} ^{i}}{\partial q^{j}}}=-\Gamma _{jk}^{i}~\mathbf {b} ^{k}~;~~{\boldsymbol {\nabla }}\mathbf {b} _{i}=\Gamma _{ij}^{k}~\mathbf {b} _{k}\otimes \mathbf {b} ^{j}~;~~{\boldsymbol {\nabla }}\mathbf {b} ^{i}=-\Gamma _{jk}^{i}~\mathbf {b} ^{k}\otimes \mathbf {b} ^{j}}

Another particularly useful relation, which shows that the Christoffel symbol depends only on the metric tensor and its derivatives, isΓijk=gkm2(gmiqj+gmjqigijqm){\displaystyle \Gamma _{ij}^{k}={\frac {g^{km}}{2}}\left({\frac {\partial g_{mi}}{\partial q^{j}}}+{\frac {\partial g_{mj}}{\partial q^{i}}}-{\frac {\partial g_{ij}}{\partial q^{m}}}\right)}

Explicit expression for the gradient of a vector field

[edit]

The following expressions for the gradient of a vector field in curvilinear coordinates are quite useful.v=[viqk+Γlki vl] bibk=[viqkΓkil vl] bibk{\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\mathbf {v} &=\left[{\cfrac {\partial v^{i}}{\partial q^{k}}}+\Gamma _{lk}^{i}~v^{l}\right]~\mathbf {b} _{i}\otimes \mathbf {b} ^{k}\\[8pt]&=\left[{\cfrac {\partial v_{i}}{\partial q^{k}}}-\Gamma _{ki}^{l}~v_{l}\right]~\mathbf {b} ^{i}\otimes \mathbf {b} ^{k}\end{aligned}}}

Representing a physical vector field

[edit]

The vector fieldv{\displaystyle \mathbf {v} } can be represented asv=vi bi=v^i b^i{\displaystyle \mathbf {v} =v_{i}~\mathbf {b} ^{i}={\hat {v}}_{i}~{\hat {\mathbf {b} }}^{i}}wherevi{\displaystyle v_{i}} are the covariant components of the field,v^i{\displaystyle {\hat {v}}_{i}} are the physical components, and (nosummation)b^i=bigii{\displaystyle {\hat {\mathbf {b} }}^{i}={\cfrac {\mathbf {b} ^{i}}{\sqrt {g^{ii}}}}}is the normalized contravariant basis vector.

Second-order tensor field

[edit]

The gradient of a second order tensor field can similarly be expressed asS=Sqibi{\displaystyle {\boldsymbol {\nabla }}{\boldsymbol {S}}={\frac {\partial {\boldsymbol {S}}}{\partial q^{i}}}\otimes \mathbf {b} ^{i}}

Explicit expressions for the gradient

[edit]

If we consider the expression for the tensor in terms of a contravariant basis, thenS=qk[Sij bibj]bk=[SijqkΓkil SljΓkjl Sil] bibjbk{\displaystyle {\boldsymbol {\nabla }}{\boldsymbol {S}}={\frac {\partial }{\partial q^{k}}}[S_{ij}~\mathbf {b} ^{i}\otimes \mathbf {b} ^{j}]\otimes \mathbf {b} ^{k}=\left[{\frac {\partial S_{ij}}{\partial q^{k}}}-\Gamma _{ki}^{l}~S_{lj}-\Gamma _{kj}^{l}~S_{il}\right]~\mathbf {b} ^{i}\otimes \mathbf {b} ^{j}\otimes \mathbf {b} ^{k}}We may also writeS=[Sijqk+Γkli Slj+Γklj Sil] bibjbk=[S jiqk+Γkli S jlΓkjl S li] bibjbk=[Si jqkΓikl Sl j+Γklj Si l] bibjbk{\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}{\boldsymbol {S}}&=\left[{\cfrac {\partial S^{ij}}{\partial q^{k}}}+\Gamma _{kl}^{i}~S^{lj}+\Gamma _{kl}^{j}~S^{il}\right]~\mathbf {b} _{i}\otimes \mathbf {b} _{j}\otimes \mathbf {b} ^{k}\\[8pt]&=\left[{\cfrac {\partial S_{~j}^{i}}{\partial q^{k}}}+\Gamma _{kl}^{i}~S_{~j}^{l}-\Gamma _{kj}^{l}~S_{~l}^{i}\right]~\mathbf {b} _{i}\otimes \mathbf {b} ^{j}\otimes \mathbf {b} ^{k}\\[8pt]&=\left[{\cfrac {\partial S_{i}^{~j}}{\partial q^{k}}}-\Gamma _{ik}^{l}~S_{l}^{~j}+\Gamma _{kl}^{j}~S_{i}^{~l}\right]~\mathbf {b} ^{i}\otimes \mathbf {b} _{j}\otimes \mathbf {b} ^{k}\end{aligned}}}

Representing a physical second-order tensor field

[edit]

The physical components of a second-order tensor field can be obtained by using a normalized contravariant basis, i.e.,S=Sij bibj=S^ij b^ib^j{\displaystyle {\boldsymbol {S}}=S_{ij}~\mathbf {b} ^{i}\otimes \mathbf {b} ^{j}={\hat {S}}_{ij}~{\hat {\mathbf {b} }}^{i}\otimes {\hat {\mathbf {b} }}^{j}}where the hatted basis vectors have been normalized. This implies that (again no summation)

S^ij=Sij gii gjj{\displaystyle {\hat {S}}_{ij}=S_{ij}~{\sqrt {g^{ii}~g^{jj}}}}

Divergence

[edit]

Vector field

[edit]

Thedivergence of a vector fieldv{\displaystyle \mathbf {v} } is defined asdiv v=v=tr(v){\displaystyle \operatorname {div} ~\mathbf {v} ={\boldsymbol {\nabla }}\cdot \mathbf {v} ={\text{tr}}({\boldsymbol {\nabla }}\mathbf {v} )}In terms of components with respect to a curvilinear basisv=viqi+Γii v=[viqjΓji v] gij{\displaystyle {\boldsymbol {\nabla }}\cdot \mathbf {v} ={\cfrac {\partial v^{i}}{\partial q^{i}}}+\Gamma _{\ell i}^{i}~v^{\ell }=\left[{\cfrac {\partial v_{i}}{\partial q^{j}}}-\Gamma _{ji}^{\ell }~v_{\ell }\right]~g^{ij}}

An alternative equation for the divergence of a vector field is frequently used. To derive this relation recall thatv=viqi+Γii v{\displaystyle {\boldsymbol {\nabla }}\cdot \mathbf {v} ={\frac {\partial v^{i}}{\partial q^{i}}}+\Gamma _{\ell i}^{i}~v^{\ell }}Now,Γii=Γii=gmi2[gimq+gmqigilqm]{\displaystyle \Gamma _{\ell i}^{i}=\Gamma _{i\ell }^{i}={\cfrac {g^{mi}}{2}}\left[{\frac {\partial g_{im}}{\partial q^{\ell }}}+{\frac {\partial g_{\ell m}}{\partial q^{i}}}-{\frac {\partial g_{il}}{\partial q^{m}}}\right]}Noting that, due to the symmetry ofg{\displaystyle {\boldsymbol {g}}},gmi gmqi=gmi giqm{\displaystyle g^{mi}~{\frac {\partial g_{\ell m}}{\partial q^{i}}}=g^{mi}~{\frac {\partial g_{i\ell }}{\partial q^{m}}}}we havev=viqi+gmi2 gimq v{\displaystyle {\boldsymbol {\nabla }}\cdot \mathbf {v} ={\frac {\partial v^{i}}{\partial q^{i}}}+{\cfrac {g^{mi}}{2}}~{\frac {\partial g_{im}}{\partial q^{\ell }}}~v^{\ell }}Recall that if[gij]{\displaystyle [g_{ij}]} is the matrix whose components aregij{\displaystyle g_{ij}}, then the inverse of the matrix is[gij]1=[gij]{\displaystyle [g_{ij}]^{-1}=[g^{ij}]}. The inverse of the matrix is given by[gij]=[gij]1=Aijg ;  g:=det([gij])=detg{\displaystyle [g^{ij}]=[g_{ij}]^{-1}={\cfrac {A^{ij}}{g}}~;~~g:=\det([g_{ij}])=\det {\boldsymbol {g}}}whereAij{\displaystyle A^{ij}} is thecofactor matrix of the componentsgij{\displaystyle g_{ij}}. From matrix algebra we haveg=det([gij])=igij Aijggij=Aij{\displaystyle g=\det([g_{ij}])=\sum _{i}g_{ij}~A^{ij}\quad \Rightarrow \quad {\frac {\partial g}{\partial g_{ij}}}=A^{ij}}Hence,[gij]=1g ggij{\displaystyle [g^{ij}]={\cfrac {1}{g}}~{\frac {\partial g}{\partial g_{ij}}}}Plugging this relation into the expression for the divergence givesv=viqi+12g ggmi gimq v=viqi+12g gq v{\displaystyle {\boldsymbol {\nabla }}\cdot \mathbf {v} ={\frac {\partial v^{i}}{\partial q^{i}}}+{\cfrac {1}{2g}}~{\frac {\partial g}{\partial g_{mi}}}~{\frac {\partial g_{im}}{\partial q^{\ell }}}~v^{\ell }={\frac {\partial v^{i}}{\partial q^{i}}}+{\cfrac {1}{2g}}~{\frac {\partial g}{\partial q^{\ell }}}~v^{\ell }}A little manipulation leads to the more compact formv=1g qi(vi g){\displaystyle {\boldsymbol {\nabla }}\cdot \mathbf {v} ={\cfrac {1}{\sqrt {g}}}~{\frac {\partial }{\partial q^{i}}}(v^{i}~{\sqrt {g}})}

Second-order tensor field

[edit]

Thedivergence of a second-order tensor field is defined using(S)a=(Sa){\displaystyle ({\boldsymbol {\nabla }}\cdot {\boldsymbol {S}})\cdot \mathbf {a} ={\boldsymbol {\nabla }}\cdot ({\boldsymbol {S}}\mathbf {a} )}wherea{\displaystyle \mathbf {a} } is an arbitrary constant vector.[11]In curvilinear coordinates,S=[SijqkΓkil SljΓkjl Sil] gik bj=[Sijqi+Γili Slj+Γilj Sil] bj=[S jiqi+Γili S jlΓijl S li] bj=[Si jqkΓikl Sl j+Γklj Si l] gik bj{\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\cdot {\boldsymbol {S}}&=\left[{\cfrac {\partial S_{ij}}{\partial q^{k}}}-\Gamma _{ki}^{l}~S_{lj}-\Gamma _{kj}^{l}~S_{il}\right]~g^{ik}~\mathbf {b} ^{j}\\[8pt]&=\left[{\cfrac {\partial S^{ij}}{\partial q^{i}}}+\Gamma _{il}^{i}~S^{lj}+\Gamma _{il}^{j}~S^{il}\right]~\mathbf {b} _{j}\\[8pt]&=\left[{\cfrac {\partial S_{~j}^{i}}{\partial q^{i}}}+\Gamma _{il}^{i}~S_{~j}^{l}-\Gamma _{ij}^{l}~S_{~l}^{i}\right]~\mathbf {b} ^{j}\\[8pt]&=\left[{\cfrac {\partial S_{i}^{~j}}{\partial q^{k}}}-\Gamma _{ik}^{l}~S_{l}^{~j}+\Gamma _{kl}^{j}~S_{i}^{~l}\right]~g^{ik}~\mathbf {b} _{j}\end{aligned}}}

Laplacian

[edit]

Scalar field

[edit]

The Laplacian of a scalar fieldφ(x){\displaystyle \varphi (\mathbf {x} )} is defined as2φ:=(φ){\displaystyle \nabla ^{2}\varphi :={\boldsymbol {\nabla }}\cdot ({\boldsymbol {\nabla }}\varphi )}Using the alternative expression for the divergence of a vector field gives us2φ=1g qi([φ]i g){\displaystyle \nabla ^{2}\varphi ={\cfrac {1}{\sqrt {g}}}~{\frac {\partial }{\partial q^{i}}}([{\boldsymbol {\nabla }}\varphi ]^{i}~{\sqrt {g}})}Nowφ=φql bl=gli φql bi[φ]i=gli φql{\displaystyle {\boldsymbol {\nabla }}\varphi ={\frac {\partial \varphi }{\partial q^{l}}}~\mathbf {b} ^{l}=g^{li}~{\frac {\partial \varphi }{\partial q^{l}}}~\mathbf {b} _{i}\quad \Rightarrow \quad [{\boldsymbol {\nabla }}\varphi ]^{i}=g^{li}~{\frac {\partial \varphi }{\partial q^{l}}}}Therefore,2φ=1g qi(gli φql g){\displaystyle \nabla ^{2}\varphi ={\cfrac {1}{\sqrt {g}}}~{\frac {\partial }{\partial q^{i}}}\left(g^{li}~{\frac {\partial \varphi }{\partial q^{l}}}~{\sqrt {g}}\right)}

Curl of a vector field

[edit]

The curl of a vector fieldv{\displaystyle \mathbf {v} } in covariant curvilinear coordinates can be written as×v=Erstvs|r bt{\displaystyle {\boldsymbol {\nabla }}\times \mathbf {v} ={\mathcal {E}}^{rst}v_{s|r}~\mathbf {b} _{t}}wherevs|r=vs,rΓsri vi{\displaystyle v_{s|r}=v_{s,r}-\Gamma _{sr}^{i}~v_{i}}

Orthogonal curvilinear coordinates

[edit]

Assume, for the purposes of this section, that the curvilinear coordinate system isorthogonal, i.e.,bibj={giiif i=j0if ij,{\displaystyle \mathbf {b} _{i}\cdot \mathbf {b} _{j}={\begin{cases}g_{ii}&{\text{if }}i=j\\0&{\text{if }}i\neq j,\end{cases}}}or equivalently,bibj={giiif i=j0if ij,{\displaystyle \mathbf {b} ^{i}\cdot \mathbf {b} ^{j}={\begin{cases}g^{ii}&{\text{if }}i=j\\0&{\text{if }}i\neq j,\end{cases}}}wheregii=gii1{\displaystyle g^{ii}=g_{ii}^{-1}}. As before,bi,bj{\displaystyle \mathbf {b} _{i},\mathbf {b} _{j}} are covariant basis vectors andbi{\displaystyle \mathbf {b} ^{i}},bj{\displaystyle \mathbf {b} ^{j}} are contravariant basis vectors. Also, let(e1,e2,e3){\displaystyle (\mathbf {e} ^{1},\mathbf {e} ^{2},\mathbf {e} ^{3})} be a background, fixed,Cartesian basis. A list of orthogonal curvilinear coordinates is given below.

Metric tensor in orthogonal curvilinear coordinates

[edit]
Main article:Metric tensor

Letr(x){\displaystyle \mathbf {r} (\mathbf {x} )} be theposition vector of the pointx{\displaystyle \mathbf {x} } with respect to the origin of the coordinate system. The notation can be simplified by noting thatx{\displaystyle \mathbf {x} } =r(x){\displaystyle \mathbf {r} (\mathbf {x} )}. At each point we can construct a small line elementdx{\displaystyle \mathrm {d} \mathbf {x} }. The square of the length of theline element is the scalar productdxdx{\displaystyle \mathrm {d} \mathbf {x} \cdot \mathrm {d} \mathbf {x} } and is called themetric of thespace. Recall that the space of interest is assumed to beEuclidean when we talk of curvilinear coordinates. Let us express the position vector in terms of the background, fixed, Cartesian basis, i.e.,x=i=13xi ei{\displaystyle \mathbf {x} =\sum _{i=1}^{3}x_{i}~\mathbf {e} _{i}}

Using thechain rule, we can then expressdx{\displaystyle \mathrm {d} \mathbf {x} } in terms of three-dimensional orthogonal curvilinear coordinates(q1,q2,q3){\displaystyle (q^{1},q^{2},q^{3})} asdx=i=13j=13(xiqj ei)dqj{\displaystyle \mathrm {d} \mathbf {x} =\sum _{i=1}^{3}\sum _{j=1}^{3}\left({\cfrac {\partial x_{i}}{\partial q^{j}}}~\mathbf {e} _{i}\right)\mathrm {d} q^{j}}Therefore, the metric is given bydxdx=i=13j=13k=13xiqj xiqk dqj dqk{\displaystyle \mathrm {d} \mathbf {x} \cdot \mathrm {d} \mathbf {x} =\sum _{i=1}^{3}\sum _{j=1}^{3}\sum _{k=1}^{3}{\cfrac {\partial x_{i}}{\partial q^{j}}}~{\cfrac {\partial x_{i}}{\partial q^{k}}}~\mathrm {d} q^{j}~\mathrm {d} q^{k}}

The symmetric quantitygij(qi,qj)=k=13xkqi xkqj=bibj{\displaystyle g_{ij}(q^{i},q^{j})=\sum _{k=1}^{3}{\cfrac {\partial x_{k}}{\partial q^{i}}}~{\cfrac {\partial x_{k}}{\partial q^{j}}}=\mathbf {b} _{i}\cdot \mathbf {b} _{j}}is called thefundamental (or metric) tensor of theEuclidean space in curvilinear coordinates.

Note also thatgij=xqixqj=(khki ek)(mhmj em)=khki hkj{\displaystyle g_{ij}={\cfrac {\partial \mathbf {x} }{\partial q^{i}}}\cdot {\cfrac {\partial \mathbf {x} }{\partial q^{j}}}=\left(\sum _{k}h_{ki}~\mathbf {e} _{k}\right)\cdot \left(\sum _{m}h_{mj}~\mathbf {e} _{m}\right)=\sum _{k}h_{ki}~h_{kj}}wherehij{\displaystyle h_{ij}} are the Lamé coefficients.

If we define the scale factors,hi{\displaystyle h_{i}}, usingbibi=gii=khki2=:hi2|xqi|=|bi|=gii=hi{\displaystyle \mathbf {b} _{i}\cdot \mathbf {b} _{i}=g_{ii}=\sum _{k}h_{ki}^{2}=:h_{i}^{2}\quad \Rightarrow \quad \left|{\cfrac {\partial \mathbf {x} }{\partial q^{i}}}\right|=\left|\mathbf {b} _{i}\right|={\sqrt {g_{ii}}}=h_{i}}we get a relation between the fundamental tensor and the Lamé coefficients.

Example: Polar coordinates

[edit]

If we consider polar coordinates forR2{\displaystyle \mathbb {R} ^{2}}, note that(x,y)=(rcosθ,rsinθ){\displaystyle (x,y)=(r\cos \theta ,r\sin \theta )}(r,θ){\displaystyle (r,\theta )} are the curvilinear coordinates, and the Jacobian determinant of the transformation(r,θ)(rcosθ,rsinθ){\displaystyle (r,\theta )\to (r\cos \theta ,r\sin \theta )} isr{\displaystyle r}.

Theorthogonal basis vectors arebr=(cosθ,sinθ){\displaystyle \mathbf {b} _{r}=(\cos \theta ,\sin \theta )},bθ=(rsinθ,rcosθ){\displaystyle \mathbf {b} _{\theta }=(-r\sin \theta ,r\cos \theta )}. The normalized basis vectors areer=(cosθ,sinθ){\displaystyle \mathbf {e} _{r}=(\cos \theta ,\sin \theta )},eθ=(sinθ,cosθ){\displaystyle \mathbf {e} _{\theta }=(-\sin \theta ,\cos \theta )} and the scale factors arehr=1{\displaystyle h_{r}=1} andhθ=r{\displaystyle h_{\theta }=r}. The fundamental tensor isg11=1{\displaystyle g_{11}=1},g22=r2{\displaystyle g_{22}=r^{2}},g12=g21=0{\displaystyle g_{12}=g_{21}=0}.

Line and surface integrals

[edit]

If we wish to use curvilinear coordinates forvector calculus calculations, adjustments need to be made in the calculation of line, surface and volume integrals. For simplicity, we again restrict the discussion to three dimensions and orthogonal curvilinear coordinates. However, the same arguments apply forn{\displaystyle n}-dimensional problems though there are some additional terms in the expressions when the coordinate system is not orthogonal.

Line integrals

[edit]

Normally in the calculation ofline integrals we are interested in calculatingCfds=abf(x(t))|xt|dt{\displaystyle \int _{C}f\,ds=\int _{a}^{b}f(\mathbf {x} (t))\left|{\partial \mathbf {x} \over \partial t}\right|\;dt}wherex(t){\displaystyle \mathbf {x} (t)} parametrizesC{\displaystyle C} in Cartesian coordinates.In curvilinear coordinates, the term

|xt|=|i=13xqiqit|{\displaystyle \left|{\partial \mathbf {x} \over \partial t}\right|=\left|\sum _{i=1}^{3}{\partial \mathbf {x} \over \partial q^{i}}{\partial q^{i} \over \partial t}\right|}

by thechain rule. And from the definition of the Lamé coefficients,

xqi=khki ek{\displaystyle {\partial \mathbf {x} \over \partial q^{i}}=\sum _{k}h_{ki}~\mathbf {e} _{k}}

and thus

|xt|=|k(ihki qit)ek|=ijkhki hkjqitqjt=ijgij qitqjt{\displaystyle {\begin{aligned}\left|{\partial \mathbf {x} \over \partial t}\right|&=\left|\sum _{k}\left(\sum _{i}h_{ki}~{\cfrac {\partial q^{i}}{\partial t}}\right)\mathbf {e} _{k}\right|\\[8pt]&={\sqrt {\sum _{i}\sum _{j}\sum _{k}h_{ki}~h_{kj}{\cfrac {\partial q^{i}}{\partial t}}{\cfrac {\partial q^{j}}{\partial t}}}}={\sqrt {\sum _{i}\sum _{j}g_{ij}~{\cfrac {\partial q^{i}}{\partial t}}{\cfrac {\partial q^{j}}{\partial t}}}}\end{aligned}}}

Now, sincegij=0{\displaystyle g_{ij}=0} whenij{\displaystyle i\neq j}, we have|xt|=igii (qit)2=ihi2 (qit)2{\displaystyle \left|{\partial \mathbf {x} \over \partial t}\right|={\sqrt {\sum _{i}g_{ii}~\left({\cfrac {\partial q^{i}}{\partial t}}\right)^{2}}}={\sqrt {\sum _{i}h_{i}^{2}~\left({\cfrac {\partial q^{i}}{\partial t}}\right)^{2}}}}and we can proceed normally.

Surface integrals

[edit]

Likewise, if we are interested in asurface integral, the relevant calculation, with the parameterization of the surface in Cartesian coordinates is:SfdS=Tf(x(s,t))|xs×xt|dsdt{\displaystyle \int _{S}f\,dS=\iint _{T}f(\mathbf {x} (s,t))\left|{\partial \mathbf {x} \over \partial s}\times {\partial \mathbf {x} \over \partial t}\right|\,ds\,dt}Again, in curvilinear coordinates, we have|xs×xt|=|(ixqiqis)×(jxqjqjt)|{\displaystyle \left|{\partial \mathbf {x} \over \partial s}\times {\partial \mathbf {x} \over \partial t}\right|=\left|\left(\sum _{i}{\partial \mathbf {x} \over \partial q^{i}}{\partial q^{i} \over \partial s}\right)\times \left(\sum _{j}{\partial \mathbf {x} \over \partial q^{j}}{\partial q^{j} \over \partial t}\right)\right|}and we make use of the definition of curvilinear coordinates again to yieldxqiqis=k(i=13hki qis)ek ;  xqjqjt=m(j=13hmj qjt)em{\displaystyle {\partial \mathbf {x} \over \partial q^{i}}{\partial q^{i} \over \partial s}=\sum _{k}\left(\sum _{i=1}^{3}h_{ki}~{\partial q^{i} \over \partial s}\right)\mathbf {e} _{k}~;~~{\partial \mathbf {x} \over \partial q^{j}}{\partial q^{j} \over \partial t}=\sum _{m}\left(\sum _{j=1}^{3}h_{mj}~{\partial q^{j} \over \partial t}\right)\mathbf {e} _{m}}

Therefore,|xs×xt|=|km(i=13hki qis)(j=13hmj qjt)ek×em|=|pkmEkmp(i=13hki qis)(j=13hmj qjt)ep|{\displaystyle {\begin{aligned}\left|{\partial \mathbf {x} \over \partial s}\times {\partial \mathbf {x} \over \partial t}\right|&=\left|\sum _{k}\sum _{m}\left(\sum _{i=1}^{3}h_{ki}~{\partial q^{i} \over \partial s}\right)\left(\sum _{j=1}^{3}h_{mj}~{\partial q^{j} \over \partial t}\right)\mathbf {e} _{k}\times \mathbf {e} _{m}\right|\\[8pt]&=\left|\sum _{p}\sum _{k}\sum _{m}{\mathcal {E}}_{kmp}\left(\sum _{i=1}^{3}h_{ki}~{\partial q^{i} \over \partial s}\right)\left(\sum _{j=1}^{3}h_{mj}~{\partial q^{j} \over \partial t}\right)\mathbf {e} _{p}\right|\end{aligned}}}whereE{\displaystyle {\mathcal {E}}} is thepermutation symbol.

In determinant form, the cross product in terms of curvilinear coordinates will be:|e1e2e3ih1iqisih2iqisih3iqisjh1jqjtjh2jqjtjh3jqjt|{\displaystyle {\begin{vmatrix}\mathbf {e} _{1}&\mathbf {e} _{2}&\mathbf {e} _{3}\\&&\\\sum _{i}h_{1i}{\partial q^{i} \over \partial s}&\sum _{i}h_{2i}{\partial q^{i} \over \partial s}&\sum _{i}h_{3i}{\partial q^{i} \over \partial s}\\&&\\\sum _{j}h_{1j}{\partial q^{j} \over \partial t}&\sum _{j}h_{2j}{\partial q^{j} \over \partial t}&\sum _{j}h_{3j}{\partial q^{j} \over \partial t}\end{vmatrix}}}

Grad, curl, div, Laplacian

[edit]

Inorthogonal curvilinear coordinates of 3 dimensions, wherebi=kgik bk ;  gii=1gii=1hi2{\displaystyle \mathbf {b} ^{i}=\sum _{k}g^{ik}~\mathbf {b} _{k}~;~~g^{ii}={\cfrac {1}{g_{ii}}}={\cfrac {1}{h_{i}^{2}}}}one can express thegradient of ascalar orvector field asφ=iφqi bi=ijφqi gij bj=i1hi2 fqi bi ;  v=i1hi2 vqibi{\displaystyle \nabla \varphi =\sum _{i}{\partial \varphi \over \partial q^{i}}~\mathbf {b} ^{i}=\sum _{i}\sum _{j}{\partial \varphi \over \partial q^{i}}~g^{ij}~\mathbf {b} _{j}=\sum _{i}{\cfrac {1}{h_{i}^{2}}}~{\partial f \over \partial q^{i}}~\mathbf {b} _{i}~;~~\nabla \mathbf {v} =\sum _{i}{\cfrac {1}{h_{i}^{2}}}~{\partial \mathbf {v} \over \partial q^{i}}\otimes \mathbf {b} _{i}}For an orthogonal basisg=g11 g22 g33=h12 h22 h32g=h1h2h3{\displaystyle g=g_{11}~g_{22}~g_{33}=h_{1}^{2}~h_{2}^{2}~h_{3}^{2}\quad \Rightarrow \quad {\sqrt {g}}=h_{1}h_{2}h_{3}}Thedivergence of a vector field can then be written asv=1h1h2h3 qi(h1h2h3 vi){\displaystyle {\boldsymbol {\nabla }}\cdot \mathbf {v} ={\cfrac {1}{h_{1}h_{2}h_{3}}}~{\frac {\partial }{\partial q^{i}}}(h_{1}h_{2}h_{3}~v^{i})}Also,vi=gik vkv1=g11 v1=v1h12 ;  v2=g22 v2=v2h22 ;  v3=g33 v3=v3h32{\displaystyle v^{i}=g^{ik}~v_{k}\quad \Rightarrow v^{1}=g^{11}~v_{1}={\cfrac {v_{1}}{h_{1}^{2}}}~;~~v^{2}=g^{22}~v_{2}={\cfrac {v_{2}}{h_{2}^{2}}}~;~~v^{3}=g^{33}~v_{3}={\cfrac {v_{3}}{h_{3}^{2}}}}Therefore,v=1h1h2h3 iqi(h1h2h3hi2 vi){\displaystyle {\boldsymbol {\nabla }}\cdot \mathbf {v} ={\cfrac {1}{h_{1}h_{2}h_{3}}}~\sum _{i}{\frac {\partial }{\partial q^{i}}}\left({\cfrac {h_{1}h_{2}h_{3}}{h_{i}^{2}}}~v_{i}\right)}We can get an expression for theLaplacian in a similar manner by noting thatgli φql={g11 φq1,g22 φq2,g33 φq3}={1h12 φq1,1h22 φq2,1h32 φq3}{\displaystyle g^{li}~{\frac {\partial \varphi }{\partial q^{l}}}=\left\{g^{11}~{\frac {\partial \varphi }{\partial q^{1}}},g^{22}~{\frac {\partial \varphi }{\partial q^{2}}},g^{33}~{\frac {\partial \varphi }{\partial q^{3}}}\right\}=\left\{{\cfrac {1}{h_{1}^{2}}}~{\frac {\partial \varphi }{\partial q^{1}}},{\cfrac {1}{h_{2}^{2}}}~{\frac {\partial \varphi }{\partial q^{2}}},{\cfrac {1}{h_{3}^{2}}}~{\frac {\partial \varphi }{\partial q^{3}}}\right\}}Then we have2φ=1h1h2h3 iqi(h1h2h3hi2 φqi){\displaystyle \nabla ^{2}\varphi ={\cfrac {1}{h_{1}h_{2}h_{3}}}~\sum _{i}{\frac {\partial }{\partial q^{i}}}\left({\cfrac {h_{1}h_{2}h_{3}}{h_{i}^{2}}}~{\frac {\partial \varphi }{\partial q^{i}}}\right)}The expressions for the gradient, divergence, and Laplacian can be directly extended ton{\displaystyle n}-dimensions.

Thecurl of avector field is given by×v=1h1h2h3i=1neijkεijkhi(hkvk)qj{\displaystyle \nabla \times \mathbf {v} ={\frac {1}{h_{1}h_{2}h_{3}}}\sum _{i=1}^{n}\mathbf {e} _{i}\sum _{jk}\varepsilon _{ijk}h_{i}{\frac {\partial (h_{k}v_{k})}{\partial q^{j}}}}whereεijk{\displaystyle \varepsilon _{ijk}} is theLevi-Civita symbol.

Example: Cylindrical polar coordinates

[edit]

Forcylindrical coordinates we have(x1,x2,x3)=x=φ(q1,q2,q3)=φ(r,θ,z)={rcosθ,rsinθ,z}{\displaystyle (x_{1},x_{2},x_{3})=\mathbf {x} ={\boldsymbol {\varphi }}(q^{1},q^{2},q^{3})={\boldsymbol {\varphi }}(r,\theta ,z)=\{r\cos \theta ,r\sin \theta ,z\}}and{ψ1(x),ψ2(x),ψ3(x)}=(q1,q2,q3)(r,θ,z)={x12+x22,tan1(x2/x1),x3}{\displaystyle \{\psi ^{1}(\mathbf {x} ),\psi ^{2}(\mathbf {x} ),\psi ^{3}(\mathbf {x} )\}=(q^{1},q^{2},q^{3})\equiv (r,\theta ,z)=\{{\sqrt {x_{1}^{2}+x_{2}^{2}}},\tan ^{-1}(x_{2}/x_{1}),x_{3}\}}where0<r< ,  0<θ<2π ,  <z<{\displaystyle 0<r<\infty ~,~~0<\theta <2\pi ~,~~-\infty <z<\infty }

Then the covariant and contravariant basis vectors areb1=er=b1b2=r eθ=r2 b2b3=ez=b3{\displaystyle {\begin{aligned}\mathbf {b} _{1}&=\mathbf {e} _{r}=\mathbf {b} ^{1}\\\mathbf {b} _{2}&=r~\mathbf {e} _{\theta }=r^{2}~\mathbf {b} ^{2}\\\mathbf {b} _{3}&=\mathbf {e} _{z}=\mathbf {b} ^{3}\end{aligned}}}whereer,eθ,ez{\displaystyle \mathbf {e} _{r},\mathbf {e} _{\theta },\mathbf {e} _{z}} are the unit vectors in ther,θ,z{\displaystyle r,\theta ,z} directions.

Note that the components of the metric tensor are such thatgij=gij=0(ij) ;  g11=1, g22=1r, g33=1{\displaystyle g^{ij}=g_{ij}=0(i\neq j)~;~~{\sqrt {g^{11}}}=1,~{\sqrt {g^{22}}}={\cfrac {1}{r}},~{\sqrt {g^{33}}}=1}which shows that the basis is orthogonal.

The non-zero components of the Christoffel symbol of the second kind areΓ122=Γ212=1r ;  Γ221=r{\displaystyle \Gamma _{12}^{2}=\Gamma _{21}^{2}={\cfrac {1}{r}}~;~~\Gamma _{22}^{1}=-r}

Representing a physical vector field

[edit]

The normalized contravariant basis vectors in cylindrical polar coordinates areb^1=er ;  b^2=eθ ;  b^3=ez{\displaystyle {\hat {\mathbf {b} }}^{1}=\mathbf {e} _{r}~;~~{\hat {\mathbf {b} }}^{2}=\mathbf {e} _{\theta }~;~~{\hat {\mathbf {b} }}^{3}=\mathbf {e} _{z}}and the physical components of a vectorv{\displaystyle \mathbf {v} } are(v^1,v^2,v^3)=(v1,v2/r,v3)=:(vr,vθ,vz){\displaystyle ({\hat {v}}_{1},{\hat {v}}_{2},{\hat {v}}_{3})=(v_{1},v_{2}/r,v_{3})=:(v_{r},v_{\theta },v_{z})}

Gradient of a scalar field

[edit]

The gradient of a scalar field,f(x){\displaystyle f(\mathbf {x} )}, in cylindrical coordinates can now be computed from the general expression in curvilinear coordinates and has the formf=fr er+1r fθ eθ+fz ez{\displaystyle {\boldsymbol {\nabla }}f={\cfrac {\partial f}{\partial r}}~\mathbf {e} _{r}+{\cfrac {1}{r}}~{\cfrac {\partial f}{\partial \theta }}~\mathbf {e} _{\theta }+{\cfrac {\partial f}{\partial z}}~\mathbf {e} _{z}}

Gradient of a vector field

[edit]

Similarly, the gradient of a vector field,v(x){\displaystyle \mathbf {v} (\mathbf {x} )}, in cylindrical coordinates can be shown to bev=vrr erer+1r(vrθvθ) ereθ+vrz erez+vθr eθer+1r(vθθ+vr) eθeθ+vθz eθez+vzr ezer+1rvzθ ezeθ+vzz ezez{\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\mathbf {v} &={\cfrac {\partial v_{r}}{\partial r}}~\mathbf {e} _{r}\otimes \mathbf {e} _{r}+{\cfrac {1}{r}}\left({\cfrac {\partial v_{r}}{\partial \theta }}-v_{\theta }\right)~\mathbf {e} _{r}\otimes \mathbf {e} _{\theta }+{\cfrac {\partial v_{r}}{\partial z}}~\mathbf {e} _{r}\otimes \mathbf {e} _{z}\\[8pt]&+{\cfrac {\partial v_{\theta }}{\partial r}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{r}+{\cfrac {1}{r}}\left({\cfrac {\partial v_{\theta }}{\partial \theta }}+v_{r}\right)~\mathbf {e} _{\theta }\otimes \mathbf {e} _{\theta }+{\cfrac {\partial v_{\theta }}{\partial z}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{z}\\[8pt]&+{\cfrac {\partial v_{z}}{\partial r}}~\mathbf {e} _{z}\otimes \mathbf {e} _{r}+{\cfrac {1}{r}}{\cfrac {\partial v_{z}}{\partial \theta }}~\mathbf {e} _{z}\otimes \mathbf {e} _{\theta }+{\cfrac {\partial v_{z}}{\partial z}}~\mathbf {e} _{z}\otimes \mathbf {e} _{z}\end{aligned}}}

Divergence of a vector field

[edit]

Using the equation for the divergence of a vector field in curvilinear coordinates, the divergence in cylindrical coordinates can be shown to bev=vrr+1r(vθθ+vr)+vzz{\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\cdot \mathbf {v} &={\cfrac {\partial v_{r}}{\partial r}}+{\cfrac {1}{r}}\left({\cfrac {\partial v_{\theta }}{\partial \theta }}+v_{r}\right)+{\cfrac {\partial v_{z}}{\partial z}}\end{aligned}}}

Laplacian of a scalar field

[edit]

The Laplacian is more easily computed by noting that2f=f{\displaystyle {\boldsymbol {\nabla }}^{2}f={\boldsymbol {\nabla }}\cdot {\boldsymbol {\nabla }}f}. In cylindrical polar coordinatesv=f=[vr  vθ  vz]=[fr  1rfθ  fz]{\displaystyle \mathbf {v} ={\boldsymbol {\nabla }}f=\left[v_{r}~~v_{\theta }~~v_{z}\right]=\left[{\cfrac {\partial f}{\partial r}}~~{\cfrac {1}{r}}{\cfrac {\partial f}{\partial \theta }}~~{\cfrac {\partial f}{\partial z}}\right]}Hence,v=2f=2fr2+1r(1r2fθ2+fr)+2fz2=1r[r(rfr)]+1r22fθ2+2fz2{\displaystyle {\boldsymbol {\nabla }}\cdot \mathbf {v} ={\boldsymbol {\nabla }}^{2}f={\cfrac {\partial ^{2}f}{\partial r^{2}}}+{\cfrac {1}{r}}\left({\cfrac {1}{r}}{\cfrac {\partial ^{2}f}{\partial \theta ^{2}}}+{\cfrac {\partial f}{\partial r}}\right)+{\cfrac {\partial ^{2}f}{\partial z^{2}}}={\cfrac {1}{r}}\left[{\cfrac {\partial }{\partial r}}\left(r{\cfrac {\partial f}{\partial r}}\right)\right]+{\cfrac {1}{r^{2}}}{\cfrac {\partial ^{2}f}{\partial \theta ^{2}}}+{\cfrac {\partial ^{2}f}{\partial z^{2}}}}

Representing a physical second-order tensor field

[edit]

The physical components of a second-order tensor field are those obtained when the tensor is expressed in terms of a normalized contravariant basis. In cylindrical polar coordinates these components are:

S^11=S11=:Srr,S^12=S12r=:Srθ,S^13=S13=:SrzS^21=S21r=:Sθr,S^22=S22r2=:Sθθ,S^23=S23r=:SθzS^31=S31=:Szr,S^32=S32r=:Szθ,S^33=S33=:Szz{\displaystyle {\begin{aligned}{\hat {S}}_{11}&=S_{11}=:S_{rr},&{\hat {S}}_{12}&={\frac {S_{12}}{r}}=:S_{r\theta },&{\hat {S}}_{13}&=S_{13}=:S_{rz}\\[6pt]{\hat {S}}_{21}&={\frac {S_{21}}{r}}=:S_{\theta r},&{\hat {S}}_{22}&={\frac {S_{22}}{r^{2}}}=:S_{\theta \theta },&{\hat {S}}_{23}&={\frac {S_{23}}{r}}=:S_{\theta z}\\[6pt]{\hat {S}}_{31}&=S_{31}=:S_{zr},&{\hat {S}}_{32}&={\frac {S_{32}}{r}}=:S_{z\theta },&{\hat {S}}_{33}&=S_{33}=:S_{zz}\end{aligned}}}

Gradient of a second-order tensor field

[edit]

Using the above definitions we can show that the gradient of a second-order tensor field in cylindrical polar coordinates can be expressed asS=Srrr ererer+1r[Srrθ(Sθr+Srθ)] erereθ+Srrz ererez+Srθr ereθer+1r[Srθθ+(SrrSθθ)] ereθeθ+Srθz ereθez+Srzr erezer+1r[SrzθSθz] erezeθ+Srzz erezez+Sθrr eθerer+1r[Sθrθ+(SrrSθθ)] eθereθ+Sθrz eθerez+Sθθr eθeθer+1r[Sθθθ+(Srθ+Sθr)] eθeθeθ+Sθθz eθeθez+Sθzr eθezer+1r[Sθzθ+Srz] eθezeθ+Sθzz eθezez+Szrr ezerer+1r[SzrθSzθ] ezereθ+Szrz ezerez+Szθr ezeθer+1r[Szθθ+Szr] ezeθeθ+Szθz ezeθez+Szzr ezezer+1r Szzθ ezezeθ+Szzz ezezez{\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}{\boldsymbol {S}}&={\frac {\partial S_{rr}}{\partial r}}~\mathbf {e} _{r}\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{r}+{\cfrac {1}{r}}\left[{\frac {\partial S_{rr}}{\partial \theta }}-(S_{\theta r}+S_{r\theta })\right]~\mathbf {e} _{r}\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{\theta }+{\frac {\partial S_{rr}}{\partial z}}~\mathbf {e} _{r}\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{z}\\[8pt]&+{\frac {\partial S_{r\theta }}{\partial r}}~\mathbf {e} _{r}\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{r}+{\cfrac {1}{r}}\left[{\frac {\partial S_{r\theta }}{\partial \theta }}+(S_{rr}-S_{\theta \theta })\right]~\mathbf {e} _{r}\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{\theta }+{\frac {\partial S_{r\theta }}{\partial z}}~\mathbf {e} _{r}\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{z}\\[8pt]&+{\frac {\partial S_{rz}}{\partial r}}~\mathbf {e} _{r}\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{r}+{\cfrac {1}{r}}\left[{\frac {\partial S_{rz}}{\partial \theta }}-S_{\theta z}\right]~\mathbf {e} _{r}\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{\theta }+{\frac {\partial S_{rz}}{\partial z}}~\mathbf {e} _{r}\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{z}\\[8pt]&+{\frac {\partial S_{\theta r}}{\partial r}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{r}+{\cfrac {1}{r}}\left[{\frac {\partial S_{\theta r}}{\partial \theta }}+(S_{rr}-S_{\theta \theta })\right]~\mathbf {e} _{\theta }\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{\theta }+{\frac {\partial S_{\theta r}}{\partial z}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{z}\\[8pt]&+{\frac {\partial S_{\theta \theta }}{\partial r}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{r}+{\cfrac {1}{r}}\left[{\frac {\partial S_{\theta \theta }}{\partial \theta }}+(S_{r\theta }+S_{\theta r})\right]~\mathbf {e} _{\theta }\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{\theta }+{\frac {\partial S_{\theta \theta }}{\partial z}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{z}\\[8pt]&+{\frac {\partial S_{\theta z}}{\partial r}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{r}+{\cfrac {1}{r}}\left[{\frac {\partial S_{\theta z}}{\partial \theta }}+S_{rz}\right]~\mathbf {e} _{\theta }\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{\theta }+{\frac {\partial S_{\theta z}}{\partial z}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{z}\\[8pt]&+{\frac {\partial S_{zr}}{\partial r}}~\mathbf {e} _{z}\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{r}+{\cfrac {1}{r}}\left[{\frac {\partial S_{zr}}{\partial \theta }}-S_{z\theta }\right]~\mathbf {e} _{z}\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{\theta }+{\frac {\partial S_{zr}}{\partial z}}~\mathbf {e} _{z}\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{z}\\[8pt]&+{\frac {\partial S_{z\theta }}{\partial r}}~\mathbf {e} _{z}\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{r}+{\cfrac {1}{r}}\left[{\frac {\partial S_{z\theta }}{\partial \theta }}+S_{zr}\right]~\mathbf {e} _{z}\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{\theta }+{\frac {\partial S_{z\theta }}{\partial z}}~\mathbf {e} _{z}\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{z}\\[8pt]&+{\frac {\partial S_{zz}}{\partial r}}~\mathbf {e} _{z}\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{r}+{\cfrac {1}{r}}~{\frac {\partial S_{zz}}{\partial \theta }}~\mathbf {e} _{z}\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{\theta }+{\frac {\partial S_{zz}}{\partial z}}~\mathbf {e} _{z}\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{z}\end{aligned}}}

Divergence of a second-order tensor field

[edit]

The divergence of a second-order tensor field in cylindrical polar coordinates can be obtained from the expression for the gradient by collecting terms where the scalar product of the two outer vectors in the dyadic products is nonzero. Therefore,S=Srrr er+Srθr eθ+Srzr ez+1r[Srθθ+(SrrSθθ)] er+1r[Sθθθ+(Srθ+Sθr)] eθ+1r[Sθzθ+Srz] ez+Szrz er+Szθz eθ+Szzz ez{\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\cdot {\boldsymbol {S}}&={\frac {\partial S_{rr}}{\partial r}}~\mathbf {e} _{r}+{\frac {\partial S_{r\theta }}{\partial r}}~\mathbf {e} _{\theta }+{\frac {\partial S_{rz}}{\partial r}}~\mathbf {e} _{z}\\[8pt]&+{\cfrac {1}{r}}\left[{\frac {\partial S_{r\theta }}{\partial \theta }}+(S_{rr}-S_{\theta \theta })\right]~\mathbf {e} _{r}+{\cfrac {1}{r}}\left[{\frac {\partial S_{\theta \theta }}{\partial \theta }}+(S_{r\theta }+S_{\theta r})\right]~\mathbf {e} _{\theta }+{\cfrac {1}{r}}\left[{\frac {\partial S_{\theta z}}{\partial \theta }}+S_{rz}\right]~\mathbf {e} _{z}\\[8pt]&+{\frac {\partial S_{zr}}{\partial z}}~\mathbf {e} _{r}+{\frac {\partial S_{z\theta }}{\partial z}}~\mathbf {e} _{\theta }+{\frac {\partial S_{zz}}{\partial z}}~\mathbf {e} _{z}\end{aligned}}}

See also

[edit]

References

[edit]
Notes
  1. ^abcGreen, A. E.; Zerna, W. (1968).Theoretical Elasticity. Oxford University Press.ISBN 0-19-853486-8.
  2. ^abcOgden, R. W. (2000).Nonlinear elastic deformations. Dover.
  3. ^Naghdi, P. M. (1972). "Theory of shells and plates". In S. Flügge (ed.).Handbook of Physics. Vol. VIa/2. pp. 425–640.
  4. ^abcdefghijkSimmonds, J. G. (1994).A brief on tensor analysis. Springer.ISBN 0-387-90639-8.
  5. ^abBasar, Y.; Weichert, D. (2000).Numerical continuum mechanics of solids: fundamental concepts and perspectives. Springer.
  6. ^abcCiarlet, P. G. (2000).Theory of Shells. Vol. 1. Elsevier Science.
  7. ^Einstein, A. (1915). "Contribution to the Theory of General Relativity". In Laczos, C. (ed.).The Einstein Decade. p. 213.
  8. ^Misner, C. W.; Thorne, K. S.; Wheeler, J. A. (1973).Gravitation. W. H. Freeman and Co.ISBN 0-7167-0344-0.
  9. ^Greenleaf, A.; Lassas, M.; Uhlmann, G. (2003). "Anisotropic conductivities that cannot be detected by EIT".Physiological Measurement.24 (2):413–419.doi:10.1088/0967-3334/24/2/353.PMID 12812426.S2CID 250813768.
  10. ^Leonhardt, U.; Philbin, T. G. (2006). "General relativity in electrical engineering".New Journal of Physics.8 (10): 247.arXiv:cond-mat/0607418.Bibcode:2006NJPh....8..247L.doi:10.1088/1367-2630/8/10/247.S2CID 12100599.
  11. ^"The divergence of a tensor field".Introduction to Elasticity/Tensors.Wikiversity. Retrieved2010-11-26.
Further reading
  • Spiegel, M. R. (1959).Vector Analysis. New York: Schaum's Outline Series.ISBN 0-07-084378-3.{{cite book}}:ISBN / Date incompatibility (help)
  • Arfken, George (1995).Mathematical Methods for Physicists. Academic Press.ISBN 0-12-059877-9.

External links

[edit]
Two dimensional
Three dimensional
Scope
Mathematics
Notation
Tensor
definitions
Operations
Related
abstractions
Notable tensors
Mathematics
Physics
Mathematicians
Retrieved from "https://en.wikipedia.org/w/index.php?title=Tensors_in_curvilinear_coordinates&oldid=1322697727"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp