Curvilinear coordinates can be formulated intensor calculus , with important applications inphysics andengineering , particularly for describing transportation of physical quantities and deformation of matter influid mechanics andcontinuum mechanics .
Vector and tensor algebra in three-dimensional curvilinear coordinates [ edit ] Elementary vector and tensor algebra in curvilinear coordinates is used in some of the older scientific literature inmechanics andphysics and can be indispensable to understanding work from the early and mid 1900s, for example the text by Green and Zerna.[ 1] Some useful relations in the algebra of vectors and second-order tensors in curvilinear coordinates are given in this section. The notation and contents are primarily from Ogden,[ 2] Naghdi,[ 3] Simmonds,[ 4] Green and Zerna,[ 1] Basar and Weichert,[ 5] and Ciarlet.[ 6]
Coordinate transformations [ edit ] Consider two coordinate systems with coordinate variables( Z 1 , Z 2 , Z 3 ) {\displaystyle (Z^{1},Z^{2},Z^{3})} and( Z 1 ´ , Z 2 ´ , Z 3 ´ ) {\displaystyle (Z^{\acute {1}},Z^{\acute {2}},Z^{\acute {3}})} , which we shall represent in short as justZ i {\displaystyle Z^{i}} andZ i ´ {\displaystyle Z^{\acute {i}}} respectively and always assume our indexi {\displaystyle i} runs from 1 through 3. We shall assume that these coordinates systems are embedded in the three-dimensional euclidean space. CoordinatesZ i {\displaystyle Z^{i}} andZ i ´ {\displaystyle Z^{\acute {i}}} may be used to explain each other, because as we move along the coordinate line in one coordinate system we can use the other to describe our position. In this way CoordinatesZ i {\displaystyle Z^{i}} andZ i ´ {\displaystyle Z^{\acute {i}}} are functions of each other
Z i = f i ( Z 1 ´ , Z 2 ´ , Z 3 ´ ) {\displaystyle Z^{i}=f^{i}(Z^{\acute {1}},Z^{\acute {2}},Z^{\acute {3}})} fori = 1 , 2 , 3 {\displaystyle i=1,2,3}
which can be written as
Z i = Z i ( Z 1 ´ , Z 2 ´ , Z 3 ´ ) = Z i ( Z i ´ ) {\displaystyle Z^{i}=Z^{i}(Z^{\acute {1}},Z^{\acute {2}},Z^{\acute {3}})=Z^{i}(Z^{\acute {i}})} fori ´ , i = 1 , 2 , 3 {\displaystyle {\acute {i}},i=1,2,3}
These three equations together are also called a coordinate transformation fromZ i ´ {\displaystyle Z^{\acute {i}}} toZ i {\displaystyle Z^{i}} . Let us denote this transformation byT {\displaystyle T} . We will therefore represent the transformation from the coordinate system with coordinate variablesZ i ´ {\displaystyle Z^{\acute {i}}} to the coordinate system with coordinatesZ i {\displaystyle Z^{i}} as:
Z = T ( z ´ ) {\displaystyle Z=T({\acute {z}})}
Similarly we can representZ i ´ {\displaystyle Z^{\acute {i}}} as a function ofZ i {\displaystyle Z^{i}} as follows:
Z i ´ = g i ´ ( Z 1 , Z 2 , Z 3 ) {\displaystyle Z^{\acute {i}}=g^{\acute {i}}(Z^{1},Z^{2},Z^{3})} fori ´ = 1 , 2 , 3 {\displaystyle {\acute {i}}=1,2,3}
and we can write the free equations more compactly as
Z i ´ = Z i ´ ( Z 1 , Z 2 , Z 3 ) = Z i ´ ( Z i ) {\displaystyle Z^{\acute {i}}=Z^{\acute {i}}(Z^{1},Z^{2},Z^{3})=Z^{\acute {i}}(Z^{i})} fori ´ , i = 1 , 2 , 3 {\displaystyle {\acute {i}},i=1,2,3}
These three equations together are also called a coordinate transformation fromZ i {\displaystyle Z^{i}} toZ i ´ {\displaystyle Z^{\acute {i}}} . Let us denote this transformation byS {\displaystyle S} . We will represent the transformation from the coordinate system with coordinate variablesZ i {\displaystyle Z^{i}} to the coordinate system with coordinatesZ i ´ {\displaystyle Z^{\acute {i}}} as:
z ´ = S ( z ) {\displaystyle {\acute {z}}=S(z)}
If the transformationT {\displaystyle T} is bijective then we call the image of the transformation, namelyZ i {\displaystyle Z^{i}} , a set ofadmissible coordinates for Z i ´ {\displaystyle Z^{\acute {i}}} . IfT {\displaystyle T} is linear the coordinate systemZ i {\displaystyle Z^{i}} will be called anaffine coordinate system , otherwiseZ i {\displaystyle Z^{i}} is called acurvilinear coordinate system .
As we now see that the CoordinatesZ i {\displaystyle Z^{i}} andZ i ´ {\displaystyle Z^{\acute {i}}} are functions of each other, we can take the derivative of the coordinate variableZ i {\displaystyle Z^{i}} with respect to the coordinate variableZ i ´ {\displaystyle Z^{\acute {i}}} .
Consider
∂ Z i ∂ Z i ´ = d e f J i ´ i {\displaystyle {\frac {\partial {Z^{i}}}{\partial {Z^{\acute {i}}}}}\;{\overset {\underset {\mathrm {def} }{}}{=}}\;J_{\acute {i}}^{i}} fori ´ , i = 1 , 2 , 3 {\displaystyle {\acute {i}},i=1,2,3} , these derivatives can be arranged in a matrix, sayJ {\displaystyle J} , in whichJ i ´ i {\displaystyle J_{\acute {i}}^{i}} is the element in thei {\displaystyle i} -th row andi ´ {\displaystyle {\acute {i}}} -th column
J = ( J 1 ´ 1 J 2 ´ 1 J 3 ´ 1 J 1 ´ 2 J 2 ´ 2 J 3 ´ 2 J 1 ´ 3 J 2 ´ 3 J 3 ´ 3 ) = ( ∂ Z 1 ∂ Z 1 ´ ∂ Z 1 ∂ Z 2 ´ ∂ Z 1 ∂ Z 3 ´ ∂ Z 2 ∂ Z 1 ´ ∂ Z 2 ∂ Z 2 ´ ∂ Z 2 ∂ Z 3 ´ ∂ Z 3 ∂ Z 1 ´ ∂ Z 3 ∂ Z 2 ´ ∂ Z 3 ∂ Z 3 ´ ) {\displaystyle J={\begin{pmatrix}J_{\acute {1}}^{1}&J_{\acute {2}}^{1}&J_{\acute {3}}^{1}\\J_{\acute {1}}^{2}&J_{\acute {2}}^{2}&J_{\acute {3}}^{2}\\J_{\acute {1}}^{3}&J_{\acute {2}}^{3}&J_{\acute {3}}^{3}\end{pmatrix}}={\begin{pmatrix}{\partial {Z^{1}} \over \partial {Z^{\acute {1}}}}&{\partial {Z^{1}} \over \partial {Z^{\acute {2}}}}&{\partial {Z^{1}} \over \partial {Z^{\acute {3}}}}\\{\partial {Z^{2}} \over \partial {Z^{\acute {1}}}}&{\partial {Z^{2}} \over \partial {Z^{\acute {2}}}}&{\partial {Z^{2}} \over \partial {Z^{\acute {3}}}}\\{\partial {Z^{3}} \over \partial {Z^{\acute {1}}}}&{\partial {Z^{3}} \over \partial {Z^{\acute {2}}}}&{\partial {Z^{3}} \over \partial {Z^{\acute {3}}}}\end{pmatrix}}}
The resultant matrix is called the Jacobian matrix.
Vectors in curvilinear coordinates [ edit ] Let( b 1 , b 2 , b 3 ) {\displaystyle (\mathbf {b} _{1},\mathbf {b} _{2},\mathbf {b} _{3})} be an arbitrary basis for three-dimensional Euclidean space. In general, the basis vectors areneither unit vectors nor mutually orthogonal . However, they are required to be linearly independent. Then a vectorv {\displaystyle \mathbf {v} } can be expressed as[ 4] : 27 v = v k b k {\displaystyle \mathbf {v} =v^{k}\,\mathbf {b} _{k}} The componentsv k {\displaystyle v^{k}} are thecontravariant components of the vectorv {\displaystyle \mathbf {v} } .
Thereciprocal basis ( b 1 , b 2 , b 3 ) {\displaystyle (\mathbf {b} ^{1},\mathbf {b} ^{2},\mathbf {b} ^{3})} is defined by the relation[ 4] : 28–29 b i ⋅ b j = δ j i {\displaystyle \mathbf {b} ^{i}\cdot \mathbf {b} _{j}=\delta _{j}^{i}} whereδ j i {\displaystyle \delta _{j}^{i}} is theKronecker delta .
The vectorv {\displaystyle \mathbf {v} } can also be expressed in terms of the reciprocal basis:v = v k b k {\displaystyle \mathbf {v} =v_{k}~\mathbf {b} ^{k}} The componentsv k {\displaystyle v_{k}} are thecovariant components of the vectorv {\displaystyle \mathbf {v} } .
Second-order tensors in curvilinear coordinates [ edit ] A second-order tensor can be expressed asS = S i j b i ⊗ b j = S j i b i ⊗ b j = S i j b i ⊗ b j = S i j b i ⊗ b j {\displaystyle {\boldsymbol {S}}=S^{ij}~\mathbf {b} _{i}\otimes \mathbf {b} _{j}=S_{~j}^{i}~\mathbf {b} _{i}\otimes \mathbf {b} ^{j}=S_{i}^{~j}~\mathbf {b} ^{i}\otimes \mathbf {b} _{j}=S_{ij}~\mathbf {b} ^{i}\otimes \mathbf {b} ^{j}} The componentsS i j {\displaystyle S^{ij}} are called thecontravariant components,S j i {\displaystyle S_{~j}^{i}} themixed right-covariant components,S i j {\displaystyle S_{i}^{~j}} themixed left-covariant components, andS i j {\displaystyle S_{ij}} thecovariant components of the second-order tensor.
Metric tensor and relations between components [ edit ] The quantitiesg i j {\displaystyle g_{ij}} ,g i j {\displaystyle g^{ij}} are defined as[ 4] : 39
g i j = b i ⋅ b j = g j i ; g i j = b i ⋅ b j = g j i {\displaystyle g_{ij}=\mathbf {b} _{i}\cdot \mathbf {b} _{j}=g_{ji}~;~~g^{ij}=\mathbf {b} ^{i}\cdot \mathbf {b} ^{j}=g^{ji}} From the above equations we havev i = g i k v k ; v i = g i k v k ; b i = g i j b j ; b i = g i j b j {\displaystyle v^{i}=g^{ik}~v_{k}~;~~v_{i}=g_{ik}~v^{k}~;~~\mathbf {b} ^{i}=g^{ij}~\mathbf {b} _{j}~;~~\mathbf {b} _{i}=g_{ij}~\mathbf {b} ^{j}}
The components of a vector are related by[ 4] : 30–32 v ⋅ b i = v k b k ⋅ b i = v k δ k i = v i {\displaystyle \mathbf {v} \cdot \mathbf {b} ^{i}=v^{k}~\mathbf {b} _{k}\cdot \mathbf {b} ^{i}=v^{k}~\delta _{k}^{i}=v^{i}} v ⋅ b i = v k b k ⋅ b i = v k δ i k = v i {\displaystyle \mathbf {v} \cdot \mathbf {b} _{i}=v_{k}~\mathbf {b} ^{k}\cdot \mathbf {b} _{i}=v_{k}~\delta _{i}^{k}=v_{i}} Also,v ⋅ b i = v k b k ⋅ b i = g k i v k {\displaystyle \mathbf {v} \cdot \mathbf {b} _{i}=v^{k}~\mathbf {b} _{k}\cdot \mathbf {b} _{i}=g_{ki}~v^{k}} v ⋅ b i = v k b k ⋅ b i = g k i v k {\displaystyle \mathbf {v} \cdot \mathbf {b} ^{i}=v_{k}~\mathbf {b} ^{k}\cdot \mathbf {b} ^{i}=g^{ki}~v_{k}}
The components of the second-order tensor are related byS i j = g i k S k j = g j k S k i = g i k g j l S k l {\displaystyle S^{ij}=g^{ik}~S_{k}^{~j}=g^{jk}~S_{~k}^{i}=g^{ik}~g^{jl}~S_{kl}}
The alternating tensor [ edit ] In an orthonormal right-handed basis, the third-orderalternating tensor is defined asE = ε i j k e i ⊗ e j ⊗ e k {\displaystyle {\boldsymbol {\mathcal {E}}}=\varepsilon _{ijk}~\mathbf {e} ^{i}\otimes \mathbf {e} ^{j}\otimes \mathbf {e} ^{k}} In a general curvilinear basis the same tensor may be expressed asE = E i j k b i ⊗ b j ⊗ b k = E i j k b i ⊗ b j ⊗ b k {\displaystyle {\boldsymbol {\mathcal {E}}}={\mathcal {E}}_{ijk}~\mathbf {b} ^{i}\otimes \mathbf {b} ^{j}\otimes \mathbf {b} ^{k}={\mathcal {E}}^{ijk}~\mathbf {b} _{i}\otimes \mathbf {b} _{j}\otimes \mathbf {b} _{k}} It can be shown thatE i j k = [ b i , b j , b k ] = ( b i × b j ) ⋅ b k ; E i j k = [ b i , b j , b k ] {\displaystyle {\mathcal {E}}_{ijk}=\left[\mathbf {b} _{i},\mathbf {b} _{j},\mathbf {b} _{k}\right]=(\mathbf {b} _{i}\times \mathbf {b} _{j})\cdot \mathbf {b} _{k}~;~~{\mathcal {E}}^{ijk}=\left[\mathbf {b} ^{i},\mathbf {b} ^{j},\mathbf {b} ^{k}\right]} Now,b i × b j = J ε i j p b p = g ε i j p b p {\displaystyle \mathbf {b} _{i}\times \mathbf {b} _{j}=J~\varepsilon _{ijp}~\mathbf {b} ^{p}={\sqrt {g}}~\varepsilon _{ijp}~\mathbf {b} ^{p}} Hence,E i j k = J ε i j k = g ε i j k {\displaystyle {\mathcal {E}}_{ijk}=J~\varepsilon _{ijk}={\sqrt {g}}~\varepsilon _{ijk}} Similarly, we can show thatE i j k = 1 J ε i j k = 1 g ε i j k {\displaystyle {\mathcal {E}}^{ijk}={\cfrac {1}{J}}~\varepsilon ^{ijk}={\cfrac {1}{\sqrt {g}}}~\varepsilon ^{ijk}}
The identity mapI {\displaystyle \mathbf {I} } defined byI ⋅ v = v {\displaystyle \mathbf {I} \cdot \mathbf {v} =\mathbf {v} } can be shown to be:[ 4] : 39
I = g i j b i ⊗ b j = g i j b i ⊗ b j = b i ⊗ b i = b i ⊗ b i {\displaystyle \mathbf {I} =g^{ij}\mathbf {b} _{i}\otimes \mathbf {b} _{j}=g_{ij}\mathbf {b} ^{i}\otimes \mathbf {b} ^{j}=\mathbf {b} _{i}\otimes \mathbf {b} ^{i}=\mathbf {b} ^{i}\otimes \mathbf {b} _{i}}
Scalar (dot) product[ edit ] The scalar product of two vectors in curvilinear coordinates is[ 4] : 32
u ⋅ v = u i v i = u i v i = g i j u i v j = g i j u i v j {\displaystyle \mathbf {u} \cdot \mathbf {v} =u^{i}v_{i}=u_{i}v^{i}=g_{ij}u^{i}v^{j}=g^{ij}u_{i}v_{j}}
Vector (cross) product[ edit ] Thecross product of two vectors is given by:[ 4] : 32–34
u × v = ε i j k u j v k e i {\displaystyle \mathbf {u} \times \mathbf {v} =\varepsilon _{ijk}u_{j}v_{k}\mathbf {e} _{i}}
whereε i j k {\displaystyle \varepsilon _{ijk}} is thepermutation symbol ande i {\displaystyle \mathbf {e} _{i}} is a Cartesianbasis vector . In curvilinear coordinates, the equivalent expression is:
u × v = [ ( b m × b n ) ⋅ b s ] u m v n b s = E s m n u m v n b s {\displaystyle \mathbf {u} \times \mathbf {v} =[(\mathbf {b} _{m}\times \mathbf {b} _{n})\cdot \mathbf {b} _{s}]u^{m}v^{n}\mathbf {b} ^{s}={\mathcal {E}}_{smn}u^{m}v^{n}\mathbf {b} ^{s}}
whereE i j k {\displaystyle {\mathcal {E}}_{ijk}} is thethird-order alternating tensor . Thecross product of two vectors is given by:
u × v = ε i j k u ^ j v ^ k e i {\displaystyle \mathbf {u} \times \mathbf {v} =\varepsilon _{ijk}{\hat {u}}_{j}{\hat {v}}_{k}\mathbf {e} _{i}}
whereε i j k {\displaystyle \varepsilon _{ijk}} is thepermutation symbol ande i {\displaystyle \mathbf {e} _{i}} is a Cartesian basis vector. Therefore,
e p × e q = ε i p q e i {\displaystyle \mathbf {e} _{p}\times \mathbf {e} _{q}=\varepsilon _{ipq}\mathbf {e} _{i}}
and
b m × b n = ∂ x ∂ q m × ∂ x ∂ q n = ∂ ( x p e p ) ∂ q m × ∂ ( x q e q ) ∂ q n = ∂ x p ∂ q m ∂ x q ∂ q n e p × e q = ε i p q ∂ x p ∂ q m ∂ x q ∂ q n e i . {\displaystyle \mathbf {b} _{m}\times \mathbf {b} _{n}={\frac {\partial \mathbf {x} }{\partial q^{m}}}\times {\frac {\partial \mathbf {x} }{\partial q^{n}}}={\frac {\partial (x_{p}\mathbf {e} _{p})}{\partial q^{m}}}\times {\frac {\partial (x_{q}\mathbf {e} _{q})}{\partial q^{n}}}={\frac {\partial x_{p}}{\partial q^{m}}}{\frac {\partial x_{q}}{\partial q^{n}}}\mathbf {e} _{p}\times \mathbf {e} _{q}=\varepsilon _{ipq}{\frac {\partial x_{p}}{\partial q^{m}}}{\frac {\partial x_{q}}{\partial q^{n}}}\mathbf {e} _{i}.}
Hence,
( b m × b n ) ⋅ b s = ε i p q ∂ x p ∂ q m ∂ x q ∂ q n ∂ x i ∂ q s {\displaystyle (\mathbf {b} _{m}\times \mathbf {b} _{n})\cdot \mathbf {b} _{s}=\varepsilon _{ipq}{\frac {\partial x_{p}}{\partial q^{m}}}{\frac {\partial x_{q}}{\partial q^{n}}}{\frac {\partial x_{i}}{\partial q^{s}}}}
Returning to the vector product and using the relations:
u ^ j = ∂ x j ∂ q m u m , v ^ k = ∂ x k ∂ q n v n , e i = ∂ x i ∂ q s b s , {\displaystyle {\hat {u}}_{j}={\frac {\partial x_{j}}{\partial q^{m}}}u^{m},\quad {\hat {v}}_{k}={\frac {\partial x_{k}}{\partial q^{n}}}v^{n},\quad \mathbf {e} _{i}={\frac {\partial x_{i}}{\partial q^{s}}}\mathbf {b} ^{s},}
gives us:
u × v = ε i j k u ^ j v ^ k e i = ε i j k ∂ x j ∂ q m ∂ x k ∂ q n ∂ x i ∂ q s u m v n b s = [ ( b m × b n ) ⋅ b s ] u m v n b s = E s m n u m v n b s {\displaystyle \mathbf {u} \times \mathbf {v} =\varepsilon _{ijk}{\hat {u}}_{j}{\hat {v}}_{k}\mathbf {e} _{i}=\varepsilon _{ijk}{\frac {\partial x_{j}}{\partial q^{m}}}{\frac {\partial x_{k}}{\partial q^{n}}}{\frac {\partial x_{i}}{\partial q^{s}}}u^{m}v^{n}\mathbf {b} ^{s}=[(\mathbf {b} _{m}\times \mathbf {b} _{n})\cdot \mathbf {b} _{s}]u^{m}v^{n}\mathbf {b} ^{s}={\mathcal {E}}_{smn}u^{m}v^{n}\mathbf {b} ^{s}}
Theidentity map I {\displaystyle {\mathsf {I}}} defined byI ⋅ v = v {\displaystyle {\mathsf {I}}\cdot \mathbf {v} =\mathbf {v} } can be shown to be[ 4] : 39
I = g i j b i ⊗ b j = g i j b i ⊗ b j = b i ⊗ b i = b i ⊗ b i {\displaystyle {\mathsf {I}}=g^{ij}\mathbf {b} _{i}\otimes \mathbf {b} _{j}=g_{ij}\mathbf {b} ^{i}\otimes \mathbf {b} ^{j}=\mathbf {b} _{i}\otimes \mathbf {b} ^{i}=\mathbf {b} ^{i}\otimes \mathbf {b} _{i}}
Action of a second-order tensor on a vector [ edit ] The actionv = S u {\displaystyle \mathbf {v} ={\boldsymbol {S}}\mathbf {u} } can be expressed in curvilinear coordinates as
v i b i = S i j u j b i = S j i u j b i ; v i b i = S i j u j b i = S i j u j b i {\displaystyle v^{i}\mathbf {b} _{i}=S^{ij}u_{j}\mathbf {b} _{i}=S_{j}^{i}u^{j}\mathbf {b} _{i};\qquad v_{i}\mathbf {b} ^{i}=S_{ij}u^{j}\mathbf {b} ^{i}=S_{i}^{j}u_{j}\mathbf {b} ^{i}}
Inner product of two second-order tensors [ edit ] Theinner product of two second-order tensorsU = S ⋅ T {\displaystyle {\boldsymbol {U}}={\boldsymbol {S}}\cdot {\boldsymbol {T}}} can be expressed in curvilinear coordinates as
U i j b i ⊗ b j = S i k T . j k b i ⊗ b j = S i . k T k j b i ⊗ b j {\displaystyle U_{ij}\mathbf {b} ^{i}\otimes \mathbf {b} ^{j}=S_{ik}T_{.j}^{k}\mathbf {b} ^{i}\otimes \mathbf {b} ^{j}=S_{i}^{.k}T_{kj}\mathbf {b} ^{i}\otimes \mathbf {b} ^{j}}
Alternatively,
U = S i j T . n m g j m b i ⊗ b n = S . m i T . n m b i ⊗ b n = S i j T j n b i ⊗ b n {\displaystyle {\boldsymbol {U}}=S^{ij}T_{.n}^{m}g_{jm}\mathbf {b} _{i}\otimes \mathbf {b} ^{n}=S_{.m}^{i}T_{.n}^{m}\mathbf {b} _{i}\otimes \mathbf {b} ^{n}=S^{ij}T_{jn}\mathbf {b} _{i}\otimes \mathbf {b} ^{n}}
Determinant of a second-order tensor [ edit ] IfS {\displaystyle {\boldsymbol {S}}} is a second-order tensor, then thedeterminant is defined by the relation
[ S u , S v , S w ] = det S [ u , v , w ] {\displaystyle \left[{\boldsymbol {S}}\mathbf {u} ,{\boldsymbol {S}}\mathbf {v} ,{\boldsymbol {S}}\mathbf {w} \right]=\det {\boldsymbol {S}}\left[\mathbf {u} ,\mathbf {v} ,\mathbf {w} \right]}
whereu , v , w {\displaystyle \mathbf {u} ,\mathbf {v} ,\mathbf {w} } are arbitrary vectors and
[ u , v , w ] := u ⋅ ( v × w ) . {\displaystyle \left[\mathbf {u} ,\mathbf {v} ,\mathbf {w} \right]:=\mathbf {u} \cdot (\mathbf {v} \times \mathbf {w} ).}
Relations between curvilinear and Cartesian basis vectors [ edit ] Let( e 1 , e 2 , e 3 ) {\displaystyle (\mathbf {e} _{1},\mathbf {e} _{2},\mathbf {e} _{3})} be the usual Cartesian basis vectors for the Euclidean space of interest and letb i = F e i {\displaystyle \mathbf {b} _{i}={\boldsymbol {F}}\mathbf {e} _{i}} whereF {\displaystyle {\boldsymbol {F}}} is a second-order transformation tensor that mapse i {\displaystyle \mathbf {e} _{i}} tob i {\displaystyle \mathbf {b} _{i}} . Then,b i ⊗ e i = ( F e i ) ⊗ e i = F ( e i ⊗ e i ) = F . {\displaystyle \mathbf {b} _{i}\otimes \mathbf {e} _{i}=({\boldsymbol {F}}\mathbf {e} _{i})\otimes \mathbf {e} _{i}={\boldsymbol {F}}(\mathbf {e} _{i}\otimes \mathbf {e} _{i})={\boldsymbol {F}}~.} From this relation we can show thatb i = F − T e i ; g i j = [ F − 1 F − T ] i j ; g i j = [ g i j ] − 1 = [ F T F ] i j {\displaystyle \mathbf {b} ^{i}={\boldsymbol {F}}^{-{\rm {T}}}\mathbf {e} ^{i}~;~~g^{ij}=[{\boldsymbol {F}}^{-{\rm {1}}}{\boldsymbol {F}}^{-{\rm {T}}}]_{ij}~;~~g_{ij}=[g^{ij}]^{-1}=[{\boldsymbol {F}}^{\rm {T}}{\boldsymbol {F}}]_{ij}} LetJ := det F {\displaystyle J:=\det {\boldsymbol {F}}} be the Jacobian of the transformation. Then, from the definition of the determinant,[ b 1 , b 2 , b 3 ] = det F [ e 1 , e 2 , e 3 ] . {\displaystyle \left[\mathbf {b} _{1},\mathbf {b} _{2},\mathbf {b} _{3}\right]=\det {\boldsymbol {F}}\left[\mathbf {e} _{1},\mathbf {e} _{2},\mathbf {e} _{3}\right]~.} Since[ e 1 , e 2 , e 3 ] = 1 {\displaystyle \left[\mathbf {e} _{1},\mathbf {e} _{2},\mathbf {e} _{3}\right]=1} we haveJ = det F = [ b 1 , b 2 , b 3 ] = b 1 ⋅ ( b 2 × b 3 ) {\displaystyle J=\det {\boldsymbol {F}}=\left[\mathbf {b} _{1},\mathbf {b} _{2},\mathbf {b} _{3}\right]=\mathbf {b} _{1}\cdot (\mathbf {b} _{2}\times \mathbf {b} _{3})} A number of interesting results can be derived using the above relations.
First, considerg := det [ g i j ] {\displaystyle g:=\det[g_{ij}]} Theng = det [ F T ] ⋅ det [ F ] = J ⋅ J = J 2 {\displaystyle g=\det[{\boldsymbol {F}}^{\rm {T}}]\cdot \det[{\boldsymbol {F}}]=J\cdot J=J^{2}} Similarly, we can show thatdet [ g i j ] = 1 J 2 {\displaystyle \det[g^{ij}]={\cfrac {1}{J^{2}}}} Therefore, using the fact that[ g i j ] = [ g i j ] − 1 {\displaystyle [g^{ij}]=[g_{ij}]^{-1}} ,∂ g ∂ g i j = 2 J ∂ J ∂ g i j = g g i j {\displaystyle {\cfrac {\partial g}{\partial g_{ij}}}=2~J~{\cfrac {\partial J}{\partial g_{ij}}}=g~g^{ij}}
Another interesting relation is derived below. Recall thatb i ⋅ b j = δ j i ⇒ b 1 ⋅ b 1 = 1 , b 1 ⋅ b 2 = b 1 ⋅ b 3 = 0 ⇒ b 1 = A ( b 2 × b 3 ) {\displaystyle \mathbf {b} ^{i}\cdot \mathbf {b} _{j}=\delta _{j}^{i}\quad \Rightarrow \quad \mathbf {b} ^{1}\cdot \mathbf {b} _{1}=1,~\mathbf {b} ^{1}\cdot \mathbf {b} _{2}=\mathbf {b} ^{1}\cdot \mathbf {b} _{3}=0\quad \Rightarrow \quad \mathbf {b} ^{1}=A~(\mathbf {b} _{2}\times \mathbf {b} _{3})} whereA {\displaystyle A} is a, yet undetermined, constant. Thenb 1 ⋅ b 1 = A b 1 ⋅ ( b 2 × b 3 ) = A J = 1 ⇒ A = 1 J {\displaystyle \mathbf {b} ^{1}\cdot \mathbf {b} _{1}=A~\mathbf {b} _{1}\cdot (\mathbf {b} _{2}\times \mathbf {b} _{3})=AJ=1\quad \Rightarrow \quad A={\cfrac {1}{J}}} This observation leads to the relationsb 1 = 1 J ( b 2 × b 3 ) ; b 2 = 1 J ( b 3 × b 1 ) ; b 3 = 1 J ( b 1 × b 2 ) {\displaystyle \mathbf {b} ^{1}={\cfrac {1}{J}}(\mathbf {b} _{2}\times \mathbf {b} _{3})~;~~\mathbf {b} ^{2}={\cfrac {1}{J}}(\mathbf {b} _{3}\times \mathbf {b} _{1})~;~~\mathbf {b} ^{3}={\cfrac {1}{J}}(\mathbf {b} _{1}\times \mathbf {b} _{2})} In index notation,ε i j k b k = 1 J ( b i × b j ) = 1 g ( b i × b j ) {\displaystyle \varepsilon _{ijk}~\mathbf {b} ^{k}={\cfrac {1}{J}}(\mathbf {b} _{i}\times \mathbf {b} _{j})={\cfrac {1}{\sqrt {g}}}(\mathbf {b} _{i}\times \mathbf {b} _{j})} whereε i j k {\displaystyle \varepsilon _{ijk}} is the usualpermutation symbol .
We have not identified an explicit expression for the transformation tensorF {\displaystyle {\boldsymbol {F}}} because an alternative form of the mapping between curvilinear and Cartesian bases is more useful. Assuming a sufficient degree of smoothness in the mapping (and a bit of abuse of notation), we haveb i = ∂ x ∂ q i = ∂ x ∂ x j ∂ x j ∂ q i = e j ∂ x j ∂ q i {\displaystyle \mathbf {b} _{i}={\cfrac {\partial \mathbf {x} }{\partial q^{i}}}={\cfrac {\partial \mathbf {x} }{\partial x_{j}}}~{\cfrac {\partial x_{j}}{\partial q^{i}}}=\mathbf {e} _{j}~{\cfrac {\partial x_{j}}{\partial q^{i}}}} Similarly,e i = b j ∂ q j ∂ x i {\displaystyle \mathbf {e} _{i}=\mathbf {b} _{j}~{\cfrac {\partial q^{j}}{\partial x_{i}}}} From these results we havee k ⋅ b i = ∂ x k ∂ q i ⇒ ∂ x k ∂ q i b i = e k ⋅ ( b i ⊗ b i ) = e k {\displaystyle \mathbf {e} ^{k}\cdot \mathbf {b} _{i}={\frac {\partial x_{k}}{\partial q^{i}}}\quad \Rightarrow \quad {\frac {\partial x_{k}}{\partial q^{i}}}~\mathbf {b} ^{i}=\mathbf {e} ^{k}\cdot (\mathbf {b} _{i}\otimes \mathbf {b} ^{i})=\mathbf {e} ^{k}} andb k = ∂ q k ∂ x i e i {\displaystyle \mathbf {b} ^{k}={\frac {\partial q^{k}}{\partial x_{i}}}~\mathbf {e} ^{i}}
Vector and tensor calculus in three-dimensional curvilinear coordinates [ edit ] Simmonds,[ 4] in his book ontensor analysis , quotesAlbert Einstein saying[ 7]
The magic of this theory will hardly fail to impose itself on anybody who has truly understood it; it represents a genuine triumph of the method of absolute differential calculus, founded by Gauss, Riemann, Ricci, and Levi-Civita.
Vector and tensor calculus in general curvilinear coordinates is used in tensor analysis on four-dimensional curvilinearmanifolds ingeneral relativity ,[ 8] in themechanics of curvedshells ,[ 6] in examining theinvariance properties ofMaxwell's equations which has been of interest inmetamaterials [ 9] [ 10] and in many other fields.
Some useful relations in the calculus of vectors and second-order tensors in curvilinear coordinates are given in this section. The notation and contents are primarily from Ogden,[ 2] Simmonds,[ 4] Green and Zerna,[ 1] Basar and Weichert,[ 5] and Ciarlet.[ 6]
Let the position of a point in space be characterized by three coordinate variables( q 1 , q 2 , q 3 ) {\displaystyle (q^{1},q^{2},q^{3})} .
Thecoordinate curve q 1 {\displaystyle q^{1}} represents a curve on whichq 2 {\displaystyle q^{2}} andq 3 {\displaystyle q^{3}} are constant. Letx {\displaystyle \mathbf {x} } be theposition vector of the point relative to some origin. Then, assuming that such a mapping and its inverse exist and are continuous, we can write[ 2] : 55 x = φ ( q 1 , q 2 , q 3 ) ; q i = ψ i ( x ) = [ φ − 1 ( x ) ] i {\displaystyle \mathbf {x} ={\boldsymbol {\varphi }}(q^{1},q^{2},q^{3})~;~~q^{i}=\psi ^{i}(\mathbf {x} )=[{\boldsymbol {\varphi }}^{-1}(\mathbf {x} )]^{i}} The fieldsψ i ( x ) {\displaystyle \psi ^{i}(\mathbf {x} )} are called thecurvilinear coordinate functions of thecurvilinear coordinate system ψ ( x ) = φ − 1 ( x ) {\displaystyle {\boldsymbol {\psi }}(\mathbf {x} )={\boldsymbol {\varphi }}^{-1}(\mathbf {x} )} .
Theq i {\displaystyle q^{i}} coordinate curves are defined by the one-parameter family of functions given byx i ( α ) = φ ( α , q j , q k ) , i ≠ j ≠ k {\displaystyle \mathbf {x} _{i}(\alpha )={\boldsymbol {\varphi }}(\alpha ,q^{j},q^{k})~,~~i\neq j\neq k} withq j {\displaystyle q^{j}} ,q k {\displaystyle q^{k}} fixed.
Tangent vector to coordinate curves [ edit ] Thetangent vector to the curvex i {\displaystyle \mathbf {x} _{i}} at the pointx i ( α ) {\displaystyle \mathbf {x} _{i}(\alpha )} (or to the coordinate curveq i {\displaystyle q_{i}} at the pointx {\displaystyle \mathbf {x} } ) isd x i d α ≡ ∂ x ∂ q i {\displaystyle {\cfrac {\rm {{d}\mathbf {x} _{i}}}{\rm {{d}\alpha }}}\equiv {\cfrac {\partial \mathbf {x} }{\partial q^{i}}}}
Letf ( x ) {\displaystyle f(\mathbf {x} )} be a scalar field in space. Thenf ( x ) = f [ φ ( q 1 , q 2 , q 3 ) ] = f φ ( q 1 , q 2 , q 3 ) {\displaystyle f(\mathbf {x} )=f[{\boldsymbol {\varphi }}(q^{1},q^{2},q^{3})]=f_{\varphi }(q^{1},q^{2},q^{3})} The gradient of the fieldf {\displaystyle f} is defined by[ ∇ f ( x ) ] ⋅ c = d d α f ( x + α c ) | α = 0 {\displaystyle [{\boldsymbol {\nabla }}f(\mathbf {x} )]\cdot \mathbf {c} ={\cfrac {\rm {d}}{\rm {{d}\alpha }}}f(\mathbf {x} +\alpha \mathbf {c} ){\biggr |}_{\alpha =0}} wherec {\displaystyle \mathbf {c} } is an arbitrary constant vector. If we define the componentsc i {\displaystyle c^{i}} ofc {\displaystyle \mathbf {c} } are such thatq i + α c i = ψ i ( x + α c ) {\displaystyle q^{i}+\alpha ~c^{i}=\psi ^{i}(\mathbf {x} +\alpha ~\mathbf {c} )} then[ ∇ f ( x ) ] ⋅ c = d d α f φ ( q 1 + α c 1 , q 2 + α c 2 , q 3 + α c 3 ) | α = 0 = ∂ f φ ∂ q i c i = ∂ f ∂ q i c i {\displaystyle [{\boldsymbol {\nabla }}f(\mathbf {x} )]\cdot \mathbf {c} ={\cfrac {\rm {d}}{\rm {{d}\alpha }}}f_{\varphi }(q^{1}+\alpha ~c^{1},q^{2}+\alpha ~c^{2},q^{3}+\alpha ~c^{3}){\biggr |}_{\alpha =0}={\cfrac {\partial f_{\varphi }}{\partial q^{i}}}~c^{i}={\cfrac {\partial f}{\partial q^{i}}}~c^{i}}
If we setf ( x ) = ψ i ( x ) {\displaystyle f(\mathbf {x} )=\psi ^{i}(\mathbf {x} )} , then sinceq i = ψ i ( x ) {\displaystyle q^{i}=\psi ^{i}(\mathbf {x} )} , we have[ ∇ ψ i ( x ) ] ⋅ c = ∂ ψ i ∂ q j c j = c i {\displaystyle [{\boldsymbol {\nabla }}\psi ^{i}(\mathbf {x} )]\cdot \mathbf {c} ={\cfrac {\partial \psi ^{i}}{\partial q^{j}}}~c^{j}=c^{i}} which provides a means of extracting the contravariant component of a vectorc {\displaystyle \mathbf {c} } .
Ifb i {\displaystyle \mathbf {b} _{i}} is the covariant (or natural) basis at a point, and ifb i {\displaystyle \mathbf {b} ^{i}} is the contravariant (or reciprocal) basis at that point, then[ ∇ f ( x ) ] ⋅ c = ∂ f ∂ q i c i = ( ∂ f ∂ q i b i ) ( c i b i ) ⇒ ∇ f ( x ) = ∂ f ∂ q i b i {\displaystyle [{\boldsymbol {\nabla }}f(\mathbf {x} )]\cdot \mathbf {c} ={\cfrac {\partial f}{\partial q^{i}}}~c^{i}=\left({\cfrac {\partial f}{\partial q^{i}}}~\mathbf {b} ^{i}\right)\left(c^{i}~\mathbf {b} _{i}\right)\quad \Rightarrow \quad {\boldsymbol {\nabla }}f(\mathbf {x} )={\cfrac {\partial f}{\partial q^{i}}}~\mathbf {b} ^{i}} A brief rationale for this choice of basis is given in the next section.
A similar process can be used to arrive at the gradient of a vector fieldf ( x ) {\displaystyle \mathbf {f} (\mathbf {x} )} . The gradient is given by[ ∇ f ( x ) ] ⋅ c = ∂ f ∂ q i c i {\displaystyle [{\boldsymbol {\nabla }}\mathbf {f} (\mathbf {x} )]\cdot \mathbf {c} ={\cfrac {\partial \mathbf {f} }{\partial q^{i}}}~c^{i}} If we consider the gradient of the position vector fieldr ( x ) = x {\displaystyle \mathbf {r} (\mathbf {x} )=\mathbf {x} } , then we can show thatc = ∂ x ∂ q i c i = b i ( x ) c i ; b i ( x ) := ∂ x ∂ q i {\displaystyle \mathbf {c} ={\cfrac {\partial \mathbf {x} }{\partial q^{i}}}~c^{i}=\mathbf {b} _{i}(\mathbf {x} )~c^{i}~;~~\mathbf {b} _{i}(\mathbf {x} ):={\cfrac {\partial \mathbf {x} }{\partial q^{i}}}} The vector fieldb i {\displaystyle \mathbf {b} _{i}} is tangent to theq i {\displaystyle q^{i}} coordinate curve and forms anatural basis at each point on the curve. This basis, as discussed at the beginning of this article, is also called thecovariant curvilinear basis. We can also define areciprocal basis , orcontravariant curvilinear basis,b i {\displaystyle \mathbf {b} ^{i}} . All the algebraic relations between the basis vectors, as discussed in the section on tensor algebra, apply for the natural basis and its reciprocal at each pointx {\displaystyle \mathbf {x} } .
Sincec {\displaystyle \mathbf {c} } is arbitrary, we can write∇ f ( x ) = ∂ f ∂ q i ⊗ b i {\displaystyle {\boldsymbol {\nabla }}\mathbf {f} (\mathbf {x} )={\cfrac {\partial \mathbf {f} }{\partial q^{i}}}\otimes \mathbf {b} ^{i}}
Note that the contravariant basis vectorb i {\displaystyle \mathbf {b} ^{i}} is perpendicular to the surface of constantψ i {\displaystyle \psi ^{i}} and is given byb i = ∇ ψ i {\displaystyle \mathbf {b} ^{i}={\boldsymbol {\nabla }}\psi ^{i}}
Christoffel symbols of the first kind [ edit ] TheChristoffel symbols of the first kind are defined asb i , j = ∂ b i ∂ q j := Γ i j k b k ⇒ b i , j ⋅ b l = Γ i j l {\displaystyle \mathbf {b} _{i,j}={\frac {\partial \mathbf {b} _{i}}{\partial q^{j}}}:=\Gamma _{ijk}~\mathbf {b} ^{k}\quad \Rightarrow \quad \mathbf {b} _{i,j}\cdot \mathbf {b} _{l}=\Gamma _{ijl}} To expressΓ i j k {\displaystyle \Gamma _{ijk}} in terms ofg i j {\displaystyle g_{ij}} we note thatg i j , k = ( b i ⋅ b j ) , k = b i , k ⋅ b j + b i ⋅ b j , k = Γ i k j + Γ j k i g i k , j = ( b i ⋅ b k ) , j = b i , j ⋅ b k + b i ⋅ b k , j = Γ i j k + Γ k j i g j k , i = ( b j ⋅ b k ) , i = b j , i ⋅ b k + b j ⋅ b k , i = Γ j i k + Γ k i j {\displaystyle {\begin{aligned}g_{ij,k}&=(\mathbf {b} _{i}\cdot \mathbf {b} _{j})_{,k}=\mathbf {b} _{i,k}\cdot \mathbf {b} _{j}+\mathbf {b} _{i}\cdot \mathbf {b} _{j,k}=\Gamma _{ikj}+\Gamma _{jki}\\g_{ik,j}&=(\mathbf {b} _{i}\cdot \mathbf {b} _{k})_{,j}=\mathbf {b} _{i,j}\cdot \mathbf {b} _{k}+\mathbf {b} _{i}\cdot \mathbf {b} _{k,j}=\Gamma _{ijk}+\Gamma _{kji}\\g_{jk,i}&=(\mathbf {b} _{j}\cdot \mathbf {b} _{k})_{,i}=\mathbf {b} _{j,i}\cdot \mathbf {b} _{k}+\mathbf {b} _{j}\cdot \mathbf {b} _{k,i}=\Gamma _{jik}+\Gamma _{kij}\end{aligned}}} Sinceb i , j = b j , i {\displaystyle \mathbf {b} _{i,j}=\mathbf {b} _{j,i}} we haveΓ i j k = Γ j i k {\displaystyle \Gamma _{ijk}=\Gamma _{jik}} . Using these to rearrange the above relations givesΓ i j k = 1 2 ( g i k , j + g j k , i − g i j , k ) = 1 2 [ ( b i ⋅ b k ) , j + ( b j ⋅ b k ) , i − ( b i ⋅ b j ) , k ] {\displaystyle \Gamma _{ijk}={\frac {1}{2}}(g_{ik,j}+g_{jk,i}-g_{ij,k})={\frac {1}{2}}[(\mathbf {b} _{i}\cdot \mathbf {b} _{k})_{,j}+(\mathbf {b} _{j}\cdot \mathbf {b} _{k})_{,i}-(\mathbf {b} _{i}\cdot \mathbf {b} _{j})_{,k}]}
Christoffel symbols of the second kind [ edit ] TheChristoffel symbols of the second kind are defined asΓ i j k = Γ j i k {\displaystyle \Gamma _{ij}^{k}=\Gamma _{ji}^{k}} in which
∂ b i ∂ q j = Γ i j k b k {\displaystyle {\cfrac {\partial \mathbf {b} _{i}}{\partial q^{j}}}=\Gamma _{ij}^{k}~\mathbf {b} _{k}}
This implies thatΓ i j k = ∂ b i ∂ q j ⋅ b k = − b i ⋅ ∂ b k ∂ q j {\displaystyle \Gamma _{ij}^{k}={\cfrac {\partial \mathbf {b} _{i}}{\partial q^{j}}}\cdot \mathbf {b} ^{k}=-\mathbf {b} _{i}\cdot {\cfrac {\partial \mathbf {b} ^{k}}{\partial q^{j}}}} Other relations that follow are∂ b i ∂ q j = − Γ j k i b k ; ∇ b i = Γ i j k b k ⊗ b j ; ∇ b i = − Γ j k i b k ⊗ b j {\displaystyle {\cfrac {\partial \mathbf {b} ^{i}}{\partial q^{j}}}=-\Gamma _{jk}^{i}~\mathbf {b} ^{k}~;~~{\boldsymbol {\nabla }}\mathbf {b} _{i}=\Gamma _{ij}^{k}~\mathbf {b} _{k}\otimes \mathbf {b} ^{j}~;~~{\boldsymbol {\nabla }}\mathbf {b} ^{i}=-\Gamma _{jk}^{i}~\mathbf {b} ^{k}\otimes \mathbf {b} ^{j}}
Another particularly useful relation, which shows that the Christoffel symbol depends only on the metric tensor and its derivatives, isΓ i j k = g k m 2 ( ∂ g m i ∂ q j + ∂ g m j ∂ q i − ∂ g i j ∂ q m ) {\displaystyle \Gamma _{ij}^{k}={\frac {g^{km}}{2}}\left({\frac {\partial g_{mi}}{\partial q^{j}}}+{\frac {\partial g_{mj}}{\partial q^{i}}}-{\frac {\partial g_{ij}}{\partial q^{m}}}\right)}
Explicit expression for the gradient of a vector field [ edit ] The following expressions for the gradient of a vector field in curvilinear coordinates are quite useful.∇ v = [ ∂ v i ∂ q k + Γ l k i v l ] b i ⊗ b k = [ ∂ v i ∂ q k − Γ k i l v l ] b i ⊗ b k {\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\mathbf {v} &=\left[{\cfrac {\partial v^{i}}{\partial q^{k}}}+\Gamma _{lk}^{i}~v^{l}\right]~\mathbf {b} _{i}\otimes \mathbf {b} ^{k}\\[8pt]&=\left[{\cfrac {\partial v_{i}}{\partial q^{k}}}-\Gamma _{ki}^{l}~v_{l}\right]~\mathbf {b} ^{i}\otimes \mathbf {b} ^{k}\end{aligned}}}
Representing a physical vector field [ edit ] The vector fieldv {\displaystyle \mathbf {v} } can be represented asv = v i b i = v ^ i b ^ i {\displaystyle \mathbf {v} =v_{i}~\mathbf {b} ^{i}={\hat {v}}_{i}~{\hat {\mathbf {b} }}^{i}} wherev i {\displaystyle v_{i}} are the covariant components of the field,v ^ i {\displaystyle {\hat {v}}_{i}} are the physical components, and (nosummation )b ^ i = b i g i i {\displaystyle {\hat {\mathbf {b} }}^{i}={\cfrac {\mathbf {b} ^{i}}{\sqrt {g^{ii}}}}} is the normalized contravariant basis vector.
Second-order tensor field [ edit ] The gradient of a second order tensor field can similarly be expressed as∇ S = ∂ S ∂ q i ⊗ b i {\displaystyle {\boldsymbol {\nabla }}{\boldsymbol {S}}={\frac {\partial {\boldsymbol {S}}}{\partial q^{i}}}\otimes \mathbf {b} ^{i}}
Explicit expressions for the gradient [ edit ] If we consider the expression for the tensor in terms of a contravariant basis, then∇ S = ∂ ∂ q k [ S i j b i ⊗ b j ] ⊗ b k = [ ∂ S i j ∂ q k − Γ k i l S l j − Γ k j l S i l ] b i ⊗ b j ⊗ b k {\displaystyle {\boldsymbol {\nabla }}{\boldsymbol {S}}={\frac {\partial }{\partial q^{k}}}[S_{ij}~\mathbf {b} ^{i}\otimes \mathbf {b} ^{j}]\otimes \mathbf {b} ^{k}=\left[{\frac {\partial S_{ij}}{\partial q^{k}}}-\Gamma _{ki}^{l}~S_{lj}-\Gamma _{kj}^{l}~S_{il}\right]~\mathbf {b} ^{i}\otimes \mathbf {b} ^{j}\otimes \mathbf {b} ^{k}} We may also write∇ S = [ ∂ S i j ∂ q k + Γ k l i S l j + Γ k l j S i l ] b i ⊗ b j ⊗ b k = [ ∂ S j i ∂ q k + Γ k l i S j l − Γ k j l S l i ] b i ⊗ b j ⊗ b k = [ ∂ S i j ∂ q k − Γ i k l S l j + Γ k l j S i l ] b i ⊗ b j ⊗ b k {\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}{\boldsymbol {S}}&=\left[{\cfrac {\partial S^{ij}}{\partial q^{k}}}+\Gamma _{kl}^{i}~S^{lj}+\Gamma _{kl}^{j}~S^{il}\right]~\mathbf {b} _{i}\otimes \mathbf {b} _{j}\otimes \mathbf {b} ^{k}\\[8pt]&=\left[{\cfrac {\partial S_{~j}^{i}}{\partial q^{k}}}+\Gamma _{kl}^{i}~S_{~j}^{l}-\Gamma _{kj}^{l}~S_{~l}^{i}\right]~\mathbf {b} _{i}\otimes \mathbf {b} ^{j}\otimes \mathbf {b} ^{k}\\[8pt]&=\left[{\cfrac {\partial S_{i}^{~j}}{\partial q^{k}}}-\Gamma _{ik}^{l}~S_{l}^{~j}+\Gamma _{kl}^{j}~S_{i}^{~l}\right]~\mathbf {b} ^{i}\otimes \mathbf {b} _{j}\otimes \mathbf {b} ^{k}\end{aligned}}}
Representing a physical second-order tensor field [ edit ] The physical components of a second-order tensor field can be obtained by using a normalized contravariant basis, i.e.,S = S i j b i ⊗ b j = S ^ i j b ^ i ⊗ b ^ j {\displaystyle {\boldsymbol {S}}=S_{ij}~\mathbf {b} ^{i}\otimes \mathbf {b} ^{j}={\hat {S}}_{ij}~{\hat {\mathbf {b} }}^{i}\otimes {\hat {\mathbf {b} }}^{j}} where the hatted basis vectors have been normalized. This implies that (again no summation)
S ^ i j = S i j g i i g j j {\displaystyle {\hat {S}}_{ij}=S_{ij}~{\sqrt {g^{ii}~g^{jj}}}}
Thedivergence of a vector fieldv {\displaystyle \mathbf {v} } is defined asdiv v = ∇ ⋅ v = tr ( ∇ v ) {\displaystyle \operatorname {div} ~\mathbf {v} ={\boldsymbol {\nabla }}\cdot \mathbf {v} ={\text{tr}}({\boldsymbol {\nabla }}\mathbf {v} )} In terms of components with respect to a curvilinear basis∇ ⋅ v = ∂ v i ∂ q i + Γ ℓ i i v ℓ = [ ∂ v i ∂ q j − Γ j i ℓ v ℓ ] g i j {\displaystyle {\boldsymbol {\nabla }}\cdot \mathbf {v} ={\cfrac {\partial v^{i}}{\partial q^{i}}}+\Gamma _{\ell i}^{i}~v^{\ell }=\left[{\cfrac {\partial v_{i}}{\partial q^{j}}}-\Gamma _{ji}^{\ell }~v_{\ell }\right]~g^{ij}}
An alternative equation for the divergence of a vector field is frequently used. To derive this relation recall that∇ ⋅ v = ∂ v i ∂ q i + Γ ℓ i i v ℓ {\displaystyle {\boldsymbol {\nabla }}\cdot \mathbf {v} ={\frac {\partial v^{i}}{\partial q^{i}}}+\Gamma _{\ell i}^{i}~v^{\ell }} Now,Γ ℓ i i = Γ i ℓ i = g m i 2 [ ∂ g i m ∂ q ℓ + ∂ g ℓ m ∂ q i − ∂ g i l ∂ q m ] {\displaystyle \Gamma _{\ell i}^{i}=\Gamma _{i\ell }^{i}={\cfrac {g^{mi}}{2}}\left[{\frac {\partial g_{im}}{\partial q^{\ell }}}+{\frac {\partial g_{\ell m}}{\partial q^{i}}}-{\frac {\partial g_{il}}{\partial q^{m}}}\right]} Noting that, due to the symmetry ofg {\displaystyle {\boldsymbol {g}}} ,g m i ∂ g ℓ m ∂ q i = g m i ∂ g i ℓ ∂ q m {\displaystyle g^{mi}~{\frac {\partial g_{\ell m}}{\partial q^{i}}}=g^{mi}~{\frac {\partial g_{i\ell }}{\partial q^{m}}}} we have∇ ⋅ v = ∂ v i ∂ q i + g m i 2 ∂ g i m ∂ q ℓ v ℓ {\displaystyle {\boldsymbol {\nabla }}\cdot \mathbf {v} ={\frac {\partial v^{i}}{\partial q^{i}}}+{\cfrac {g^{mi}}{2}}~{\frac {\partial g_{im}}{\partial q^{\ell }}}~v^{\ell }} Recall that if[ g i j ] {\displaystyle [g_{ij}]} is the matrix whose components areg i j {\displaystyle g_{ij}} , then the inverse of the matrix is[ g i j ] − 1 = [ g i j ] {\displaystyle [g_{ij}]^{-1}=[g^{ij}]} . The inverse of the matrix is given by[ g i j ] = [ g i j ] − 1 = A i j g ; g := det ( [ g i j ] ) = det g {\displaystyle [g^{ij}]=[g_{ij}]^{-1}={\cfrac {A^{ij}}{g}}~;~~g:=\det([g_{ij}])=\det {\boldsymbol {g}}} whereA i j {\displaystyle A^{ij}} is thecofactor matrix of the componentsg i j {\displaystyle g_{ij}} . From matrix algebra we haveg = det ( [ g i j ] ) = ∑ i g i j A i j ⇒ ∂ g ∂ g i j = A i j {\displaystyle g=\det([g_{ij}])=\sum _{i}g_{ij}~A^{ij}\quad \Rightarrow \quad {\frac {\partial g}{\partial g_{ij}}}=A^{ij}} Hence,[ g i j ] = 1 g ∂ g ∂ g i j {\displaystyle [g^{ij}]={\cfrac {1}{g}}~{\frac {\partial g}{\partial g_{ij}}}} Plugging this relation into the expression for the divergence gives∇ ⋅ v = ∂ v i ∂ q i + 1 2 g ∂ g ∂ g m i ∂ g i m ∂ q ℓ v ℓ = ∂ v i ∂ q i + 1 2 g ∂ g ∂ q ℓ v ℓ {\displaystyle {\boldsymbol {\nabla }}\cdot \mathbf {v} ={\frac {\partial v^{i}}{\partial q^{i}}}+{\cfrac {1}{2g}}~{\frac {\partial g}{\partial g_{mi}}}~{\frac {\partial g_{im}}{\partial q^{\ell }}}~v^{\ell }={\frac {\partial v^{i}}{\partial q^{i}}}+{\cfrac {1}{2g}}~{\frac {\partial g}{\partial q^{\ell }}}~v^{\ell }} A little manipulation leads to the more compact form∇ ⋅ v = 1 g ∂ ∂ q i ( v i g ) {\displaystyle {\boldsymbol {\nabla }}\cdot \mathbf {v} ={\cfrac {1}{\sqrt {g}}}~{\frac {\partial }{\partial q^{i}}}(v^{i}~{\sqrt {g}})}
Second-order tensor field [ edit ] Thedivergence of a second-order tensor field is defined using( ∇ ⋅ S ) ⋅ a = ∇ ⋅ ( S a ) {\displaystyle ({\boldsymbol {\nabla }}\cdot {\boldsymbol {S}})\cdot \mathbf {a} ={\boldsymbol {\nabla }}\cdot ({\boldsymbol {S}}\mathbf {a} )} wherea {\displaystyle \mathbf {a} } is an arbitrary constant vector.[ 11] In curvilinear coordinates,∇ ⋅ S = [ ∂ S i j ∂ q k − Γ k i l S l j − Γ k j l S i l ] g i k b j = [ ∂ S i j ∂ q i + Γ i l i S l j + Γ i l j S i l ] b j = [ ∂ S j i ∂ q i + Γ i l i S j l − Γ i j l S l i ] b j = [ ∂ S i j ∂ q k − Γ i k l S l j + Γ k l j S i l ] g i k b j {\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\cdot {\boldsymbol {S}}&=\left[{\cfrac {\partial S_{ij}}{\partial q^{k}}}-\Gamma _{ki}^{l}~S_{lj}-\Gamma _{kj}^{l}~S_{il}\right]~g^{ik}~\mathbf {b} ^{j}\\[8pt]&=\left[{\cfrac {\partial S^{ij}}{\partial q^{i}}}+\Gamma _{il}^{i}~S^{lj}+\Gamma _{il}^{j}~S^{il}\right]~\mathbf {b} _{j}\\[8pt]&=\left[{\cfrac {\partial S_{~j}^{i}}{\partial q^{i}}}+\Gamma _{il}^{i}~S_{~j}^{l}-\Gamma _{ij}^{l}~S_{~l}^{i}\right]~\mathbf {b} ^{j}\\[8pt]&=\left[{\cfrac {\partial S_{i}^{~j}}{\partial q^{k}}}-\Gamma _{ik}^{l}~S_{l}^{~j}+\Gamma _{kl}^{j}~S_{i}^{~l}\right]~g^{ik}~\mathbf {b} _{j}\end{aligned}}}
The Laplacian of a scalar fieldφ ( x ) {\displaystyle \varphi (\mathbf {x} )} is defined as∇ 2 φ := ∇ ⋅ ( ∇ φ ) {\displaystyle \nabla ^{2}\varphi :={\boldsymbol {\nabla }}\cdot ({\boldsymbol {\nabla }}\varphi )} Using the alternative expression for the divergence of a vector field gives us∇ 2 φ = 1 g ∂ ∂ q i ( [ ∇ φ ] i g ) {\displaystyle \nabla ^{2}\varphi ={\cfrac {1}{\sqrt {g}}}~{\frac {\partial }{\partial q^{i}}}([{\boldsymbol {\nabla }}\varphi ]^{i}~{\sqrt {g}})} Now∇ φ = ∂ φ ∂ q l b l = g l i ∂ φ ∂ q l b i ⇒ [ ∇ φ ] i = g l i ∂ φ ∂ q l {\displaystyle {\boldsymbol {\nabla }}\varphi ={\frac {\partial \varphi }{\partial q^{l}}}~\mathbf {b} ^{l}=g^{li}~{\frac {\partial \varphi }{\partial q^{l}}}~\mathbf {b} _{i}\quad \Rightarrow \quad [{\boldsymbol {\nabla }}\varphi ]^{i}=g^{li}~{\frac {\partial \varphi }{\partial q^{l}}}} Therefore,∇ 2 φ = 1 g ∂ ∂ q i ( g l i ∂ φ ∂ q l g ) {\displaystyle \nabla ^{2}\varphi ={\cfrac {1}{\sqrt {g}}}~{\frac {\partial }{\partial q^{i}}}\left(g^{li}~{\frac {\partial \varphi }{\partial q^{l}}}~{\sqrt {g}}\right)}
Curl of a vector field [ edit ] The curl of a vector fieldv {\displaystyle \mathbf {v} } in covariant curvilinear coordinates can be written as∇ × v = E r s t v s | r b t {\displaystyle {\boldsymbol {\nabla }}\times \mathbf {v} ={\mathcal {E}}^{rst}v_{s|r}~\mathbf {b} _{t}} wherev s | r = v s , r − Γ s r i v i {\displaystyle v_{s|r}=v_{s,r}-\Gamma _{sr}^{i}~v_{i}}
Orthogonal curvilinear coordinates [ edit ] Assume, for the purposes of this section, that the curvilinear coordinate system isorthogonal , i.e.,b i ⋅ b j = { g i i if i = j 0 if i ≠ j , {\displaystyle \mathbf {b} _{i}\cdot \mathbf {b} _{j}={\begin{cases}g_{ii}&{\text{if }}i=j\\0&{\text{if }}i\neq j,\end{cases}}} or equivalently,b i ⋅ b j = { g i i if i = j 0 if i ≠ j , {\displaystyle \mathbf {b} ^{i}\cdot \mathbf {b} ^{j}={\begin{cases}g^{ii}&{\text{if }}i=j\\0&{\text{if }}i\neq j,\end{cases}}} whereg i i = g i i − 1 {\displaystyle g^{ii}=g_{ii}^{-1}} . As before,b i , b j {\displaystyle \mathbf {b} _{i},\mathbf {b} _{j}} are covariant basis vectors andb i {\displaystyle \mathbf {b} ^{i}} ,b j {\displaystyle \mathbf {b} ^{j}} are contravariant basis vectors. Also, let( e 1 , e 2 , e 3 ) {\displaystyle (\mathbf {e} ^{1},\mathbf {e} ^{2},\mathbf {e} ^{3})} be a background, fixed,Cartesian basis. A list of orthogonal curvilinear coordinates is given below.
Metric tensor in orthogonal curvilinear coordinates [ edit ] Letr ( x ) {\displaystyle \mathbf {r} (\mathbf {x} )} be theposition vector of the pointx {\displaystyle \mathbf {x} } with respect to the origin of the coordinate system. The notation can be simplified by noting thatx {\displaystyle \mathbf {x} } =r ( x ) {\displaystyle \mathbf {r} (\mathbf {x} )} . At each point we can construct a small line elementd x {\displaystyle \mathrm {d} \mathbf {x} } . The square of the length of theline element is the scalar productd x ⋅ d x {\displaystyle \mathrm {d} \mathbf {x} \cdot \mathrm {d} \mathbf {x} } and is called themetric of thespace . Recall that the space of interest is assumed to beEuclidean when we talk of curvilinear coordinates. Let us express the position vector in terms of the background, fixed, Cartesian basis, i.e.,x = ∑ i = 1 3 x i e i {\displaystyle \mathbf {x} =\sum _{i=1}^{3}x_{i}~\mathbf {e} _{i}}
Using thechain rule , we can then expressd x {\displaystyle \mathrm {d} \mathbf {x} } in terms of three-dimensional orthogonal curvilinear coordinates( q 1 , q 2 , q 3 ) {\displaystyle (q^{1},q^{2},q^{3})} asd x = ∑ i = 1 3 ∑ j = 1 3 ( ∂ x i ∂ q j e i ) d q j {\displaystyle \mathrm {d} \mathbf {x} =\sum _{i=1}^{3}\sum _{j=1}^{3}\left({\cfrac {\partial x_{i}}{\partial q^{j}}}~\mathbf {e} _{i}\right)\mathrm {d} q^{j}} Therefore, the metric is given byd x ⋅ d x = ∑ i = 1 3 ∑ j = 1 3 ∑ k = 1 3 ∂ x i ∂ q j ∂ x i ∂ q k d q j d q k {\displaystyle \mathrm {d} \mathbf {x} \cdot \mathrm {d} \mathbf {x} =\sum _{i=1}^{3}\sum _{j=1}^{3}\sum _{k=1}^{3}{\cfrac {\partial x_{i}}{\partial q^{j}}}~{\cfrac {\partial x_{i}}{\partial q^{k}}}~\mathrm {d} q^{j}~\mathrm {d} q^{k}}
The symmetric quantityg i j ( q i , q j ) = ∑ k = 1 3 ∂ x k ∂ q i ∂ x k ∂ q j = b i ⋅ b j {\displaystyle g_{ij}(q^{i},q^{j})=\sum _{k=1}^{3}{\cfrac {\partial x_{k}}{\partial q^{i}}}~{\cfrac {\partial x_{k}}{\partial q^{j}}}=\mathbf {b} _{i}\cdot \mathbf {b} _{j}} is called thefundamental (or metric) tensor of theEuclidean space in curvilinear coordinates.
Note also thatg i j = ∂ x ∂ q i ⋅ ∂ x ∂ q j = ( ∑ k h k i e k ) ⋅ ( ∑ m h m j e m ) = ∑ k h k i h k j {\displaystyle g_{ij}={\cfrac {\partial \mathbf {x} }{\partial q^{i}}}\cdot {\cfrac {\partial \mathbf {x} }{\partial q^{j}}}=\left(\sum _{k}h_{ki}~\mathbf {e} _{k}\right)\cdot \left(\sum _{m}h_{mj}~\mathbf {e} _{m}\right)=\sum _{k}h_{ki}~h_{kj}} whereh i j {\displaystyle h_{ij}} are the Lamé coefficients.
If we define the scale factors,h i {\displaystyle h_{i}} , usingb i ⋅ b i = g i i = ∑ k h k i 2 =: h i 2 ⇒ | ∂ x ∂ q i | = | b i | = g i i = h i {\displaystyle \mathbf {b} _{i}\cdot \mathbf {b} _{i}=g_{ii}=\sum _{k}h_{ki}^{2}=:h_{i}^{2}\quad \Rightarrow \quad \left|{\cfrac {\partial \mathbf {x} }{\partial q^{i}}}\right|=\left|\mathbf {b} _{i}\right|={\sqrt {g_{ii}}}=h_{i}} we get a relation between the fundamental tensor and the Lamé coefficients.
Example: Polar coordinates [ edit ] If we consider polar coordinates forR 2 {\displaystyle \mathbb {R} ^{2}} , note that( x , y ) = ( r cos θ , r sin θ ) {\displaystyle (x,y)=(r\cos \theta ,r\sin \theta )} ( r , θ ) {\displaystyle (r,\theta )} are the curvilinear coordinates, and the Jacobian determinant of the transformation( r , θ ) → ( r cos θ , r sin θ ) {\displaystyle (r,\theta )\to (r\cos \theta ,r\sin \theta )} isr {\displaystyle r} .
Theorthogonal basis vectors areb r = ( cos θ , sin θ ) {\displaystyle \mathbf {b} _{r}=(\cos \theta ,\sin \theta )} ,b θ = ( − r sin θ , r cos θ ) {\displaystyle \mathbf {b} _{\theta }=(-r\sin \theta ,r\cos \theta )} . The normalized basis vectors aree r = ( cos θ , sin θ ) {\displaystyle \mathbf {e} _{r}=(\cos \theta ,\sin \theta )} ,e θ = ( − sin θ , cos θ ) {\displaystyle \mathbf {e} _{\theta }=(-\sin \theta ,\cos \theta )} and the scale factors areh r = 1 {\displaystyle h_{r}=1} andh θ = r {\displaystyle h_{\theta }=r} . The fundamental tensor isg 11 = 1 {\displaystyle g_{11}=1} ,g 22 = r 2 {\displaystyle g_{22}=r^{2}} ,g 12 = g 21 = 0 {\displaystyle g_{12}=g_{21}=0} .
Line and surface integrals [ edit ] If we wish to use curvilinear coordinates forvector calculus calculations, adjustments need to be made in the calculation of line, surface and volume integrals. For simplicity, we again restrict the discussion to three dimensions and orthogonal curvilinear coordinates. However, the same arguments apply forn {\displaystyle n} -dimensional problems though there are some additional terms in the expressions when the coordinate system is not orthogonal.
Normally in the calculation ofline integrals we are interested in calculating∫ C f d s = ∫ a b f ( x ( t ) ) | ∂ x ∂ t | d t {\displaystyle \int _{C}f\,ds=\int _{a}^{b}f(\mathbf {x} (t))\left|{\partial \mathbf {x} \over \partial t}\right|\;dt} wherex ( t ) {\displaystyle \mathbf {x} (t)} parametrizesC {\displaystyle C} in Cartesian coordinates.In curvilinear coordinates, the term
| ∂ x ∂ t | = | ∑ i = 1 3 ∂ x ∂ q i ∂ q i ∂ t | {\displaystyle \left|{\partial \mathbf {x} \over \partial t}\right|=\left|\sum _{i=1}^{3}{\partial \mathbf {x} \over \partial q^{i}}{\partial q^{i} \over \partial t}\right|}
by thechain rule . And from the definition of the Lamé coefficients,
∂ x ∂ q i = ∑ k h k i e k {\displaystyle {\partial \mathbf {x} \over \partial q^{i}}=\sum _{k}h_{ki}~\mathbf {e} _{k}}
and thus
| ∂ x ∂ t | = | ∑ k ( ∑ i h k i ∂ q i ∂ t ) e k | = ∑ i ∑ j ∑ k h k i h k j ∂ q i ∂ t ∂ q j ∂ t = ∑ i ∑ j g i j ∂ q i ∂ t ∂ q j ∂ t {\displaystyle {\begin{aligned}\left|{\partial \mathbf {x} \over \partial t}\right|&=\left|\sum _{k}\left(\sum _{i}h_{ki}~{\cfrac {\partial q^{i}}{\partial t}}\right)\mathbf {e} _{k}\right|\\[8pt]&={\sqrt {\sum _{i}\sum _{j}\sum _{k}h_{ki}~h_{kj}{\cfrac {\partial q^{i}}{\partial t}}{\cfrac {\partial q^{j}}{\partial t}}}}={\sqrt {\sum _{i}\sum _{j}g_{ij}~{\cfrac {\partial q^{i}}{\partial t}}{\cfrac {\partial q^{j}}{\partial t}}}}\end{aligned}}}
Now, sinceg i j = 0 {\displaystyle g_{ij}=0} wheni ≠ j {\displaystyle i\neq j} , we have| ∂ x ∂ t | = ∑ i g i i ( ∂ q i ∂ t ) 2 = ∑ i h i 2 ( ∂ q i ∂ t ) 2 {\displaystyle \left|{\partial \mathbf {x} \over \partial t}\right|={\sqrt {\sum _{i}g_{ii}~\left({\cfrac {\partial q^{i}}{\partial t}}\right)^{2}}}={\sqrt {\sum _{i}h_{i}^{2}~\left({\cfrac {\partial q^{i}}{\partial t}}\right)^{2}}}} and we can proceed normally.
Likewise, if we are interested in asurface integral , the relevant calculation, with the parameterization of the surface in Cartesian coordinates is:∫ S f d S = ∬ T f ( x ( s , t ) ) | ∂ x ∂ s × ∂ x ∂ t | d s d t {\displaystyle \int _{S}f\,dS=\iint _{T}f(\mathbf {x} (s,t))\left|{\partial \mathbf {x} \over \partial s}\times {\partial \mathbf {x} \over \partial t}\right|\,ds\,dt} Again, in curvilinear coordinates, we have| ∂ x ∂ s × ∂ x ∂ t | = | ( ∑ i ∂ x ∂ q i ∂ q i ∂ s ) × ( ∑ j ∂ x ∂ q j ∂ q j ∂ t ) | {\displaystyle \left|{\partial \mathbf {x} \over \partial s}\times {\partial \mathbf {x} \over \partial t}\right|=\left|\left(\sum _{i}{\partial \mathbf {x} \over \partial q^{i}}{\partial q^{i} \over \partial s}\right)\times \left(\sum _{j}{\partial \mathbf {x} \over \partial q^{j}}{\partial q^{j} \over \partial t}\right)\right|} and we make use of the definition of curvilinear coordinates again to yield∂ x ∂ q i ∂ q i ∂ s = ∑ k ( ∑ i = 1 3 h k i ∂ q i ∂ s ) e k ; ∂ x ∂ q j ∂ q j ∂ t = ∑ m ( ∑ j = 1 3 h m j ∂ q j ∂ t ) e m {\displaystyle {\partial \mathbf {x} \over \partial q^{i}}{\partial q^{i} \over \partial s}=\sum _{k}\left(\sum _{i=1}^{3}h_{ki}~{\partial q^{i} \over \partial s}\right)\mathbf {e} _{k}~;~~{\partial \mathbf {x} \over \partial q^{j}}{\partial q^{j} \over \partial t}=\sum _{m}\left(\sum _{j=1}^{3}h_{mj}~{\partial q^{j} \over \partial t}\right)\mathbf {e} _{m}}
Therefore,| ∂ x ∂ s × ∂ x ∂ t | = | ∑ k ∑ m ( ∑ i = 1 3 h k i ∂ q i ∂ s ) ( ∑ j = 1 3 h m j ∂ q j ∂ t ) e k × e m | = | ∑ p ∑ k ∑ m E k m p ( ∑ i = 1 3 h k i ∂ q i ∂ s ) ( ∑ j = 1 3 h m j ∂ q j ∂ t ) e p | {\displaystyle {\begin{aligned}\left|{\partial \mathbf {x} \over \partial s}\times {\partial \mathbf {x} \over \partial t}\right|&=\left|\sum _{k}\sum _{m}\left(\sum _{i=1}^{3}h_{ki}~{\partial q^{i} \over \partial s}\right)\left(\sum _{j=1}^{3}h_{mj}~{\partial q^{j} \over \partial t}\right)\mathbf {e} _{k}\times \mathbf {e} _{m}\right|\\[8pt]&=\left|\sum _{p}\sum _{k}\sum _{m}{\mathcal {E}}_{kmp}\left(\sum _{i=1}^{3}h_{ki}~{\partial q^{i} \over \partial s}\right)\left(\sum _{j=1}^{3}h_{mj}~{\partial q^{j} \over \partial t}\right)\mathbf {e} _{p}\right|\end{aligned}}} whereE {\displaystyle {\mathcal {E}}} is thepermutation symbol .
In determinant form, the cross product in terms of curvilinear coordinates will be:| e 1 e 2 e 3 ∑ i h 1 i ∂ q i ∂ s ∑ i h 2 i ∂ q i ∂ s ∑ i h 3 i ∂ q i ∂ s ∑ j h 1 j ∂ q j ∂ t ∑ j h 2 j ∂ q j ∂ t ∑ j h 3 j ∂ q j ∂ t | {\displaystyle {\begin{vmatrix}\mathbf {e} _{1}&\mathbf {e} _{2}&\mathbf {e} _{3}\\&&\\\sum _{i}h_{1i}{\partial q^{i} \over \partial s}&\sum _{i}h_{2i}{\partial q^{i} \over \partial s}&\sum _{i}h_{3i}{\partial q^{i} \over \partial s}\\&&\\\sum _{j}h_{1j}{\partial q^{j} \over \partial t}&\sum _{j}h_{2j}{\partial q^{j} \over \partial t}&\sum _{j}h_{3j}{\partial q^{j} \over \partial t}\end{vmatrix}}}
Grad, curl, div, Laplacian[ edit ] Inorthogonal curvilinear coordinates of 3 dimensions, whereb i = ∑ k g i k b k ; g i i = 1 g i i = 1 h i 2 {\displaystyle \mathbf {b} ^{i}=\sum _{k}g^{ik}~\mathbf {b} _{k}~;~~g^{ii}={\cfrac {1}{g_{ii}}}={\cfrac {1}{h_{i}^{2}}}} one can express thegradient of ascalar orvector field as∇ φ = ∑ i ∂ φ ∂ q i b i = ∑ i ∑ j ∂ φ ∂ q i g i j b j = ∑ i 1 h i 2 ∂ f ∂ q i b i ; ∇ v = ∑ i 1 h i 2 ∂ v ∂ q i ⊗ b i {\displaystyle \nabla \varphi =\sum _{i}{\partial \varphi \over \partial q^{i}}~\mathbf {b} ^{i}=\sum _{i}\sum _{j}{\partial \varphi \over \partial q^{i}}~g^{ij}~\mathbf {b} _{j}=\sum _{i}{\cfrac {1}{h_{i}^{2}}}~{\partial f \over \partial q^{i}}~\mathbf {b} _{i}~;~~\nabla \mathbf {v} =\sum _{i}{\cfrac {1}{h_{i}^{2}}}~{\partial \mathbf {v} \over \partial q^{i}}\otimes \mathbf {b} _{i}} For an orthogonal basisg = g 11 g 22 g 33 = h 1 2 h 2 2 h 3 2 ⇒ g = h 1 h 2 h 3 {\displaystyle g=g_{11}~g_{22}~g_{33}=h_{1}^{2}~h_{2}^{2}~h_{3}^{2}\quad \Rightarrow \quad {\sqrt {g}}=h_{1}h_{2}h_{3}} Thedivergence of a vector field can then be written as∇ ⋅ v = 1 h 1 h 2 h 3 ∂ ∂ q i ( h 1 h 2 h 3 v i ) {\displaystyle {\boldsymbol {\nabla }}\cdot \mathbf {v} ={\cfrac {1}{h_{1}h_{2}h_{3}}}~{\frac {\partial }{\partial q^{i}}}(h_{1}h_{2}h_{3}~v^{i})} Also,v i = g i k v k ⇒ v 1 = g 11 v 1 = v 1 h 1 2 ; v 2 = g 22 v 2 = v 2 h 2 2 ; v 3 = g 33 v 3 = v 3 h 3 2 {\displaystyle v^{i}=g^{ik}~v_{k}\quad \Rightarrow v^{1}=g^{11}~v_{1}={\cfrac {v_{1}}{h_{1}^{2}}}~;~~v^{2}=g^{22}~v_{2}={\cfrac {v_{2}}{h_{2}^{2}}}~;~~v^{3}=g^{33}~v_{3}={\cfrac {v_{3}}{h_{3}^{2}}}} Therefore,∇ ⋅ v = 1 h 1 h 2 h 3 ∑ i ∂ ∂ q i ( h 1 h 2 h 3 h i 2 v i ) {\displaystyle {\boldsymbol {\nabla }}\cdot \mathbf {v} ={\cfrac {1}{h_{1}h_{2}h_{3}}}~\sum _{i}{\frac {\partial }{\partial q^{i}}}\left({\cfrac {h_{1}h_{2}h_{3}}{h_{i}^{2}}}~v_{i}\right)} We can get an expression for theLaplacian in a similar manner by noting thatg l i ∂ φ ∂ q l = { g 11 ∂ φ ∂ q 1 , g 22 ∂ φ ∂ q 2 , g 33 ∂ φ ∂ q 3 } = { 1 h 1 2 ∂ φ ∂ q 1 , 1 h 2 2 ∂ φ ∂ q 2 , 1 h 3 2 ∂ φ ∂ q 3 } {\displaystyle g^{li}~{\frac {\partial \varphi }{\partial q^{l}}}=\left\{g^{11}~{\frac {\partial \varphi }{\partial q^{1}}},g^{22}~{\frac {\partial \varphi }{\partial q^{2}}},g^{33}~{\frac {\partial \varphi }{\partial q^{3}}}\right\}=\left\{{\cfrac {1}{h_{1}^{2}}}~{\frac {\partial \varphi }{\partial q^{1}}},{\cfrac {1}{h_{2}^{2}}}~{\frac {\partial \varphi }{\partial q^{2}}},{\cfrac {1}{h_{3}^{2}}}~{\frac {\partial \varphi }{\partial q^{3}}}\right\}} Then we have∇ 2 φ = 1 h 1 h 2 h 3 ∑ i ∂ ∂ q i ( h 1 h 2 h 3 h i 2 ∂ φ ∂ q i ) {\displaystyle \nabla ^{2}\varphi ={\cfrac {1}{h_{1}h_{2}h_{3}}}~\sum _{i}{\frac {\partial }{\partial q^{i}}}\left({\cfrac {h_{1}h_{2}h_{3}}{h_{i}^{2}}}~{\frac {\partial \varphi }{\partial q^{i}}}\right)} The expressions for the gradient, divergence, and Laplacian can be directly extended ton {\displaystyle n} -dimensions.
Thecurl of avector field is given by∇ × v = 1 h 1 h 2 h 3 ∑ i = 1 n e i ∑ j k ε i j k h i ∂ ( h k v k ) ∂ q j {\displaystyle \nabla \times \mathbf {v} ={\frac {1}{h_{1}h_{2}h_{3}}}\sum _{i=1}^{n}\mathbf {e} _{i}\sum _{jk}\varepsilon _{ijk}h_{i}{\frac {\partial (h_{k}v_{k})}{\partial q^{j}}}} whereε i j k {\displaystyle \varepsilon _{ijk}} is theLevi-Civita symbol .
Example: Cylindrical polar coordinates [ edit ] Forcylindrical coordinates we have( x 1 , x 2 , x 3 ) = x = φ ( q 1 , q 2 , q 3 ) = φ ( r , θ , z ) = { r cos θ , r sin θ , z } {\displaystyle (x_{1},x_{2},x_{3})=\mathbf {x} ={\boldsymbol {\varphi }}(q^{1},q^{2},q^{3})={\boldsymbol {\varphi }}(r,\theta ,z)=\{r\cos \theta ,r\sin \theta ,z\}} and{ ψ 1 ( x ) , ψ 2 ( x ) , ψ 3 ( x ) } = ( q 1 , q 2 , q 3 ) ≡ ( r , θ , z ) = { x 1 2 + x 2 2 , tan − 1 ( x 2 / x 1 ) , x 3 } {\displaystyle \{\psi ^{1}(\mathbf {x} ),\psi ^{2}(\mathbf {x} ),\psi ^{3}(\mathbf {x} )\}=(q^{1},q^{2},q^{3})\equiv (r,\theta ,z)=\{{\sqrt {x_{1}^{2}+x_{2}^{2}}},\tan ^{-1}(x_{2}/x_{1}),x_{3}\}} where0 < r < ∞ , 0 < θ < 2 π , − ∞ < z < ∞ {\displaystyle 0<r<\infty ~,~~0<\theta <2\pi ~,~~-\infty <z<\infty }
Then the covariant and contravariant basis vectors areb 1 = e r = b 1 b 2 = r e θ = r 2 b 2 b 3 = e z = b 3 {\displaystyle {\begin{aligned}\mathbf {b} _{1}&=\mathbf {e} _{r}=\mathbf {b} ^{1}\\\mathbf {b} _{2}&=r~\mathbf {e} _{\theta }=r^{2}~\mathbf {b} ^{2}\\\mathbf {b} _{3}&=\mathbf {e} _{z}=\mathbf {b} ^{3}\end{aligned}}} wheree r , e θ , e z {\displaystyle \mathbf {e} _{r},\mathbf {e} _{\theta },\mathbf {e} _{z}} are the unit vectors in ther , θ , z {\displaystyle r,\theta ,z} directions.
Note that the components of the metric tensor are such thatg i j = g i j = 0 ( i ≠ j ) ; g 11 = 1 , g 22 = 1 r , g 33 = 1 {\displaystyle g^{ij}=g_{ij}=0(i\neq j)~;~~{\sqrt {g^{11}}}=1,~{\sqrt {g^{22}}}={\cfrac {1}{r}},~{\sqrt {g^{33}}}=1} which shows that the basis is orthogonal.
The non-zero components of the Christoffel symbol of the second kind areΓ 12 2 = Γ 21 2 = 1 r ; Γ 22 1 = − r {\displaystyle \Gamma _{12}^{2}=\Gamma _{21}^{2}={\cfrac {1}{r}}~;~~\Gamma _{22}^{1}=-r}
Representing a physical vector field [ edit ] The normalized contravariant basis vectors in cylindrical polar coordinates areb ^ 1 = e r ; b ^ 2 = e θ ; b ^ 3 = e z {\displaystyle {\hat {\mathbf {b} }}^{1}=\mathbf {e} _{r}~;~~{\hat {\mathbf {b} }}^{2}=\mathbf {e} _{\theta }~;~~{\hat {\mathbf {b} }}^{3}=\mathbf {e} _{z}} and the physical components of a vectorv {\displaystyle \mathbf {v} } are( v ^ 1 , v ^ 2 , v ^ 3 ) = ( v 1 , v 2 / r , v 3 ) =: ( v r , v θ , v z ) {\displaystyle ({\hat {v}}_{1},{\hat {v}}_{2},{\hat {v}}_{3})=(v_{1},v_{2}/r,v_{3})=:(v_{r},v_{\theta },v_{z})}
Gradient of a scalar field [ edit ] The gradient of a scalar field,f ( x ) {\displaystyle f(\mathbf {x} )} , in cylindrical coordinates can now be computed from the general expression in curvilinear coordinates and has the form∇ f = ∂ f ∂ r e r + 1 r ∂ f ∂ θ e θ + ∂ f ∂ z e z {\displaystyle {\boldsymbol {\nabla }}f={\cfrac {\partial f}{\partial r}}~\mathbf {e} _{r}+{\cfrac {1}{r}}~{\cfrac {\partial f}{\partial \theta }}~\mathbf {e} _{\theta }+{\cfrac {\partial f}{\partial z}}~\mathbf {e} _{z}}
Gradient of a vector field [ edit ] Similarly, the gradient of a vector field,v ( x ) {\displaystyle \mathbf {v} (\mathbf {x} )} , in cylindrical coordinates can be shown to be∇ v = ∂ v r ∂ r e r ⊗ e r + 1 r ( ∂ v r ∂ θ − v θ ) e r ⊗ e θ + ∂ v r ∂ z e r ⊗ e z + ∂ v θ ∂ r e θ ⊗ e r + 1 r ( ∂ v θ ∂ θ + v r ) e θ ⊗ e θ + ∂ v θ ∂ z e θ ⊗ e z + ∂ v z ∂ r e z ⊗ e r + 1 r ∂ v z ∂ θ e z ⊗ e θ + ∂ v z ∂ z e z ⊗ e z {\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\mathbf {v} &={\cfrac {\partial v_{r}}{\partial r}}~\mathbf {e} _{r}\otimes \mathbf {e} _{r}+{\cfrac {1}{r}}\left({\cfrac {\partial v_{r}}{\partial \theta }}-v_{\theta }\right)~\mathbf {e} _{r}\otimes \mathbf {e} _{\theta }+{\cfrac {\partial v_{r}}{\partial z}}~\mathbf {e} _{r}\otimes \mathbf {e} _{z}\\[8pt]&+{\cfrac {\partial v_{\theta }}{\partial r}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{r}+{\cfrac {1}{r}}\left({\cfrac {\partial v_{\theta }}{\partial \theta }}+v_{r}\right)~\mathbf {e} _{\theta }\otimes \mathbf {e} _{\theta }+{\cfrac {\partial v_{\theta }}{\partial z}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{z}\\[8pt]&+{\cfrac {\partial v_{z}}{\partial r}}~\mathbf {e} _{z}\otimes \mathbf {e} _{r}+{\cfrac {1}{r}}{\cfrac {\partial v_{z}}{\partial \theta }}~\mathbf {e} _{z}\otimes \mathbf {e} _{\theta }+{\cfrac {\partial v_{z}}{\partial z}}~\mathbf {e} _{z}\otimes \mathbf {e} _{z}\end{aligned}}}
Divergence of a vector field [ edit ] Using the equation for the divergence of a vector field in curvilinear coordinates, the divergence in cylindrical coordinates can be shown to be∇ ⋅ v = ∂ v r ∂ r + 1 r ( ∂ v θ ∂ θ + v r ) + ∂ v z ∂ z {\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\cdot \mathbf {v} &={\cfrac {\partial v_{r}}{\partial r}}+{\cfrac {1}{r}}\left({\cfrac {\partial v_{\theta }}{\partial \theta }}+v_{r}\right)+{\cfrac {\partial v_{z}}{\partial z}}\end{aligned}}}
Laplacian of a scalar field [ edit ] The Laplacian is more easily computed by noting that∇ 2 f = ∇ ⋅ ∇ f {\displaystyle {\boldsymbol {\nabla }}^{2}f={\boldsymbol {\nabla }}\cdot {\boldsymbol {\nabla }}f} . In cylindrical polar coordinatesv = ∇ f = [ v r v θ v z ] = [ ∂ f ∂ r 1 r ∂ f ∂ θ ∂ f ∂ z ] {\displaystyle \mathbf {v} ={\boldsymbol {\nabla }}f=\left[v_{r}~~v_{\theta }~~v_{z}\right]=\left[{\cfrac {\partial f}{\partial r}}~~{\cfrac {1}{r}}{\cfrac {\partial f}{\partial \theta }}~~{\cfrac {\partial f}{\partial z}}\right]} Hence,∇ ⋅ v = ∇ 2 f = ∂ 2 f ∂ r 2 + 1 r ( 1 r ∂ 2 f ∂ θ 2 + ∂ f ∂ r ) + ∂ 2 f ∂ z 2 = 1 r [ ∂ ∂ r ( r ∂ f ∂ r ) ] + 1 r 2 ∂ 2 f ∂ θ 2 + ∂ 2 f ∂ z 2 {\displaystyle {\boldsymbol {\nabla }}\cdot \mathbf {v} ={\boldsymbol {\nabla }}^{2}f={\cfrac {\partial ^{2}f}{\partial r^{2}}}+{\cfrac {1}{r}}\left({\cfrac {1}{r}}{\cfrac {\partial ^{2}f}{\partial \theta ^{2}}}+{\cfrac {\partial f}{\partial r}}\right)+{\cfrac {\partial ^{2}f}{\partial z^{2}}}={\cfrac {1}{r}}\left[{\cfrac {\partial }{\partial r}}\left(r{\cfrac {\partial f}{\partial r}}\right)\right]+{\cfrac {1}{r^{2}}}{\cfrac {\partial ^{2}f}{\partial \theta ^{2}}}+{\cfrac {\partial ^{2}f}{\partial z^{2}}}}
Representing a physical second-order tensor field [ edit ] The physical components of a second-order tensor field are those obtained when the tensor is expressed in terms of a normalized contravariant basis. In cylindrical polar coordinates these components are:
S ^ 11 = S 11 =: S r r , S ^ 12 = S 12 r =: S r θ , S ^ 13 = S 13 =: S r z S ^ 21 = S 21 r =: S θ r , S ^ 22 = S 22 r 2 =: S θ θ , S ^ 23 = S 23 r =: S θ z S ^ 31 = S 31 =: S z r , S ^ 32 = S 32 r =: S z θ , S ^ 33 = S 33 =: S z z {\displaystyle {\begin{aligned}{\hat {S}}_{11}&=S_{11}=:S_{rr},&{\hat {S}}_{12}&={\frac {S_{12}}{r}}=:S_{r\theta },&{\hat {S}}_{13}&=S_{13}=:S_{rz}\\[6pt]{\hat {S}}_{21}&={\frac {S_{21}}{r}}=:S_{\theta r},&{\hat {S}}_{22}&={\frac {S_{22}}{r^{2}}}=:S_{\theta \theta },&{\hat {S}}_{23}&={\frac {S_{23}}{r}}=:S_{\theta z}\\[6pt]{\hat {S}}_{31}&=S_{31}=:S_{zr},&{\hat {S}}_{32}&={\frac {S_{32}}{r}}=:S_{z\theta },&{\hat {S}}_{33}&=S_{33}=:S_{zz}\end{aligned}}}
Gradient of a second-order tensor field [ edit ] Using the above definitions we can show that the gradient of a second-order tensor field in cylindrical polar coordinates can be expressed as∇ S = ∂ S r r ∂ r e r ⊗ e r ⊗ e r + 1 r [ ∂ S r r ∂ θ − ( S θ r + S r θ ) ] e r ⊗ e r ⊗ e θ + ∂ S r r ∂ z e r ⊗ e r ⊗ e z + ∂ S r θ ∂ r e r ⊗ e θ ⊗ e r + 1 r [ ∂ S r θ ∂ θ + ( S r r − S θ θ ) ] e r ⊗ e θ ⊗ e θ + ∂ S r θ ∂ z e r ⊗ e θ ⊗ e z + ∂ S r z ∂ r e r ⊗ e z ⊗ e r + 1 r [ ∂ S r z ∂ θ − S θ z ] e r ⊗ e z ⊗ e θ + ∂ S r z ∂ z e r ⊗ e z ⊗ e z + ∂ S θ r ∂ r e θ ⊗ e r ⊗ e r + 1 r [ ∂ S θ r ∂ θ + ( S r r − S θ θ ) ] e θ ⊗ e r ⊗ e θ + ∂ S θ r ∂ z e θ ⊗ e r ⊗ e z + ∂ S θ θ ∂ r e θ ⊗ e θ ⊗ e r + 1 r [ ∂ S θ θ ∂ θ + ( S r θ + S θ r ) ] e θ ⊗ e θ ⊗ e θ + ∂ S θ θ ∂ z e θ ⊗ e θ ⊗ e z + ∂ S θ z ∂ r e θ ⊗ e z ⊗ e r + 1 r [ ∂ S θ z ∂ θ + S r z ] e θ ⊗ e z ⊗ e θ + ∂ S θ z ∂ z e θ ⊗ e z ⊗ e z + ∂ S z r ∂ r e z ⊗ e r ⊗ e r + 1 r [ ∂ S z r ∂ θ − S z θ ] e z ⊗ e r ⊗ e θ + ∂ S z r ∂ z e z ⊗ e r ⊗ e z + ∂ S z θ ∂ r e z ⊗ e θ ⊗ e r + 1 r [ ∂ S z θ ∂ θ + S z r ] e z ⊗ e θ ⊗ e θ + ∂ S z θ ∂ z e z ⊗ e θ ⊗ e z + ∂ S z z ∂ r e z ⊗ e z ⊗ e r + 1 r ∂ S z z ∂ θ e z ⊗ e z ⊗ e θ + ∂ S z z ∂ z e z ⊗ e z ⊗ e z {\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}{\boldsymbol {S}}&={\frac {\partial S_{rr}}{\partial r}}~\mathbf {e} _{r}\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{r}+{\cfrac {1}{r}}\left[{\frac {\partial S_{rr}}{\partial \theta }}-(S_{\theta r}+S_{r\theta })\right]~\mathbf {e} _{r}\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{\theta }+{\frac {\partial S_{rr}}{\partial z}}~\mathbf {e} _{r}\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{z}\\[8pt]&+{\frac {\partial S_{r\theta }}{\partial r}}~\mathbf {e} _{r}\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{r}+{\cfrac {1}{r}}\left[{\frac {\partial S_{r\theta }}{\partial \theta }}+(S_{rr}-S_{\theta \theta })\right]~\mathbf {e} _{r}\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{\theta }+{\frac {\partial S_{r\theta }}{\partial z}}~\mathbf {e} _{r}\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{z}\\[8pt]&+{\frac {\partial S_{rz}}{\partial r}}~\mathbf {e} _{r}\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{r}+{\cfrac {1}{r}}\left[{\frac {\partial S_{rz}}{\partial \theta }}-S_{\theta z}\right]~\mathbf {e} _{r}\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{\theta }+{\frac {\partial S_{rz}}{\partial z}}~\mathbf {e} _{r}\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{z}\\[8pt]&+{\frac {\partial S_{\theta r}}{\partial r}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{r}+{\cfrac {1}{r}}\left[{\frac {\partial S_{\theta r}}{\partial \theta }}+(S_{rr}-S_{\theta \theta })\right]~\mathbf {e} _{\theta }\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{\theta }+{\frac {\partial S_{\theta r}}{\partial z}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{z}\\[8pt]&+{\frac {\partial S_{\theta \theta }}{\partial r}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{r}+{\cfrac {1}{r}}\left[{\frac {\partial S_{\theta \theta }}{\partial \theta }}+(S_{r\theta }+S_{\theta r})\right]~\mathbf {e} _{\theta }\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{\theta }+{\frac {\partial S_{\theta \theta }}{\partial z}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{z}\\[8pt]&+{\frac {\partial S_{\theta z}}{\partial r}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{r}+{\cfrac {1}{r}}\left[{\frac {\partial S_{\theta z}}{\partial \theta }}+S_{rz}\right]~\mathbf {e} _{\theta }\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{\theta }+{\frac {\partial S_{\theta z}}{\partial z}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{z}\\[8pt]&+{\frac {\partial S_{zr}}{\partial r}}~\mathbf {e} _{z}\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{r}+{\cfrac {1}{r}}\left[{\frac {\partial S_{zr}}{\partial \theta }}-S_{z\theta }\right]~\mathbf {e} _{z}\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{\theta }+{\frac {\partial S_{zr}}{\partial z}}~\mathbf {e} _{z}\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{z}\\[8pt]&+{\frac {\partial S_{z\theta }}{\partial r}}~\mathbf {e} _{z}\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{r}+{\cfrac {1}{r}}\left[{\frac {\partial S_{z\theta }}{\partial \theta }}+S_{zr}\right]~\mathbf {e} _{z}\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{\theta }+{\frac {\partial S_{z\theta }}{\partial z}}~\mathbf {e} _{z}\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{z}\\[8pt]&+{\frac {\partial S_{zz}}{\partial r}}~\mathbf {e} _{z}\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{r}+{\cfrac {1}{r}}~{\frac {\partial S_{zz}}{\partial \theta }}~\mathbf {e} _{z}\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{\theta }+{\frac {\partial S_{zz}}{\partial z}}~\mathbf {e} _{z}\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{z}\end{aligned}}}
Divergence of a second-order tensor field [ edit ] The divergence of a second-order tensor field in cylindrical polar coordinates can be obtained from the expression for the gradient by collecting terms where the scalar product of the two outer vectors in the dyadic products is nonzero. Therefore,∇ ⋅ S = ∂ S r r ∂ r e r + ∂ S r θ ∂ r e θ + ∂ S r z ∂ r e z + 1 r [ ∂ S r θ ∂ θ + ( S r r − S θ θ ) ] e r + 1 r [ ∂ S θ θ ∂ θ + ( S r θ + S θ r ) ] e θ + 1 r [ ∂ S θ z ∂ θ + S r z ] e z + ∂ S z r ∂ z e r + ∂ S z θ ∂ z e θ + ∂ S z z ∂ z e z {\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\cdot {\boldsymbol {S}}&={\frac {\partial S_{rr}}{\partial r}}~\mathbf {e} _{r}+{\frac {\partial S_{r\theta }}{\partial r}}~\mathbf {e} _{\theta }+{\frac {\partial S_{rz}}{\partial r}}~\mathbf {e} _{z}\\[8pt]&+{\cfrac {1}{r}}\left[{\frac {\partial S_{r\theta }}{\partial \theta }}+(S_{rr}-S_{\theta \theta })\right]~\mathbf {e} _{r}+{\cfrac {1}{r}}\left[{\frac {\partial S_{\theta \theta }}{\partial \theta }}+(S_{r\theta }+S_{\theta r})\right]~\mathbf {e} _{\theta }+{\cfrac {1}{r}}\left[{\frac {\partial S_{\theta z}}{\partial \theta }}+S_{rz}\right]~\mathbf {e} _{z}\\[8pt]&+{\frac {\partial S_{zr}}{\partial z}}~\mathbf {e} _{r}+{\frac {\partial S_{z\theta }}{\partial z}}~\mathbf {e} _{\theta }+{\frac {\partial S_{zz}}{\partial z}}~\mathbf {e} _{z}\end{aligned}}}
Notes ^a b c Green, A. E.; Zerna, W. (1968).Theoretical Elasticity . Oxford University Press.ISBN 0-19-853486-8 . ^a b c Ogden, R. W. (2000).Nonlinear elastic deformations . Dover. ^ Naghdi, P. M. (1972). "Theory of shells and plates". In S. Flügge (ed.).Handbook of Physics . Vol. VIa/2. pp. 425– 640. ^a b c d e f g h i j k Simmonds, J. G. (1994).A brief on tensor analysis . Springer.ISBN 0-387-90639-8 . ^a b Basar, Y.; Weichert, D. (2000).Numerical continuum mechanics of solids: fundamental concepts and perspectives . Springer. ^a b c Ciarlet, P. G. (2000).Theory of Shells . Vol. 1. Elsevier Science. ^ Einstein, A. (1915). "Contribution to the Theory of General Relativity". In Laczos, C. (ed.).The Einstein Decade . p. 213. ^ Misner, C. W.; Thorne, K. S.; Wheeler, J. A. (1973).Gravitation . W. H. Freeman and Co.ISBN 0-7167-0344-0 . ^ Greenleaf, A.; Lassas, M.; Uhlmann, G. (2003). "Anisotropic conductivities that cannot be detected by EIT".Physiological Measurement .24 (2):413– 419.doi :10.1088/0967-3334/24/2/353 .PMID 12812426 .S2CID 250813768 . ^ Leonhardt, U.; Philbin, T. G. (2006). "General relativity in electrical engineering".New Journal of Physics .8 (10): 247.arXiv :cond-mat/0607418 .Bibcode :2006NJPh....8..247L .doi :10.1088/1367-2630/8/10/247 .S2CID 12100599 . ^ "The divergence of a tensor field" .Introduction to Elasticity/Tensors .Wikiversity . Retrieved2010-11-26 .Further reading
Two dimensional Three dimensional