Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Tensor derivative (continuum mechanics)

From Wikipedia, the free encyclopedia

Thederivatives ofscalars,vectors, and second-ordertensors with respect to second-order tensors are of considerable use incontinuum mechanics. These derivatives are used in the theories ofnonlinear elasticity andplasticity, particularly in the design ofalgorithms fornumerical simulations.[1]

Thedirectional derivative provides a systematic way of finding these derivatives.[2]

Derivatives with respect to vectors and second-order tensors

[edit]

The definitions of directional derivatives for various situations are given below. It is assumed that the functions are sufficiently smooth that derivatives can be taken.

Derivatives of scalar valued functions of vectors

[edit]

Letf(v) be a real valued function of the vectorv. Then the derivative off(v) with respect tov (or atv) is thevector defined through itsdot product with any vectoru being

fvu=Df(v)[u]=[ddα f(v+α u)]α=0{\displaystyle {\frac {\partial f}{\partial \mathbf {v} }}\cdot \mathbf {u} =Df(\mathbf {v} )[\mathbf {u} ]=\left[{\frac {d}{d\alpha }}~f(\mathbf {v} +\alpha ~\mathbf {u} )\right]_{\alpha =0}}

for all vectorsu. The above dot product yields a scalar, and ifu is aunit vector gives the directional derivative off atv, in theu direction.

Properties:

  1. Iff(v)=f1(v)+f2(v){\displaystyle f(\mathbf {v} )=f_{1}(\mathbf {v} )+f_{2}(\mathbf {v} )} thenfvu=(f1v+f2v)u{\displaystyle {\frac {\partial f}{\partial \mathbf {v} }}\cdot \mathbf {u} =\left({\frac {\partial f_{1}}{\partial \mathbf {v} }}+{\frac {\partial f_{2}}{\partial \mathbf {v} }}\right)\cdot \mathbf {u} }
  2. Iff(v)=f1(v) f2(v){\displaystyle f(\mathbf {v} )=f_{1}(\mathbf {v} )~f_{2}(\mathbf {v} )} thenfvu=(f1vu) f2(v)+f1(v) (f2vu){\displaystyle {\frac {\partial f}{\partial \mathbf {v} }}\cdot \mathbf {u} =\left({\frac {\partial f_{1}}{\partial \mathbf {v} }}\cdot \mathbf {u} \right)~f_{2}(\mathbf {v} )+f_{1}(\mathbf {v} )~\left({\frac {\partial f_{2}}{\partial \mathbf {v} }}\cdot \mathbf {u} \right)}
  3. Iff(v)=f1(f2(v)){\displaystyle f(\mathbf {v} )=f_{1}(f_{2}(\mathbf {v} ))} thenfvu=f1f2 f2vu{\displaystyle {\frac {\partial f}{\partial \mathbf {v} }}\cdot \mathbf {u} ={\frac {\partial f_{1}}{\partial f_{2}}}~{\frac {\partial f_{2}}{\partial \mathbf {v} }}\cdot \mathbf {u} }

Derivatives of vector valued functions of vectors

[edit]

Letf(v) be a vector valued function of the vectorv. Then the derivative off(v) with respect tov (or atv) is the second order tensor defined through its dot product with any vectoru being

fvu=Df(v)[u]=[ddα f(v+α u)]α=0{\displaystyle {\frac {\partial \mathbf {f} }{\partial \mathbf {v} }}\cdot \mathbf {u} =D\mathbf {f} (\mathbf {v} )[\mathbf {u} ]=\left[{\frac {d}{d\alpha }}~\mathbf {f} (\mathbf {v} +\alpha ~\mathbf {u} )\right]_{\alpha =0}}

for all vectorsu. The above dot product yields a vector, and ifu is a unit vector gives the direction derivative off atv, in the directionalu.

Properties:

  1. Iff(v)=f1(v)+f2(v){\displaystyle \mathbf {f} (\mathbf {v} )=\mathbf {f} _{1}(\mathbf {v} )+\mathbf {f} _{2}(\mathbf {v} )} thenfvu=(f1v+f2v)u{\displaystyle {\frac {\partial \mathbf {f} }{\partial \mathbf {v} }}\cdot \mathbf {u} =\left({\frac {\partial \mathbf {f} _{1}}{\partial \mathbf {v} }}+{\frac {\partial \mathbf {f} _{2}}{\partial \mathbf {v} }}\right)\cdot \mathbf {u} }
  2. Iff(v)=f1(v)×f2(v){\displaystyle \mathbf {f} (\mathbf {v} )=\mathbf {f} _{1}(\mathbf {v} )\times \mathbf {f} _{2}(\mathbf {v} )} thenfvu=(f1vu)×f2(v)+f1(v)×(f2vu){\displaystyle {\frac {\partial \mathbf {f} }{\partial \mathbf {v} }}\cdot \mathbf {u} =\left({\frac {\partial \mathbf {f} _{1}}{\partial \mathbf {v} }}\cdot \mathbf {u} \right)\times \mathbf {f} _{2}(\mathbf {v} )+\mathbf {f} _{1}(\mathbf {v} )\times \left({\frac {\partial \mathbf {f} _{2}}{\partial \mathbf {v} }}\cdot \mathbf {u} \right)}
  3. Iff(v)=f1(f2(v)){\displaystyle \mathbf {f} (\mathbf {v} )=\mathbf {f} _{1}(\mathbf {f} _{2}(\mathbf {v} ))} thenfvu=f1f2(f2vu){\displaystyle {\frac {\partial \mathbf {f} }{\partial \mathbf {v} }}\cdot \mathbf {u} ={\frac {\partial \mathbf {f} _{1}}{\partial \mathbf {f} _{2}}}\cdot \left({\frac {\partial \mathbf {f} _{2}}{\partial \mathbf {v} }}\cdot \mathbf {u} \right)}

Derivatives of scalar valued functions of second-order tensors

[edit]

Letf(S){\displaystyle f({\boldsymbol {S}})} be a real valued function of the second order tensorS{\displaystyle {\boldsymbol {S}}}. Then the derivative off(S){\displaystyle f({\boldsymbol {S}})} with respect toS{\displaystyle {\boldsymbol {S}}} (or atS{\displaystyle {\boldsymbol {S}}}) in the directionT{\displaystyle {\boldsymbol {T}}} is the second order tensor defined asfS:T=Df(S)[T]=[ddα f(S+α T)]α=0{\displaystyle {\frac {\partial f}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}=Df({\boldsymbol {S}})[{\boldsymbol {T}}]=\left[{\frac {d}{d\alpha }}~f({\boldsymbol {S}}+\alpha ~{\boldsymbol {T}})\right]_{\alpha =0}}for all second order tensorsT{\displaystyle {\boldsymbol {T}}}.

Properties:

  1. Iff(S)=f1(S)+f2(S){\displaystyle f({\boldsymbol {S}})=f_{1}({\boldsymbol {S}})+f_{2}({\boldsymbol {S}})} thenfS:T=(f1S+f2S):T{\displaystyle {\frac {\partial f}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}=\left({\frac {\partial f_{1}}{\partial {\boldsymbol {S}}}}+{\frac {\partial f_{2}}{\partial {\boldsymbol {S}}}}\right):{\boldsymbol {T}}}
  2. Iff(S)=f1(S) f2(S){\displaystyle f({\boldsymbol {S}})=f_{1}({\boldsymbol {S}})~f_{2}({\boldsymbol {S}})} thenfS:T=(f1S:T) f2(S)+f1(S) (f2S:T){\displaystyle {\frac {\partial f}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}=\left({\frac {\partial f_{1}}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}\right)~f_{2}({\boldsymbol {S}})+f_{1}({\boldsymbol {S}})~\left({\frac {\partial f_{2}}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}\right)}
  3. Iff(S)=f1(f2(S)){\displaystyle f({\boldsymbol {S}})=f_{1}(f_{2}({\boldsymbol {S}}))} thenfS:T=f1f2 (f2S:T){\displaystyle {\frac {\partial f}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}={\frac {\partial f_{1}}{\partial f_{2}}}~\left({\frac {\partial f_{2}}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}\right)}

Derivatives of tensor valued functions of second-order tensors

[edit]

LetF(S){\displaystyle {\boldsymbol {F}}({\boldsymbol {S}})} be a second order tensor valued function of the second order tensorS{\displaystyle {\boldsymbol {S}}}. Then the derivative ofF(S){\displaystyle {\boldsymbol {F}}({\boldsymbol {S}})} with respect toS{\displaystyle {\boldsymbol {S}}} (or atS{\displaystyle {\boldsymbol {S}}}) in the directionT{\displaystyle {\boldsymbol {T}}} is the fourth order tensor defined asFS:T=DF(S)[T]=[ddα F(S+α T)]α=0{\displaystyle {\frac {\partial {\boldsymbol {F}}}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}=D{\boldsymbol {F}}({\boldsymbol {S}})[{\boldsymbol {T}}]=\left[{\frac {d}{d\alpha }}~{\boldsymbol {F}}({\boldsymbol {S}}+\alpha ~{\boldsymbol {T}})\right]_{\alpha =0}}for all second order tensorsT{\displaystyle {\boldsymbol {T}}}.

Properties:

  1. IfF(S)=F1(S)+F2(S){\displaystyle {\boldsymbol {F}}({\boldsymbol {S}})={\boldsymbol {F}}_{1}({\boldsymbol {S}})+{\boldsymbol {F}}_{2}({\boldsymbol {S}})} thenFS:T=(F1S+F2S):T{\displaystyle {\frac {\partial {\boldsymbol {F}}}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}=\left({\frac {\partial {\boldsymbol {F}}_{1}}{\partial {\boldsymbol {S}}}}+{\frac {\partial {\boldsymbol {F}}_{2}}{\partial {\boldsymbol {S}}}}\right):{\boldsymbol {T}}}
  2. IfF(S)=F1(S)F2(S){\displaystyle {\boldsymbol {F}}({\boldsymbol {S}})={\boldsymbol {F}}_{1}({\boldsymbol {S}})\cdot {\boldsymbol {F}}_{2}({\boldsymbol {S}})} thenFS:T=(F1S:T)F2(S)+F1(S)(F2S:T){\displaystyle {\frac {\partial {\boldsymbol {F}}}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}=\left({\frac {\partial {\boldsymbol {F}}_{1}}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}\right)\cdot {\boldsymbol {F}}_{2}({\boldsymbol {S}})+{\boldsymbol {F}}_{1}({\boldsymbol {S}})\cdot \left({\frac {\partial {\boldsymbol {F}}_{2}}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}\right)}
  3. IfF(S)=F1(F2(S)){\displaystyle {\boldsymbol {F}}({\boldsymbol {S}})={\boldsymbol {F}}_{1}({\boldsymbol {F}}_{2}({\boldsymbol {S}}))} thenFS:T=F1F2:(F2S:T){\displaystyle {\frac {\partial {\boldsymbol {F}}}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}={\frac {\partial {\boldsymbol {F}}_{1}}{\partial {\boldsymbol {F}}_{2}}}:\left({\frac {\partial {\boldsymbol {F}}_{2}}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}\right)}
  4. Iff(S)=f1(F2(S)){\displaystyle f({\boldsymbol {S}})=f_{1}({\boldsymbol {F}}_{2}({\boldsymbol {S}}))} thenfS:T=f1F2:(F2S:T){\displaystyle {\frac {\partial f}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}={\frac {\partial f_{1}}{\partial {\boldsymbol {F}}_{2}}}:\left({\frac {\partial {\boldsymbol {F}}_{2}}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}\right)}

Gradient of a tensor field

[edit]

Thegradient,T{\displaystyle {\boldsymbol {\nabla }}{\boldsymbol {T}}}, of a tensor fieldT(x){\displaystyle {\boldsymbol {T}}(\mathbf {x} )} in the direction of an arbitrary constant vectorc is defined as:Tc=limα0ddα T(x+αc){\displaystyle {\boldsymbol {\nabla }}{\boldsymbol {T}}\cdot \mathbf {c} =\lim _{\alpha \rightarrow 0}\quad {\cfrac {d}{d\alpha }}~{\boldsymbol {T}}(\mathbf {x} +\alpha \mathbf {c} )}The gradient of atensor field of ordern is a tensor field of ordern+1.

Cartesian coordinates

[edit]
Note: theEinstein summation convention of summing on repeated indices is used below.

Ife1,e2,e3{\displaystyle \mathbf {e} _{1},\mathbf {e} _{2},\mathbf {e} _{3}} are the basis vectors in aCartesian coordinate system, with coordinates of points denoted by (x1,x2,x3{\displaystyle x_{1},x_{2},x_{3}}), then the gradient of the tensor fieldT{\displaystyle {\boldsymbol {T}}} is given byT=Txiei{\displaystyle {\boldsymbol {\nabla }}{\boldsymbol {T}}={\cfrac {\partial {\boldsymbol {T}}}{\partial x_{i}}}\otimes \mathbf {e} _{i}}

Proof

The vectorsx andc can be written asx=xi ei{\displaystyle \mathbf {x} =x_{i}~\mathbf {e} _{i}} andc=ci ei{\displaystyle \mathbf {c} =c_{i}~\mathbf {e} _{i}}. Lety :=x + αc. In that case the gradient is given byTc=ddα T(x1+αc1,x2+αc2,x3+αc3)|α=0ddα T(y1,y2,y3)|α=0=[Ty1 y1α+Ty2 y2α+Ty3 y3α]α=0=[Ty1 c1+Ty2 c2+Ty3 c3]α=0=Tx1 c1+Tx2 c2+Tx3 c3Txi ci=Txi (eic)=[Txiei]c{\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}{\boldsymbol {T}}\cdot \mathbf {c} &=\left.{\cfrac {d}{d\alpha }}~{\boldsymbol {T}}(x_{1}+\alpha c_{1},x_{2}+\alpha c_{2},x_{3}+\alpha c_{3})\right|_{\alpha =0}\equiv \left.{\cfrac {d}{d\alpha }}~{\boldsymbol {T}}(y_{1},y_{2},y_{3})\right|_{\alpha =0}\\&=\left[{\cfrac {\partial {\boldsymbol {T}}}{\partial y_{1}}}~{\cfrac {\partial y_{1}}{\partial \alpha }}+{\cfrac {\partial {\boldsymbol {T}}}{\partial y_{2}}}~{\cfrac {\partial y_{2}}{\partial \alpha }}+{\cfrac {\partial {\boldsymbol {T}}}{\partial y_{3}}}~{\cfrac {\partial y_{3}}{\partial \alpha }}\right]_{\alpha =0}=\left[{\cfrac {\partial {\boldsymbol {T}}}{\partial y_{1}}}~c_{1}+{\cfrac {\partial {\boldsymbol {T}}}{\partial y_{2}}}~c_{2}+{\cfrac {\partial {\boldsymbol {T}}}{\partial y_{3}}}~c_{3}\right]_{\alpha =0}\\&={\cfrac {\partial {\boldsymbol {T}}}{\partial x_{1}}}~c_{1}+{\cfrac {\partial {\boldsymbol {T}}}{\partial x_{2}}}~c_{2}+{\cfrac {\partial {\boldsymbol {T}}}{\partial x_{3}}}~c_{3}\equiv {\cfrac {\partial {\boldsymbol {T}}}{\partial x_{i}}}~c_{i}={\cfrac {\partial {\boldsymbol {T}}}{\partial x_{i}}}~(\mathbf {e} _{i}\cdot \mathbf {c} )=\left[{\cfrac {\partial {\boldsymbol {T}}}{\partial x_{i}}}\otimes \mathbf {e} _{i}\right]\cdot \mathbf {c} \qquad \square \end{aligned}}}

Since the basis vectors do not vary in a Cartesian coordinate system we have the following relations for the gradients of a scalar fieldϕ{\displaystyle \phi }, a vector fieldv, and a second-order tensor fieldS{\displaystyle {\boldsymbol {S}}}.ϕ=ϕxi ei=ϕ,i eiv=(vjej)xiei=vjxi ejei=vj,i ejeiS=(Sjkejek)xiei=Sjkxi ejekei=Sjk,i ejekei{\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\phi &={\cfrac {\partial \phi }{\partial x_{i}}}~\mathbf {e} _{i}=\phi _{,i}~\mathbf {e} _{i}\\{\boldsymbol {\nabla }}\mathbf {v} &={\cfrac {\partial (v_{j}\mathbf {e} _{j})}{\partial x_{i}}}\otimes \mathbf {e} _{i}={\cfrac {\partial v_{j}}{\partial x_{i}}}~\mathbf {e} _{j}\otimes \mathbf {e} _{i}=v_{j,i}~\mathbf {e} _{j}\otimes \mathbf {e} _{i}\\{\boldsymbol {\nabla }}{\boldsymbol {S}}&={\cfrac {\partial (S_{jk}\mathbf {e} _{j}\otimes \mathbf {e} _{k})}{\partial x_{i}}}\otimes \mathbf {e} _{i}={\cfrac {\partial S_{jk}}{\partial x_{i}}}~\mathbf {e} _{j}\otimes \mathbf {e} _{k}\otimes \mathbf {e} _{i}=S_{jk,i}~\mathbf {e} _{j}\otimes \mathbf {e} _{k}\otimes \mathbf {e} _{i}\end{aligned}}}

Curvilinear coordinates

[edit]
Main article:Tensors in curvilinear coordinates
Note: theEinstein summation convention of summing on repeated indices is used below.

Ifg1,g2,g3{\displaystyle \mathbf {g} ^{1},\mathbf {g} ^{2},\mathbf {g} ^{3}} are thecontravariantbasis vectors in acurvilinear coordinate system, with coordinates of points denoted by (ξ1,ξ2,ξ3{\displaystyle \xi ^{1},\xi ^{2},\xi ^{3}}), then the gradient of the tensor fieldT{\displaystyle {\boldsymbol {T}}} is given by[3]T=Tξigi{\displaystyle {\boldsymbol {\nabla }}{\boldsymbol {T}}={\frac {\partial {\boldsymbol {T}}}{\partial \xi ^{i}}}\otimes \mathbf {g} ^{i}}

From this definition we have the following relations for the gradients of a scalar fieldϕ{\displaystyle \phi }, a vector fieldv, and a second-order tensor fieldS{\displaystyle {\boldsymbol {S}}}.ϕ=ϕξi giv=(vjgj)ξigi=(vjξi+vk Γikj) gjgi=(vjξivk Γijk) gjgiS=(Sjk gjgk)ξigi=(SjkξiSlk ΓijlSjl Γikl) gjgkgi{\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\phi &={\frac {\partial \phi }{\partial \xi ^{i}}}~\mathbf {g} ^{i}\\[1.2ex]{\boldsymbol {\nabla }}\mathbf {v} &={\frac {\partial \left(v^{j}\mathbf {g} _{j}\right)}{\partial \xi ^{i}}}\otimes \mathbf {g} ^{i}\\&=\left({\frac {\partial v^{j}}{\partial \xi ^{i}}}+v^{k}~\Gamma _{ik}^{j}\right)~\mathbf {g} _{j}\otimes \mathbf {g} ^{i}=\left({\frac {\partial v_{j}}{\partial \xi ^{i}}}-v_{k}~\Gamma _{ij}^{k}\right)~\mathbf {g} ^{j}\otimes \mathbf {g} ^{i}\\[1.2ex]{\boldsymbol {\nabla }}{\boldsymbol {S}}&={\frac {\partial \left(S_{jk}~\mathbf {g} ^{j}\otimes \mathbf {g} ^{k}\right)}{\partial \xi ^{i}}}\otimes \mathbf {g} ^{i}\\&=\left({\frac {\partial S_{jk}}{\partial \xi _{i}}}-S_{lk}~\Gamma _{ij}^{l}-S_{jl}~\Gamma _{ik}^{l}\right)~\mathbf {g} ^{j}\otimes \mathbf {g} ^{k}\otimes \mathbf {g} ^{i}\end{aligned}}}

where theChristoffel symbolΓijk{\displaystyle \Gamma _{ij}^{k}} is defined usingΓijk gk=giξjΓijk=giξjgk=gigkξj{\displaystyle \Gamma _{ij}^{k}~\mathbf {g} _{k}={\frac {\partial \mathbf {g} _{i}}{\partial \xi ^{j}}}\quad \implies \quad \Gamma _{ij}^{k}={\frac {\partial \mathbf {g} _{i}}{\partial \xi ^{j}}}\cdot \mathbf {g} ^{k}=-\mathbf {g} _{i}\cdot {\frac {\partial \mathbf {g} ^{k}}{\partial \xi ^{j}}}}

Cylindrical polar coordinates

[edit]

Incylindrical coordinates, the gradient is given byϕ=ϕr er+1r ϕθ eθ+ϕz ez{\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\phi ={}\quad &{\frac {\partial \phi }{\partial r}}~\mathbf {e} _{r}+{\frac {1}{r}}~{\frac {\partial \phi }{\partial \theta }}~\mathbf {e} _{\theta }+{\frac {\partial \phi }{\partial z}}~\mathbf {e} _{z}\\\end{aligned}}}

v=vrr erer+1r(vrθvθ) ereθ+vrz erez+vθr eθer+1r(vθθ+vr) eθeθ+vθz eθez+vzr ezer+1rvzθ ezeθ+vzz ezez{\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\mathbf {v} ={}\quad &{\frac {\partial v_{r}}{\partial r}}~\mathbf {e} _{r}\otimes \mathbf {e} _{r}+{\frac {1}{r}}\left({\frac {\partial v_{r}}{\partial \theta }}-v_{\theta }\right)~\mathbf {e} _{r}\otimes \mathbf {e} _{\theta }+{\frac {\partial v_{r}}{\partial z}}~\mathbf {e} _{r}\otimes \mathbf {e} _{z}\\{}+{}&{\frac {\partial v_{\theta }}{\partial r}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{r}+{\frac {1}{r}}\left({\frac {\partial v_{\theta }}{\partial \theta }}+v_{r}\right)~\mathbf {e} _{\theta }\otimes \mathbf {e} _{\theta }+{\frac {\partial v_{\theta }}{\partial z}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{z}\\{}+{}&{\frac {\partial v_{z}}{\partial r}}~\mathbf {e} _{z}\otimes \mathbf {e} _{r}+{\frac {1}{r}}{\frac {\partial v_{z}}{\partial \theta }}~\mathbf {e} _{z}\otimes \mathbf {e} _{\theta }+{\frac {\partial v_{z}}{\partial z}}~\mathbf {e} _{z}\otimes \mathbf {e} _{z}\\\end{aligned}}}

S=Srrr ererer+Srrz ererez+1r[Srrθ(Sθr+Srθ)] erereθ+Srθr ereθer+Srθz ereθez+1r[Srθθ+(SrrSθθ)] ereθeθ+Srzr erezer+Srzz erezez+1r[SrzθSθz] erezeθ+Sθrr eθerer+Sθrz eθerez+1r[Sθrθ+(SrrSθθ)] eθereθ+Sθθr eθeθer+Sθθz eθeθez+1r[Sθθθ+(Srθ+Sθr)] eθeθeθ+Sθzr eθezer+Sθzz eθezez+1r[Sθzθ+Srz] eθezeθ+Szrr ezerer+Szrz ezerez+1r[SzrθSzθ] ezereθ+Szθr ezeθer+Szθz ezeθez+1r[Szθθ+Szr] ezeθeθ+Szzr ezezer+Szzz ezezez+1r Szzθ ezezeθ{\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}{\boldsymbol {S}}={}\quad &{\frac {\partial S_{rr}}{\partial r}}~\mathbf {e} _{r}\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{r}+{\frac {\partial S_{rr}}{\partial z}}~\mathbf {e} _{r}\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{z}+{\frac {1}{r}}\left[{\frac {\partial S_{rr}}{\partial \theta }}-(S_{\theta r}+S_{r\theta })\right]~\mathbf {e} _{r}\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{\theta }\\{}+{}&{\frac {\partial S_{r\theta }}{\partial r}}~\mathbf {e} _{r}\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{r}+{\frac {\partial S_{r\theta }}{\partial z}}~\mathbf {e} _{r}\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{z}+{\frac {1}{r}}\left[{\frac {\partial S_{r\theta }}{\partial \theta }}+(S_{rr}-S_{\theta \theta })\right]~\mathbf {e} _{r}\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{\theta }\\{}+{}&{\frac {\partial S_{rz}}{\partial r}}~\mathbf {e} _{r}\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{r}+{\frac {\partial S_{rz}}{\partial z}}~\mathbf {e} _{r}\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{z}+{\frac {1}{r}}\left[{\frac {\partial S_{rz}}{\partial \theta }}-S_{\theta z}\right]~\mathbf {e} _{r}\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{\theta }\\{}+{}&{\frac {\partial S_{\theta r}}{\partial r}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{r}+{\frac {\partial S_{\theta r}}{\partial z}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{z}+{\frac {1}{r}}\left[{\frac {\partial S_{\theta r}}{\partial \theta }}+(S_{rr}-S_{\theta \theta })\right]~\mathbf {e} _{\theta }\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{\theta }\\{}+{}&{\frac {\partial S_{\theta \theta }}{\partial r}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{r}+{\frac {\partial S_{\theta \theta }}{\partial z}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{z}+{\frac {1}{r}}\left[{\frac {\partial S_{\theta \theta }}{\partial \theta }}+(S_{r\theta }+S_{\theta r})\right]~\mathbf {e} _{\theta }\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{\theta }\\{}+{}&{\frac {\partial S_{\theta z}}{\partial r}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{r}+{\frac {\partial S_{\theta z}}{\partial z}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{z}+{\frac {1}{r}}\left[{\frac {\partial S_{\theta z}}{\partial \theta }}+S_{rz}\right]~\mathbf {e} _{\theta }\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{\theta }\\{}+{}&{\frac {\partial S_{zr}}{\partial r}}~\mathbf {e} _{z}\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{r}+{\frac {\partial S_{zr}}{\partial z}}~\mathbf {e} _{z}\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{z}+{\frac {1}{r}}\left[{\frac {\partial S_{zr}}{\partial \theta }}-S_{z\theta }\right]~\mathbf {e} _{z}\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{\theta }\\{}+{}&{\frac {\partial S_{z\theta }}{\partial r}}~\mathbf {e} _{z}\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{r}+{\frac {\partial S_{z\theta }}{\partial z}}~\mathbf {e} _{z}\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{z}+{\frac {1}{r}}\left[{\frac {\partial S_{z\theta }}{\partial \theta }}+S_{zr}\right]~\mathbf {e} _{z}\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{\theta }\\{}+{}&{\frac {\partial S_{zz}}{\partial r}}~\mathbf {e} _{z}\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{r}+{\frac {\partial S_{zz}}{\partial z}}~\mathbf {e} _{z}\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{z}+{\frac {1}{r}}~{\frac {\partial S_{zz}}{\partial \theta }}~\mathbf {e} _{z}\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{\theta }\end{aligned}}}

Divergence of a tensor field

[edit]

Thedivergence of a tensor fieldT(x){\displaystyle {\boldsymbol {T}}(\mathbf {x} )} is defined using the recursive relation(T)c=(cTT) ;v=tr(v){\displaystyle ({\boldsymbol {\nabla }}\cdot {\boldsymbol {T}})\cdot \mathbf {c} ={\boldsymbol {\nabla }}\cdot \left(\mathbf {c} \cdot {\boldsymbol {T}}^{\textsf {T}}\right)~;\qquad {\boldsymbol {\nabla }}\cdot \mathbf {v} ={\text{tr}}({\boldsymbol {\nabla }}\mathbf {v} )}

wherec is an arbitrary constant vector andv is a vector field. IfT{\displaystyle {\boldsymbol {T}}} is a tensor field of ordern > 1 then the divergence of the field is a tensor of ordern− 1.

Cartesian coordinates

[edit]
Note: theEinstein summation convention of summing on repeated indices is used below.

In a Cartesian coordinate system we have the following relations for a vector fieldv and a second-order tensor fieldS{\displaystyle {\boldsymbol {S}}}.v=vixi=vi,iS=Sikxi ek=Sik,i ek{\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\cdot \mathbf {v} &={\frac {\partial v_{i}}{\partial x_{i}}}=v_{i,i}\\{\boldsymbol {\nabla }}\cdot {\boldsymbol {S}}&={\frac {\partial S_{ik}}{\partial x_{i}}}~\mathbf {e} _{k}=S_{ik,i}~\mathbf {e} _{k}\end{aligned}}}

wheretensor index notation for partial derivatives is used in the rightmost expressions. Note thatSST.{\displaystyle {\boldsymbol {\nabla }}\cdot {\boldsymbol {S}}\neq {\boldsymbol {\nabla }}\cdot {\boldsymbol {S}}^{\textsf {T}}.}

For a symmetric second-order tensor, the divergence is also often written as[4]

S=Skixi ek=Ski,i ek{\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\cdot {\boldsymbol {S}}&={\cfrac {\partial S_{ki}}{\partial x_{i}}}~\mathbf {e} _{k}=S_{ki,i}~\mathbf {e} _{k}\end{aligned}}}

The above expression is sometimes used as the definition ofS{\displaystyle {\boldsymbol {\nabla }}\cdot {\boldsymbol {S}}} in Cartesian component form (often also written asdivS{\displaystyle \operatorname {div} {\boldsymbol {S}}}). Note that such a definition is not consistent with the rest of this article (see the section on curvilinear co-ordinates).

The difference stems from whether the differentiation is performed with respect to the rows or columns ofS{\displaystyle {\boldsymbol {S}}}, and is conventional. This is demonstrated by an example. In a Cartesian coordinate system the second order tensor (matrix)S{\displaystyle \mathbf {S} } is the gradient of a vector functionv{\displaystyle \mathbf {v} }.

(v)=(vi,j eiej)=vi,ji eieiej=(v),j ej=(v)[(v)T]=(vj,i eiej)=vj,ii eieiej=2vj ej=2v{\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\cdot \left({\boldsymbol {\nabla }}\mathbf {v} \right)&={\boldsymbol {\nabla }}\cdot \left(v_{i,j}~\mathbf {e} _{i}\otimes \mathbf {e} _{j}\right)=v_{i,ji}~\mathbf {e} _{i}\cdot \mathbf {e} _{i}\otimes \mathbf {e} _{j}=\left({\boldsymbol {\nabla }}\cdot \mathbf {v} \right)_{,j}~\mathbf {e} _{j}={\boldsymbol {\nabla }}\left({\boldsymbol {\nabla }}\cdot \mathbf {v} \right)\\{\boldsymbol {\nabla }}\cdot \left[\left({\boldsymbol {\nabla }}\mathbf {v} \right)^{\textsf {T}}\right]&={\boldsymbol {\nabla }}\cdot \left(v_{j,i}~\mathbf {e} _{i}\otimes \mathbf {e} _{j}\right)=v_{j,ii}~\mathbf {e} _{i}\cdot \mathbf {e} _{i}\otimes \mathbf {e} _{j}={\boldsymbol {\nabla }}^{2}v_{j}~\mathbf {e} _{j}={\boldsymbol {\nabla }}^{2}\mathbf {v} \end{aligned}}}

The last equation is equivalent to the alternative definition / interpretation[4]

()alt(v)=()alt(vi,j eiej)=vi,jj eiejej=2vi ei=2v{\displaystyle {\begin{aligned}\left({\boldsymbol {\nabla }}\cdot \right)_{\text{alt}}\left({\boldsymbol {\nabla }}\mathbf {v} \right)=\left({\boldsymbol {\nabla }}\cdot \right)_{\text{alt}}\left(v_{i,j}~\mathbf {e} _{i}\otimes \mathbf {e} _{j}\right)=v_{i,jj}~\mathbf {e} _{i}\otimes \mathbf {e} _{j}\cdot \mathbf {e} _{j}={\boldsymbol {\nabla }}^{2}v_{i}~\mathbf {e} _{i}={\boldsymbol {\nabla }}^{2}\mathbf {v} \end{aligned}}}

Curvilinear coordinates

[edit]
Main article:Tensors in curvilinear coordinates
Note: theEinstein summation convention of summing on repeated indices is used below.

In curvilinear coordinates, the divergences of a vector fieldv and a second-order tensor fieldS{\displaystyle {\boldsymbol {S}}} arev=(viξi+vk Γiki)S=(SikξiSlk ΓiilSil Γikl) gk{\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\cdot \mathbf {v} &=\left({\cfrac {\partial v^{i}}{\partial \xi ^{i}}}+v^{k}~\Gamma _{ik}^{i}\right)\\{\boldsymbol {\nabla }}\cdot {\boldsymbol {S}}&=\left({\cfrac {\partial S_{ik}}{\partial \xi _{i}}}-S_{lk}~\Gamma _{ii}^{l}-S_{il}~\Gamma _{ik}^{l}\right)~\mathbf {g} ^{k}\end{aligned}}}

More generally,S=[SijqkΓkil SljΓkjl Sil] gik bj=[Sijqi+Γili Slj+Γilj Sil] bj=[S jiqi+Γili S jlΓijl S li] bj=[Si jqkΓikl Sl j+Γklj Si l] gik bj{\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\cdot {\boldsymbol {S}}&=\left[{\cfrac {\partial S_{ij}}{\partial q^{k}}}-\Gamma _{ki}^{l}~S_{lj}-\Gamma _{kj}^{l}~S_{il}\right]~g^{ik}~\mathbf {b} ^{j}\\[8pt]&=\left[{\cfrac {\partial S^{ij}}{\partial q^{i}}}+\Gamma _{il}^{i}~S^{lj}+\Gamma _{il}^{j}~S^{il}\right]~\mathbf {b} _{j}\\[8pt]&=\left[{\cfrac {\partial S_{~j}^{i}}{\partial q^{i}}}+\Gamma _{il}^{i}~S_{~j}^{l}-\Gamma _{ij}^{l}~S_{~l}^{i}\right]~\mathbf {b} ^{j}\\[8pt]&=\left[{\cfrac {\partial S_{i}^{~j}}{\partial q^{k}}}-\Gamma _{ik}^{l}~S_{l}^{~j}+\Gamma _{kl}^{j}~S_{i}^{~l}\right]~g^{ik}~\mathbf {b} _{j}\end{aligned}}}

Cylindrical polar coordinates

[edit]

Incylindrical polar coordinatesv=vrr+1r(vθθ+vr)+vzzS=Srrr er+Srθr eθ+Srzr ez+1r[Sθrθ+(SrrSθθ)] er+1r[Sθθθ+(Srθ+Sθr)] eθ+1r[Sθzθ+Srz] ez+Szrz er+Szθz eθ+Szzz ez{\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\cdot \mathbf {v} =\quad &{\frac {\partial v_{r}}{\partial r}}+{\frac {1}{r}}\left({\frac {\partial v_{\theta }}{\partial \theta }}+v_{r}\right)+{\frac {\partial v_{z}}{\partial z}}\\{\boldsymbol {\nabla }}\cdot {\boldsymbol {S}}=\quad &{\frac {\partial S_{rr}}{\partial r}}~\mathbf {e} _{r}+{\frac {\partial S_{r\theta }}{\partial r}}~\mathbf {e} _{\theta }+{\frac {\partial S_{rz}}{\partial r}}~\mathbf {e} _{z}\\{}+{}&{\frac {1}{r}}\left[{\frac {\partial S_{\theta r}}{\partial \theta }}+(S_{rr}-S_{\theta \theta })\right]~\mathbf {e} _{r}+{\frac {1}{r}}\left[{\frac {\partial S_{\theta \theta }}{\partial \theta }}+(S_{r\theta }+S_{\theta r})\right]~\mathbf {e} _{\theta }+{\frac {1}{r}}\left[{\frac {\partial S_{\theta z}}{\partial \theta }}+S_{rz}\right]~\mathbf {e} _{z}\\{}+{}&{\frac {\partial S_{zr}}{\partial z}}~\mathbf {e} _{r}+{\frac {\partial S_{z\theta }}{\partial z}}~\mathbf {e} _{\theta }+{\frac {\partial S_{zz}}{\partial z}}~\mathbf {e} _{z}\end{aligned}}}

Curl of a tensor field

[edit]

Thecurl of an order-n > 1 tensor fieldT(x){\displaystyle {\boldsymbol {T}}(\mathbf {x} )} is also defined using the recursive relation(×T)c=×(cT) ;(×v)c=(v×c){\displaystyle ({\boldsymbol {\nabla }}\times {\boldsymbol {T}})\cdot \mathbf {c} ={\boldsymbol {\nabla }}\times (\mathbf {c} \cdot {\boldsymbol {T}})~;\qquad ({\boldsymbol {\nabla }}\times \mathbf {v} )\cdot \mathbf {c} ={\boldsymbol {\nabla }}\cdot (\mathbf {v} \times \mathbf {c} )}wherec is an arbitrary constant vector andv is a vector field.

Curl of a first-order tensor (vector) field

[edit]

Consider a vector fieldv and an arbitrary constant vectorc. In index notation, the cross product is given byv×c=εijk vj ck ei{\displaystyle \mathbf {v} \times \mathbf {c} =\varepsilon _{ijk}~v_{j}~c_{k}~\mathbf {e} _{i}}whereεijk{\displaystyle \varepsilon _{ijk}} is thepermutation symbol, otherwise known as the Levi-Civita symbol. Then,(v×c)=εijk vj,i ck=(εijk vj,i ek)c=(×v)c{\displaystyle {\boldsymbol {\nabla }}\cdot (\mathbf {v} \times \mathbf {c} )=\varepsilon _{ijk}~v_{j,i}~c_{k}=(\varepsilon _{ijk}~v_{j,i}~\mathbf {e} _{k})\cdot \mathbf {c} =({\boldsymbol {\nabla }}\times \mathbf {v} )\cdot \mathbf {c} }Therefore,×v=εijk vj,i ek{\displaystyle {\boldsymbol {\nabla }}\times \mathbf {v} =\varepsilon _{ijk}~v_{j,i}~\mathbf {e} _{k}}

Curl of a second-order tensor field

[edit]

For a second-order tensorS{\displaystyle {\boldsymbol {S}}}cS=cm Smj ej{\displaystyle \mathbf {c} \cdot {\boldsymbol {S}}=c_{m}~S_{mj}~\mathbf {e} _{j}}Hence, using the definition of the curl of a first-order tensor field,×(cS)=εijk cm Smj,i ek=(εijk Smj,i ekem)c=(×S)c{\displaystyle {\boldsymbol {\nabla }}\times (\mathbf {c} \cdot {\boldsymbol {S}})=\varepsilon _{ijk}~c_{m}~S_{mj,i}~\mathbf {e} _{k}=(\varepsilon _{ijk}~S_{mj,i}~\mathbf {e} _{k}\otimes \mathbf {e} _{m})\cdot \mathbf {c} =({\boldsymbol {\nabla }}\times {\boldsymbol {S}})\cdot \mathbf {c} }Therefore, we have×S=εijk Smj,i ekem{\displaystyle {\boldsymbol {\nabla }}\times {\boldsymbol {S}}=\varepsilon _{ijk}~S_{mj,i}~\mathbf {e} _{k}\otimes \mathbf {e} _{m}}

Identities involving the curl of a tensor field

[edit]

The most commonly used identity involving the curl of a tensor field,T{\displaystyle {\boldsymbol {T}}}, is×(T)=0{\displaystyle {\boldsymbol {\nabla }}\times ({\boldsymbol {\nabla }}{\boldsymbol {T}})={\boldsymbol {0}}}This identity holds for tensor fields of all orders. For the important case of a second-order tensor,S{\displaystyle {\boldsymbol {S}}}, this identity implies that×(S)=0Smi,jSmj,i=0{\displaystyle {\boldsymbol {\nabla }}\times ({\boldsymbol {\nabla }}{\boldsymbol {S}})={\boldsymbol {0}}\quad \implies \quad S_{mi,j}-S_{mj,i}=0}

Derivative of the determinant of a second-order tensor

[edit]

The derivative of the determinant of a second order tensorA{\displaystyle {\boldsymbol {A}}} is given byAdet(A)=det(A) [A1]T .{\displaystyle {\frac {\partial }{\partial {\boldsymbol {A}}}}\det({\boldsymbol {A}})=\det({\boldsymbol {A}})~\left[{\boldsymbol {A}}^{-1}\right]^{\textsf {T}}~.}

In anorthonormal basis, the components ofA{\displaystyle {\boldsymbol {A}}} can be written as a matrixA. In that case, the right hand side corresponds the cofactors of the matrix.

Proof

LetA{\displaystyle {\boldsymbol {A}}} be a second order tensor and letf(A)=det(A){\displaystyle f({\boldsymbol {A}})=\det({\boldsymbol {A}})}. Then, from the definition of the derivative of a scalar valued function of a tensor, we havefA:T=ddαdet(A+α T)|α=0=ddαdet[α A(1α I+A1T)]|α=0=ddα[α3 det(A) det(1α I+A1T)]|α=0.{\displaystyle {\begin{aligned}{\frac {\partial f}{\partial {\boldsymbol {A}}}}:{\boldsymbol {T}}&=\left.{\cfrac {d}{d\alpha }}\det({\boldsymbol {A}}+\alpha ~{\boldsymbol {T}})\right|_{\alpha =0}\\&=\left.{\cfrac {d}{d\alpha }}\det \left[\alpha ~{\boldsymbol {A}}\left({\cfrac {1}{\alpha }}~{\boldsymbol {\mathit {I}}}+{\boldsymbol {A}}^{-1}\cdot {\boldsymbol {T}}\right)\right]\right|_{\alpha =0}\\&=\left.{\cfrac {d}{d\alpha }}\left[\alpha ^{3}~\det({\boldsymbol {A}})~\det \left({\cfrac {1}{\alpha }}~{\boldsymbol {\mathit {I}}}+{\boldsymbol {A}}^{-1}\cdot {\boldsymbol {T}}\right)\right]\right|_{\alpha =0}.\end{aligned}}}

The determinant of a tensor can be expressed in the form of a characteristic equation in terms of the invariantsI1,I2,I3{\displaystyle I_{1},I_{2},I_{3}} usingdet(λ I+A)=λ3+I1(A) λ2+I2(A) λ+I3(A).{\displaystyle \det(\lambda ~{\boldsymbol {\mathit {I}}}+{\boldsymbol {A}})=\lambda ^{3}+I_{1}({\boldsymbol {A}})~\lambda ^{2}+I_{2}({\boldsymbol {A}})~\lambda +I_{3}({\boldsymbol {A}}).}

Using this expansion we can writefA:T=ddα[α3 det(A) (1α3+I1(A1T) 1α2+I2(A1T) 1α+I3(A1T))]|α=0=det(A) ddα[1+I1(A1T) α+I2(A1T) α2+I3(A1T) α3]|α=0=det(A) [I1(A1T)+2 I2(A1T) α+3 I3(A1T) α2]|α=0=det(A) I1(A1T) .{\displaystyle {\begin{aligned}{\frac {\partial f}{\partial {\boldsymbol {A}}}}:{\boldsymbol {T}}&=\left.{\cfrac {d}{d\alpha }}\left[\alpha ^{3}~\det({\boldsymbol {A}})~\left({\cfrac {1}{\alpha ^{3}}}+I_{1}\left({\boldsymbol {A}}^{-1}\cdot {\boldsymbol {T}}\right)~{\cfrac {1}{\alpha ^{2}}}+I_{2}\left({\boldsymbol {A}}^{-1}\cdot {\boldsymbol {T}}\right)~{\cfrac {1}{\alpha }}+I_{3}\left({\boldsymbol {A}}^{-1}\cdot {\boldsymbol {T}}\right)\right)\right]\right|_{\alpha =0}\\&=\left.\det({\boldsymbol {A}})~{\cfrac {d}{d\alpha }}\left[1+I_{1}\left({\boldsymbol {A}}^{-1}\cdot {\boldsymbol {T}}\right)~\alpha +I_{2}\left({\boldsymbol {A}}^{-1}\cdot {\boldsymbol {T}}\right)~\alpha ^{2}+I_{3}\left({\boldsymbol {A}}^{-1}\cdot {\boldsymbol {T}}\right)~\alpha ^{3}\right]\right|_{\alpha =0}\\&=\left.\det({\boldsymbol {A}})~\left[I_{1}({\boldsymbol {A}}^{-1}\cdot {\boldsymbol {T}})+2~I_{2}\left({\boldsymbol {A}}^{-1}\cdot {\boldsymbol {T}}\right)~\alpha +3~I_{3}\left({\boldsymbol {A}}^{-1}\cdot {\boldsymbol {T}}\right)~\alpha ^{2}\right]\right|_{\alpha =0}\\&=\det({\boldsymbol {A}})~I_{1}\left({\boldsymbol {A}}^{-1}\cdot {\boldsymbol {T}}\right)~.\end{aligned}}}

Recall that the invariantI1{\displaystyle I_{1}} is given byI1(A)=trA.{\displaystyle I_{1}({\boldsymbol {A}})={\text{tr}}{\boldsymbol {A}}.}

Hence,fA:T=det(A) tr(A1T)=det(A) [A1]T:T.{\displaystyle {\frac {\partial f}{\partial {\boldsymbol {A}}}}:{\boldsymbol {T}}=\det({\boldsymbol {A}})~{\text{tr}}\left({\boldsymbol {A}}^{-1}\cdot {\boldsymbol {T}}\right)=\det({\boldsymbol {A}})~\left[{\boldsymbol {A}}^{-1}\right]^{\textsf {T}}:{\boldsymbol {T}}.}

Invoking the arbitrariness ofT{\displaystyle {\boldsymbol {T}}} we then havefA=det(A) [A1]T .{\displaystyle {\frac {\partial f}{\partial {\boldsymbol {A}}}}=\det({\boldsymbol {A}})~\left[{\boldsymbol {A}}^{-1}\right]^{\textsf {T}}~.}

Derivatives of the invariants of a second-order tensor

[edit]

The principal invariants of a second order tensor areI1(A)=trAI2(A)=12[(trA)2trA2]I3(A)=det(A){\displaystyle {\begin{aligned}I_{1}({\boldsymbol {A}})&={\text{tr}}{\boldsymbol {A}}\\I_{2}({\boldsymbol {A}})&={\tfrac {1}{2}}\left[({\text{tr}}{\boldsymbol {A}})^{2}-{\text{tr}}{{\boldsymbol {A}}^{2}}\right]\\I_{3}({\boldsymbol {A}})&=\det({\boldsymbol {A}})\end{aligned}}}

The derivatives of these three invariants with respect toA{\displaystyle {\boldsymbol {A}}} areI1A=1I2A=I11ATI3A=det(A) [A1]T=I2 1AT (I1 1AT)=(A2I1 A+I2 1)T{\displaystyle {\begin{aligned}{\frac {\partial I_{1}}{\partial {\boldsymbol {A}}}}&={\boldsymbol {\mathit {1}}}\\[3pt]{\frac {\partial I_{2}}{\partial {\boldsymbol {A}}}}&=I_{1}\,{\boldsymbol {\mathit {1}}}-{\boldsymbol {A}}^{\textsf {T}}\\[3pt]{\frac {\partial I_{3}}{\partial {\boldsymbol {A}}}}&=\det({\boldsymbol {A}})~\left[{\boldsymbol {A}}^{-1}\right]^{\textsf {T}}\\&=I_{2}~{\boldsymbol {\mathit {1}}}-{\boldsymbol {A}}^{\textsf {T}}~\left(I_{1}~{\boldsymbol {\mathit {1}}}-{\boldsymbol {A}}^{\textsf {T}}\right)=\left({\boldsymbol {A}}^{2}-I_{1}~{\boldsymbol {A}}+I_{2}~{\boldsymbol {\mathit {1}}}\right)^{\textsf {T}}\end{aligned}}}

Proof

From the derivative of the determinant we know thatI3A=det(A) [A1]T .{\displaystyle {\frac {\partial I_{3}}{\partial {\boldsymbol {A}}}}=\det({\boldsymbol {A}})~\left[{\boldsymbol {A}}^{-1}\right]^{\textsf {T}}~.}

For the derivatives of the other two invariants, let us go back to the characteristic equationdet(λ 1+A)=λ3+I1(A) λ2+I2(A) λ+I3(A) .{\displaystyle \det(\lambda ~{\boldsymbol {\mathit {1}}}+{\boldsymbol {A}})=\lambda ^{3}+I_{1}({\boldsymbol {A}})~\lambda ^{2}+I_{2}({\boldsymbol {A}})~\lambda +I_{3}({\boldsymbol {A}})~.}

Using the same approach as for the determinant of a tensor, we can show thatAdet(λ 1+A)=det(λ 1+A) [(λ 1+A)1]T .{\displaystyle {\frac {\partial }{\partial {\boldsymbol {A}}}}\det(\lambda ~{\boldsymbol {\mathit {1}}}+{\boldsymbol {A}})=\det(\lambda ~{\boldsymbol {\mathit {1}}}+{\boldsymbol {A}})~\left[(\lambda ~{\boldsymbol {\mathit {1}}}+{\boldsymbol {A}})^{-1}\right]^{\textsf {T}}~.}

Now the left hand side can be expanded asAdet(λ 1+A)=A[λ3+I1(A) λ2+I2(A) λ+I3(A)]=I1A λ2+I2A λ+I3A .{\displaystyle {\begin{aligned}{\frac {\partial }{\partial {\boldsymbol {A}}}}\det(\lambda ~{\boldsymbol {\mathit {1}}}+{\boldsymbol {A}})&={\frac {\partial }{\partial {\boldsymbol {A}}}}\left[\lambda ^{3}+I_{1}({\boldsymbol {A}})~\lambda ^{2}+I_{2}({\boldsymbol {A}})~\lambda +I_{3}({\boldsymbol {A}})\right]\\&={\frac {\partial I_{1}}{\partial {\boldsymbol {A}}}}~\lambda ^{2}+{\frac {\partial I_{2}}{\partial {\boldsymbol {A}}}}~\lambda +{\frac {\partial I_{3}}{\partial {\boldsymbol {A}}}}~.\end{aligned}}}

HenceI1A λ2+I2A λ+I3A=det(λ 1+A) [(λ 1+A)1]T{\displaystyle {\frac {\partial I_{1}}{\partial {\boldsymbol {A}}}}~\lambda ^{2}+{\frac {\partial I_{2}}{\partial {\boldsymbol {A}}}}~\lambda +{\frac {\partial I_{3}}{\partial {\boldsymbol {A}}}}=\det(\lambda ~{\boldsymbol {\mathit {1}}}+{\boldsymbol {A}})~\left[(\lambda ~{\boldsymbol {\mathit {1}}}+{\boldsymbol {A}})^{-1}\right]^{\textsf {T}}}or,(λ 1+A)T[I1A λ2+I2A λ+I3A]=det(λ 1+A) 1 .{\displaystyle (\lambda ~{\boldsymbol {\mathit {1}}}+{\boldsymbol {A}})^{\textsf {T}}\cdot \left[{\frac {\partial I_{1}}{\partial {\boldsymbol {A}}}}~\lambda ^{2}+{\frac {\partial I_{2}}{\partial {\boldsymbol {A}}}}~\lambda +{\frac {\partial I_{3}}{\partial {\boldsymbol {A}}}}\right]=\det(\lambda ~{\boldsymbol {\mathit {1}}}+{\boldsymbol {A}})~{\boldsymbol {\mathit {1}}}~.}

Expanding the right hand side and separating terms on the left hand side gives(λ 1+AT)[I1A λ2+I2A λ+I3A]=[λ3+I1 λ2+I2 λ+I3]1{\displaystyle \left(\lambda ~{\boldsymbol {\mathit {1}}}+{\boldsymbol {A}}^{\textsf {T}}\right)\cdot \left[{\frac {\partial I_{1}}{\partial {\boldsymbol {A}}}}~\lambda ^{2}+{\frac {\partial I_{2}}{\partial {\boldsymbol {A}}}}~\lambda +{\frac {\partial I_{3}}{\partial {\boldsymbol {A}}}}\right]=\left[\lambda ^{3}+I_{1}~\lambda ^{2}+I_{2}~\lambda +I_{3}\right]{\boldsymbol {\mathit {1}}}}

or,[I1A λ3+I2A λ2+I3A λ]1+ATI1A λ2+ATI2A λ+ATI3A=[λ3+I1 λ2+I2 λ+I3]1 .{\displaystyle {\begin{aligned}\left[{\frac {\partial I_{1}}{\partial {\boldsymbol {A}}}}~\lambda ^{3}\right.&\left.+{\frac {\partial I_{2}}{\partial {\boldsymbol {A}}}}~\lambda ^{2}+{\frac {\partial I_{3}}{\partial {\boldsymbol {A}}}}~\lambda \right]{\boldsymbol {\mathit {1}}}+{\boldsymbol {A}}^{\textsf {T}}\cdot {\frac {\partial I_{1}}{\partial {\boldsymbol {A}}}}~\lambda ^{2}+{\boldsymbol {A}}^{\textsf {T}}\cdot {\frac {\partial I_{2}}{\partial {\boldsymbol {A}}}}~\lambda +{\boldsymbol {A}}^{\textsf {T}}\cdot {\frac {\partial I_{3}}{\partial {\boldsymbol {A}}}}\\&=\left[\lambda ^{3}+I_{1}~\lambda ^{2}+I_{2}~\lambda +I_{3}\right]{\boldsymbol {\mathit {1}}}~.\end{aligned}}}

If we defineI0:=1{\displaystyle I_{0}:=1} andI4:=0{\displaystyle I_{4}:=0}, we can write the above as[I1A λ3+I2A λ2+I3A λ+I4A]1+ATI0A λ3+ATI1A λ2+ATI2A λ+ATI3A=[I0 λ3+I1 λ2+I2 λ+I3]1 .{\displaystyle {\begin{aligned}\left[{\frac {\partial I_{1}}{\partial {\boldsymbol {A}}}}~\lambda ^{3}\right.&\left.+{\frac {\partial I_{2}}{\partial {\boldsymbol {A}}}}~\lambda ^{2}+{\frac {\partial I_{3}}{\partial {\boldsymbol {A}}}}~\lambda +{\frac {\partial I_{4}}{\partial {\boldsymbol {A}}}}\right]{\boldsymbol {\mathit {1}}}+{\boldsymbol {A}}^{\textsf {T}}\cdot {\frac {\partial I_{0}}{\partial {\boldsymbol {A}}}}~\lambda ^{3}+{\boldsymbol {A}}^{\textsf {T}}\cdot {\frac {\partial I_{1}}{\partial {\boldsymbol {A}}}}~\lambda ^{2}+{\boldsymbol {A}}^{\textsf {T}}\cdot {\frac {\partial I_{2}}{\partial {\boldsymbol {A}}}}~\lambda +{\boldsymbol {A}}^{\textsf {T}}\cdot {\frac {\partial I_{3}}{\partial {\boldsymbol {A}}}}\\&=\left[I_{0}~\lambda ^{3}+I_{1}~\lambda ^{2}+I_{2}~\lambda +I_{3}\right]{\boldsymbol {\mathit {1}}}~.\end{aligned}}}

Collecting terms containing various powers of λ, we getλ3(I0 1I1A 1ATI0A)+λ2(I1 1I2A 1ATI1A)+λ(I2 1I3A 1ATI2A)+(I3 1I4A 1ATI3A)=0 .{\displaystyle {\begin{aligned}\lambda ^{3}&\left(I_{0}~{\boldsymbol {\mathit {1}}}-{\frac {\partial I_{1}}{\partial {\boldsymbol {A}}}}~{\boldsymbol {\mathit {1}}}-{\boldsymbol {A}}^{\textsf {T}}\cdot {\frac {\partial I_{0}}{\partial {\boldsymbol {A}}}}\right)+\lambda ^{2}\left(I_{1}~{\boldsymbol {\mathit {1}}}-{\frac {\partial I_{2}}{\partial {\boldsymbol {A}}}}~{\boldsymbol {\mathit {1}}}-{\boldsymbol {A}}^{\textsf {T}}\cdot {\frac {\partial I_{1}}{\partial {\boldsymbol {A}}}}\right)+\\&\qquad \qquad \lambda \left(I_{2}~{\boldsymbol {\mathit {1}}}-{\frac {\partial I_{3}}{\partial {\boldsymbol {A}}}}~{\boldsymbol {\mathit {1}}}-{\boldsymbol {A}}^{\textsf {T}}\cdot {\frac {\partial I_{2}}{\partial {\boldsymbol {A}}}}\right)+\left(I_{3}~{\boldsymbol {\mathit {1}}}-{\frac {\partial I_{4}}{\partial {\boldsymbol {A}}}}~{\boldsymbol {\mathit {1}}}-{\boldsymbol {A}}^{\textsf {T}}\cdot {\frac {\partial I_{3}}{\partial {\boldsymbol {A}}}}\right)=0~.\end{aligned}}}

Then, invoking the arbitrariness of λ, we haveI0 1I1A 1ATI0A=0I1 1I2A 1I2 1I3A 1ATI2A=0I3 1I4A 1ATI3A=0 .{\displaystyle {\begin{aligned}I_{0}~{\boldsymbol {\mathit {1}}}-{\frac {\partial I_{1}}{\partial {\boldsymbol {A}}}}~{\boldsymbol {\mathit {1}}}-{\boldsymbol {A}}^{\textsf {T}}\cdot {\frac {\partial I_{0}}{\partial {\boldsymbol {A}}}}&=0\\I_{1}~{\boldsymbol {\mathit {1}}}-{\frac {\partial I_{2}}{\partial {\boldsymbol {A}}}}~{\boldsymbol {\mathit {1}}}-I_{2}~{\boldsymbol {\mathit {1}}}-{\frac {\partial I_{3}}{\partial {\boldsymbol {A}}}}~{\boldsymbol {\mathit {1}}}-{\boldsymbol {A}}^{\textsf {T}}\cdot {\frac {\partial I_{2}}{\partial {\boldsymbol {A}}}}&=0\\I_{3}~{\boldsymbol {\mathit {1}}}-{\frac {\partial I_{4}}{\partial {\boldsymbol {A}}}}~{\boldsymbol {\mathit {1}}}-{\boldsymbol {A}}^{\textsf {T}}\cdot {\frac {\partial I_{3}}{\partial {\boldsymbol {A}}}}&=0~.\end{aligned}}}

This implies thatI1A=1I2A=I1 1ATI3A=I2 1AT (I1 1AT)=(A2I1 A+I2 1)T{\displaystyle {\begin{aligned}{\frac {\partial I_{1}}{\partial {\boldsymbol {A}}}}&={\boldsymbol {\mathit {1}}}\\{\frac {\partial I_{2}}{\partial {\boldsymbol {A}}}}&=I_{1}~{\boldsymbol {\mathit {1}}}-{\boldsymbol {A}}^{\textsf {T}}\\{\frac {\partial I_{3}}{\partial {\boldsymbol {A}}}}&=I_{2}~{\boldsymbol {\mathit {1}}}-{\boldsymbol {A}}^{\textsf {T}}~\left(I_{1}~{\boldsymbol {\mathit {1}}}-{\boldsymbol {A}}^{\textsf {T}}\right)=\left({\boldsymbol {A}}^{2}-I_{1}~{\boldsymbol {A}}+I_{2}~{\boldsymbol {\mathit {1}}}\right)^{\textsf {T}}\end{aligned}}}

Derivative of the second-order identity tensor

[edit]

Let1{\displaystyle {\boldsymbol {\mathit {1}}}} be the second order identity tensor. Then the derivative of this tensor with respect to a second order tensorA{\displaystyle {\boldsymbol {A}}} is given by1A:T=0:T=0{\displaystyle {\frac {\partial {\boldsymbol {\mathit {1}}}}{\partial {\boldsymbol {A}}}}:{\boldsymbol {T}}={\boldsymbol {\mathsf {0}}}:{\boldsymbol {T}}={\boldsymbol {\mathit {0}}}}This is because1{\displaystyle {\boldsymbol {\mathit {1}}}} is independent ofA{\displaystyle {\boldsymbol {A}}}.

Derivative of a second-order tensor with respect to itself

[edit]

LetA{\displaystyle {\boldsymbol {A}}} be a second order tensor. ThenAA:T=[α(A+α T)]α=0=T=I:T{\displaystyle {\frac {\partial {\boldsymbol {A}}}{\partial {\boldsymbol {A}}}}:{\boldsymbol {T}}=\left[{\frac {\partial }{\partial \alpha }}({\boldsymbol {A}}+\alpha ~{\boldsymbol {T}})\right]_{\alpha =0}={\boldsymbol {T}}={\boldsymbol {\mathsf {I}}}:{\boldsymbol {T}}}

Therefore,AA=I{\displaystyle {\frac {\partial {\boldsymbol {A}}}{\partial {\boldsymbol {A}}}}={\boldsymbol {\mathsf {I}}}}

HereI{\displaystyle {\boldsymbol {\mathsf {I}}}} is the fourth order identity tensor. In index notation with respect to an orthonormal basisI=δik δjl eiejekel{\displaystyle {\boldsymbol {\mathsf {I}}}=\delta _{ik}~\delta _{jl}~\mathbf {e} _{i}\otimes \mathbf {e} _{j}\otimes \mathbf {e} _{k}\otimes \mathbf {e} _{l}}

This result implies thatATA:T=IT:T=TT{\displaystyle {\frac {\partial {\boldsymbol {A}}^{\textsf {T}}}{\partial {\boldsymbol {A}}}}:{\boldsymbol {T}}={\boldsymbol {\mathsf {I}}}^{\textsf {T}}:{\boldsymbol {T}}={\boldsymbol {T}}^{\textsf {T}}}whereIT=δjk δil eiejekel{\displaystyle {\boldsymbol {\mathsf {I}}}^{\textsf {T}}=\delta _{jk}~\delta _{il}~\mathbf {e} _{i}\otimes \mathbf {e} _{j}\otimes \mathbf {e} _{k}\otimes \mathbf {e} _{l}}

Therefore, if the tensorA{\displaystyle {\boldsymbol {A}}} is symmetric, then the derivative is also symmetric and we getAA=I(s)=12 (I+IT){\displaystyle {\frac {\partial {\boldsymbol {A}}}{\partial {\boldsymbol {A}}}}={\boldsymbol {\mathsf {I}}}^{(s)}={\frac {1}{2}}~\left({\boldsymbol {\mathsf {I}}}+{\boldsymbol {\mathsf {I}}}^{\textsf {T}}\right)}where the symmetric fourth order identity tensor isI(s)=12 (δik δjl+δil δjk) eiejekel{\displaystyle {\boldsymbol {\mathsf {I}}}^{(s)}={\frac {1}{2}}~(\delta _{ik}~\delta _{jl}+\delta _{il}~\delta _{jk})~\mathbf {e} _{i}\otimes \mathbf {e} _{j}\otimes \mathbf {e} _{k}\otimes \mathbf {e} _{l}}

Derivative of the inverse of a second-order tensor

[edit]

LetA{\displaystyle {\boldsymbol {A}}} andT{\displaystyle {\boldsymbol {T}}} be two second order tensors, thenA(A1):T=A1TA1{\displaystyle {\frac {\partial }{\partial {\boldsymbol {A}}}}\left({\boldsymbol {A}}^{-1}\right):{\boldsymbol {T}}=-{\boldsymbol {A}}^{-1}\cdot {\boldsymbol {T}}\cdot {\boldsymbol {A}}^{-1}}In index notation with respect to an orthonormal basisAij1Akl Tkl=Aik1 Tkl Alj1Aij1Akl=Aik1 Alj1{\displaystyle {\frac {\partial A_{ij}^{-1}}{\partial A_{kl}}}~T_{kl}=-A_{ik}^{-1}~T_{kl}~A_{lj}^{-1}\implies {\frac {\partial A_{ij}^{-1}}{\partial A_{kl}}}=-A_{ik}^{-1}~A_{lj}^{-1}}We also haveA(AT):T=ATTTAT{\displaystyle {\frac {\partial }{\partial {\boldsymbol {A}}}}\left({\boldsymbol {A}}^{-{\textsf {T}}}\right):{\boldsymbol {T}}=-{\boldsymbol {A}}^{-{\textsf {T}}}\cdot {\boldsymbol {T}}^{\textsf {T}}\cdot {\boldsymbol {A}}^{-{\textsf {T}}}}In index notationAji1Akl Tkl=Ajk1 Tlk Ali1Aji1Akl=Ali1 Ajk1{\displaystyle {\frac {\partial A_{ji}^{-1}}{\partial A_{kl}}}~T_{kl}=-A_{jk}^{-1}~T_{lk}~A_{li}^{-1}\implies {\frac {\partial A_{ji}^{-1}}{\partial A_{kl}}}=-A_{li}^{-1}~A_{jk}^{-1}}If the tensorA{\displaystyle {\boldsymbol {A}}} is symmetric thenAij1Akl=12(Aik1 Ajl1+Ail1 Ajk1){\displaystyle {\frac {\partial A_{ij}^{-1}}{\partial A_{kl}}}=-{\cfrac {1}{2}}\left(A_{ik}^{-1}~A_{jl}^{-1}+A_{il}^{-1}~A_{jk}^{-1}\right)}

Proof

Recall that1A:T=0{\displaystyle {\frac {\partial {\boldsymbol {\mathit {1}}}}{\partial {\boldsymbol {A}}}}:{\boldsymbol {T}}={\boldsymbol {\mathit {0}}}}

SinceA1A=1{\displaystyle {\boldsymbol {A}}^{-1}\cdot {\boldsymbol {A}}={\boldsymbol {\mathit {1}}}}, we can writeA(A1A):T=0{\displaystyle {\frac {\partial }{\partial {\boldsymbol {A}}}}\left({\boldsymbol {A}}^{-1}\cdot {\boldsymbol {A}}\right):{\boldsymbol {T}}={\boldsymbol {\mathit {0}}}}

Using the product rule for second order tensorsS[F1(S)F2(S)]:T=(F1S:T)F2+F1(F2S:T){\displaystyle {\frac {\partial }{\partial {\boldsymbol {S}}}}[{\boldsymbol {F}}_{1}({\boldsymbol {S}})\cdot {\boldsymbol {F}}_{2}({\boldsymbol {S}})]:{\boldsymbol {T}}=\left({\frac {\partial {\boldsymbol {F}}_{1}}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}\right)\cdot {\boldsymbol {F}}_{2}+{\boldsymbol {F}}_{1}\cdot \left({\frac {\partial {\boldsymbol {F}}_{2}}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}\right)}

we getA(A1A):T=(A1A:T)A+A1(AA:T)=0{\displaystyle {\frac {\partial }{\partial {\boldsymbol {A}}}}({\boldsymbol {A}}^{-1}\cdot {\boldsymbol {A}}):{\boldsymbol {T}}=\left({\frac {\partial {\boldsymbol {A}}^{-1}}{\partial {\boldsymbol {A}}}}:{\boldsymbol {T}}\right)\cdot {\boldsymbol {A}}+{\boldsymbol {A}}^{-1}\cdot \left({\frac {\partial {\boldsymbol {A}}}{\partial {\boldsymbol {A}}}}:{\boldsymbol {T}}\right)={\boldsymbol {\mathit {0}}}}or,(A1A:T)A=A1T{\displaystyle \left({\frac {\partial {\boldsymbol {A}}^{-1}}{\partial {\boldsymbol {A}}}}:{\boldsymbol {T}}\right)\cdot {\boldsymbol {A}}=-{\boldsymbol {A}}^{-1}\cdot {\boldsymbol {T}}}

Therefore,A(A1):T=A1TA1{\displaystyle {\frac {\partial }{\partial {\boldsymbol {A}}}}\left({\boldsymbol {A}}^{-1}\right):{\boldsymbol {T}}=-{\boldsymbol {A}}^{-1}\cdot {\boldsymbol {T}}\cdot {\boldsymbol {A}}^{-1}}

Integration by parts

[edit]
DomainΩ{\displaystyle \Omega }, its boundaryΓ{\displaystyle \Gamma } and the outward unit normaln{\displaystyle \mathbf {n} }

Another important operation related to tensor derivatives in continuum mechanics is integration by parts. The formula for integration by parts can be written asΩFGdΩ=Γn(FG)dΓΩGFdΩ{\displaystyle \int _{\Omega }{\boldsymbol {F}}\otimes {\boldsymbol {\nabla }}{\boldsymbol {G}}\,d\Omega =\int _{\Gamma }\mathbf {n} \otimes ({\boldsymbol {F}}\otimes {\boldsymbol {G}})\,d\Gamma -\int _{\Omega }{\boldsymbol {G}}\otimes {\boldsymbol {\nabla }}{\boldsymbol {F}}\,d\Omega }

whereF{\displaystyle {\boldsymbol {F}}} andG{\displaystyle {\boldsymbol {G}}} are differentiable tensor fields of arbitrary order,n{\displaystyle \mathbf {n} } is the unit outward normal to the domain over which the tensor fields are defined,{\displaystyle \otimes } represents a generalized tensor product operator, and{\displaystyle {\boldsymbol {\nabla }}} is a generalized gradient operator. WhenF{\displaystyle {\boldsymbol {F}}} is equal to the identity tensor, we get thedivergence theoremΩGdΩ=ΓnGdΓ.{\displaystyle \int _{\Omega }{\boldsymbol {\nabla }}{\boldsymbol {G}}\,d\Omega =\int _{\Gamma }\mathbf {n} \otimes {\boldsymbol {G}}\,d\Gamma \,.}

We can express the formula for integration by parts in Cartesian index notation asΩFijk....Glmn...,pdΩ=ΓnpFijk...Glmn...dΓΩGlmn...Fijk...,pdΩ.{\displaystyle \int _{\Omega }F_{ijk....}\,G_{lmn...,p}\,d\Omega =\int _{\Gamma }n_{p}\,F_{ijk...}\,G_{lmn...}\,d\Gamma -\int _{\Omega }G_{lmn...}\,F_{ijk...,p}\,d\Omega \,.}

For the special case where the tensor product operation is a contraction of one index and the gradient operation is a divergence, and bothF{\displaystyle {\boldsymbol {F}}} andG{\displaystyle {\boldsymbol {G}}} are second order tensors, we haveΩF(G)dΩ=Γn(GFT)dΓΩ(F):GTdΩ.{\displaystyle \int _{\Omega }{\boldsymbol {F}}\cdot ({\boldsymbol {\nabla }}\cdot {\boldsymbol {G}})\,d\Omega =\int _{\Gamma }\mathbf {n} \cdot \left({\boldsymbol {G}}\cdot {\boldsymbol {F}}^{\textsf {T}}\right)\,d\Gamma -\int _{\Omega }({\boldsymbol {\nabla }}{\boldsymbol {F}}):{\boldsymbol {G}}^{\textsf {T}}\,d\Omega \,.}

In index notation,ΩFijGpj,pdΩ=ΓnpFijGpjdΓΩGpjFij,pdΩ.{\displaystyle \int _{\Omega }F_{ij}\,G_{pj,p}\,d\Omega =\int _{\Gamma }n_{p}\,F_{ij}\,G_{pj}\,d\Gamma -\int _{\Omega }G_{pj}\,F_{ij,p}\,d\Omega \,.}

See also

[edit]

References

[edit]
  1. ^Simo, J. C.; Hughes, T. J. R. (1998).Computational Inelasticity. Springer.doi:10.1007/b98904.ISBN 978-0-387-97520-7.
  2. ^Marsden, Jerrold E.; Hughes, Thomas J. R. (2000).Mathematical Foundations of Elasticity. Dover.ISBN 978-0-486-678658.
  3. ^Ogden, R. W. (2000).Nonlinear Elastic Deformations. Dover.ISBN 978-0-486-696485.
  4. ^abHjelmstad, Keith (2004).Fundamentals of Structural Mechanics. Springer Science & Business Media. p. 45.ISBN 978-0-387-233307.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Tensor_derivative_(continuum_mechanics)&oldid=1321800644"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp