Thederivatives ofscalars ,vectors , and second-ordertensors with respect to second-order tensors are of considerable use incontinuum mechanics . These derivatives are used in the theories ofnonlinear elasticity andplasticity , particularly in the design ofalgorithms fornumerical simulations .[ 1]
Thedirectional derivative provides a systematic way of finding these derivatives.[ 2]
Derivatives with respect to vectors and second-order tensors [ edit ] The definitions of directional derivatives for various situations are given below. It is assumed that the functions are sufficiently smooth that derivatives can be taken.
Derivatives of scalar valued functions of vectors [ edit ] Letf (v ) be a real valued function of the vectorv . Then the derivative off (v ) with respect tov (or atv ) is thevector defined through itsdot product with any vectoru being
∂ f ∂ v ⋅ u = D f ( v ) [ u ] = [ d d α f ( v + α u ) ] α = 0 {\displaystyle {\frac {\partial f}{\partial \mathbf {v} }}\cdot \mathbf {u} =Df(\mathbf {v} )[\mathbf {u} ]=\left[{\frac {d}{d\alpha }}~f(\mathbf {v} +\alpha ~\mathbf {u} )\right]_{\alpha =0}}
for all vectorsu . The above dot product yields a scalar, and ifu is aunit vector gives the directional derivative off atv , in theu direction.
Properties:
Iff ( v ) = f 1 ( v ) + f 2 ( v ) {\displaystyle f(\mathbf {v} )=f_{1}(\mathbf {v} )+f_{2}(\mathbf {v} )} then∂ f ∂ v ⋅ u = ( ∂ f 1 ∂ v + ∂ f 2 ∂ v ) ⋅ u {\displaystyle {\frac {\partial f}{\partial \mathbf {v} }}\cdot \mathbf {u} =\left({\frac {\partial f_{1}}{\partial \mathbf {v} }}+{\frac {\partial f_{2}}{\partial \mathbf {v} }}\right)\cdot \mathbf {u} } Iff ( v ) = f 1 ( v ) f 2 ( v ) {\displaystyle f(\mathbf {v} )=f_{1}(\mathbf {v} )~f_{2}(\mathbf {v} )} then∂ f ∂ v ⋅ u = ( ∂ f 1 ∂ v ⋅ u ) f 2 ( v ) + f 1 ( v ) ( ∂ f 2 ∂ v ⋅ u ) {\displaystyle {\frac {\partial f}{\partial \mathbf {v} }}\cdot \mathbf {u} =\left({\frac {\partial f_{1}}{\partial \mathbf {v} }}\cdot \mathbf {u} \right)~f_{2}(\mathbf {v} )+f_{1}(\mathbf {v} )~\left({\frac {\partial f_{2}}{\partial \mathbf {v} }}\cdot \mathbf {u} \right)} Iff ( v ) = f 1 ( f 2 ( v ) ) {\displaystyle f(\mathbf {v} )=f_{1}(f_{2}(\mathbf {v} ))} then∂ f ∂ v ⋅ u = ∂ f 1 ∂ f 2 ∂ f 2 ∂ v ⋅ u {\displaystyle {\frac {\partial f}{\partial \mathbf {v} }}\cdot \mathbf {u} ={\frac {\partial f_{1}}{\partial f_{2}}}~{\frac {\partial f_{2}}{\partial \mathbf {v} }}\cdot \mathbf {u} } Derivatives of vector valued functions of vectors [ edit ] Letf (v ) be a vector valued function of the vectorv . Then the derivative off (v ) with respect tov (or atv ) is the second order tensor defined through its dot product with any vectoru being
∂ f ∂ v ⋅ u = D f ( v ) [ u ] = [ d d α f ( v + α u ) ] α = 0 {\displaystyle {\frac {\partial \mathbf {f} }{\partial \mathbf {v} }}\cdot \mathbf {u} =D\mathbf {f} (\mathbf {v} )[\mathbf {u} ]=\left[{\frac {d}{d\alpha }}~\mathbf {f} (\mathbf {v} +\alpha ~\mathbf {u} )\right]_{\alpha =0}}
for all vectorsu . The above dot product yields a vector, and ifu is a unit vector gives the direction derivative off atv , in the directionalu .
Properties:
Iff ( v ) = f 1 ( v ) + f 2 ( v ) {\displaystyle \mathbf {f} (\mathbf {v} )=\mathbf {f} _{1}(\mathbf {v} )+\mathbf {f} _{2}(\mathbf {v} )} then∂ f ∂ v ⋅ u = ( ∂ f 1 ∂ v + ∂ f 2 ∂ v ) ⋅ u {\displaystyle {\frac {\partial \mathbf {f} }{\partial \mathbf {v} }}\cdot \mathbf {u} =\left({\frac {\partial \mathbf {f} _{1}}{\partial \mathbf {v} }}+{\frac {\partial \mathbf {f} _{2}}{\partial \mathbf {v} }}\right)\cdot \mathbf {u} } Iff ( v ) = f 1 ( v ) × f 2 ( v ) {\displaystyle \mathbf {f} (\mathbf {v} )=\mathbf {f} _{1}(\mathbf {v} )\times \mathbf {f} _{2}(\mathbf {v} )} then∂ f ∂ v ⋅ u = ( ∂ f 1 ∂ v ⋅ u ) × f 2 ( v ) + f 1 ( v ) × ( ∂ f 2 ∂ v ⋅ u ) {\displaystyle {\frac {\partial \mathbf {f} }{\partial \mathbf {v} }}\cdot \mathbf {u} =\left({\frac {\partial \mathbf {f} _{1}}{\partial \mathbf {v} }}\cdot \mathbf {u} \right)\times \mathbf {f} _{2}(\mathbf {v} )+\mathbf {f} _{1}(\mathbf {v} )\times \left({\frac {\partial \mathbf {f} _{2}}{\partial \mathbf {v} }}\cdot \mathbf {u} \right)} Iff ( v ) = f 1 ( f 2 ( v ) ) {\displaystyle \mathbf {f} (\mathbf {v} )=\mathbf {f} _{1}(\mathbf {f} _{2}(\mathbf {v} ))} then∂ f ∂ v ⋅ u = ∂ f 1 ∂ f 2 ⋅ ( ∂ f 2 ∂ v ⋅ u ) {\displaystyle {\frac {\partial \mathbf {f} }{\partial \mathbf {v} }}\cdot \mathbf {u} ={\frac {\partial \mathbf {f} _{1}}{\partial \mathbf {f} _{2}}}\cdot \left({\frac {\partial \mathbf {f} _{2}}{\partial \mathbf {v} }}\cdot \mathbf {u} \right)} Derivatives of scalar valued functions of second-order tensors [ edit ] Letf ( S ) {\displaystyle f({\boldsymbol {S}})} be a real valued function of the second order tensorS {\displaystyle {\boldsymbol {S}}} . Then the derivative off ( S ) {\displaystyle f({\boldsymbol {S}})} with respect toS {\displaystyle {\boldsymbol {S}}} (or atS {\displaystyle {\boldsymbol {S}}} ) in the directionT {\displaystyle {\boldsymbol {T}}} is the second order tensor defined as∂ f ∂ S : T = D f ( S ) [ T ] = [ d d α f ( S + α T ) ] α = 0 {\displaystyle {\frac {\partial f}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}=Df({\boldsymbol {S}})[{\boldsymbol {T}}]=\left[{\frac {d}{d\alpha }}~f({\boldsymbol {S}}+\alpha ~{\boldsymbol {T}})\right]_{\alpha =0}} for all second order tensorsT {\displaystyle {\boldsymbol {T}}} .
Properties:
Iff ( S ) = f 1 ( S ) + f 2 ( S ) {\displaystyle f({\boldsymbol {S}})=f_{1}({\boldsymbol {S}})+f_{2}({\boldsymbol {S}})} then∂ f ∂ S : T = ( ∂ f 1 ∂ S + ∂ f 2 ∂ S ) : T {\displaystyle {\frac {\partial f}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}=\left({\frac {\partial f_{1}}{\partial {\boldsymbol {S}}}}+{\frac {\partial f_{2}}{\partial {\boldsymbol {S}}}}\right):{\boldsymbol {T}}} Iff ( S ) = f 1 ( S ) f 2 ( S ) {\displaystyle f({\boldsymbol {S}})=f_{1}({\boldsymbol {S}})~f_{2}({\boldsymbol {S}})} then∂ f ∂ S : T = ( ∂ f 1 ∂ S : T ) f 2 ( S ) + f 1 ( S ) ( ∂ f 2 ∂ S : T ) {\displaystyle {\frac {\partial f}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}=\left({\frac {\partial f_{1}}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}\right)~f_{2}({\boldsymbol {S}})+f_{1}({\boldsymbol {S}})~\left({\frac {\partial f_{2}}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}\right)} Iff ( S ) = f 1 ( f 2 ( S ) ) {\displaystyle f({\boldsymbol {S}})=f_{1}(f_{2}({\boldsymbol {S}}))} then∂ f ∂ S : T = ∂ f 1 ∂ f 2 ( ∂ f 2 ∂ S : T ) {\displaystyle {\frac {\partial f}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}={\frac {\partial f_{1}}{\partial f_{2}}}~\left({\frac {\partial f_{2}}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}\right)} Derivatives of tensor valued functions of second-order tensors [ edit ] LetF ( S ) {\displaystyle {\boldsymbol {F}}({\boldsymbol {S}})} be a second order tensor valued function of the second order tensorS {\displaystyle {\boldsymbol {S}}} . Then the derivative ofF ( S ) {\displaystyle {\boldsymbol {F}}({\boldsymbol {S}})} with respect toS {\displaystyle {\boldsymbol {S}}} (or atS {\displaystyle {\boldsymbol {S}}} ) in the directionT {\displaystyle {\boldsymbol {T}}} is the fourth order tensor defined as∂ F ∂ S : T = D F ( S ) [ T ] = [ d d α F ( S + α T ) ] α = 0 {\displaystyle {\frac {\partial {\boldsymbol {F}}}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}=D{\boldsymbol {F}}({\boldsymbol {S}})[{\boldsymbol {T}}]=\left[{\frac {d}{d\alpha }}~{\boldsymbol {F}}({\boldsymbol {S}}+\alpha ~{\boldsymbol {T}})\right]_{\alpha =0}} for all second order tensorsT {\displaystyle {\boldsymbol {T}}} .
Properties:
IfF ( S ) = F 1 ( S ) + F 2 ( S ) {\displaystyle {\boldsymbol {F}}({\boldsymbol {S}})={\boldsymbol {F}}_{1}({\boldsymbol {S}})+{\boldsymbol {F}}_{2}({\boldsymbol {S}})} then∂ F ∂ S : T = ( ∂ F 1 ∂ S + ∂ F 2 ∂ S ) : T {\displaystyle {\frac {\partial {\boldsymbol {F}}}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}=\left({\frac {\partial {\boldsymbol {F}}_{1}}{\partial {\boldsymbol {S}}}}+{\frac {\partial {\boldsymbol {F}}_{2}}{\partial {\boldsymbol {S}}}}\right):{\boldsymbol {T}}} IfF ( S ) = F 1 ( S ) ⋅ F 2 ( S ) {\displaystyle {\boldsymbol {F}}({\boldsymbol {S}})={\boldsymbol {F}}_{1}({\boldsymbol {S}})\cdot {\boldsymbol {F}}_{2}({\boldsymbol {S}})} then∂ F ∂ S : T = ( ∂ F 1 ∂ S : T ) ⋅ F 2 ( S ) + F 1 ( S ) ⋅ ( ∂ F 2 ∂ S : T ) {\displaystyle {\frac {\partial {\boldsymbol {F}}}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}=\left({\frac {\partial {\boldsymbol {F}}_{1}}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}\right)\cdot {\boldsymbol {F}}_{2}({\boldsymbol {S}})+{\boldsymbol {F}}_{1}({\boldsymbol {S}})\cdot \left({\frac {\partial {\boldsymbol {F}}_{2}}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}\right)} IfF ( S ) = F 1 ( F 2 ( S ) ) {\displaystyle {\boldsymbol {F}}({\boldsymbol {S}})={\boldsymbol {F}}_{1}({\boldsymbol {F}}_{2}({\boldsymbol {S}}))} then∂ F ∂ S : T = ∂ F 1 ∂ F 2 : ( ∂ F 2 ∂ S : T ) {\displaystyle {\frac {\partial {\boldsymbol {F}}}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}={\frac {\partial {\boldsymbol {F}}_{1}}{\partial {\boldsymbol {F}}_{2}}}:\left({\frac {\partial {\boldsymbol {F}}_{2}}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}\right)} Iff ( S ) = f 1 ( F 2 ( S ) ) {\displaystyle f({\boldsymbol {S}})=f_{1}({\boldsymbol {F}}_{2}({\boldsymbol {S}}))} then∂ f ∂ S : T = ∂ f 1 ∂ F 2 : ( ∂ F 2 ∂ S : T ) {\displaystyle {\frac {\partial f}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}={\frac {\partial f_{1}}{\partial {\boldsymbol {F}}_{2}}}:\left({\frac {\partial {\boldsymbol {F}}_{2}}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}\right)} Gradient of a tensor field [ edit ] Thegradient ,∇ T {\displaystyle {\boldsymbol {\nabla }}{\boldsymbol {T}}} , of a tensor fieldT ( x ) {\displaystyle {\boldsymbol {T}}(\mathbf {x} )} in the direction of an arbitrary constant vectorc is defined as:∇ T ⋅ c = lim α → 0 d d α T ( x + α c ) {\displaystyle {\boldsymbol {\nabla }}{\boldsymbol {T}}\cdot \mathbf {c} =\lim _{\alpha \rightarrow 0}\quad {\cfrac {d}{d\alpha }}~{\boldsymbol {T}}(\mathbf {x} +\alpha \mathbf {c} )} The gradient of atensor field of ordern is a tensor field of ordern +1.
Cartesian coordinates [ edit ] Ife 1 , e 2 , e 3 {\displaystyle \mathbf {e} _{1},\mathbf {e} _{2},\mathbf {e} _{3}} are the basis vectors in aCartesian coordinate system, with coordinates of points denoted by (x 1 , x 2 , x 3 {\displaystyle x_{1},x_{2},x_{3}} ), then the gradient of the tensor fieldT {\displaystyle {\boldsymbol {T}}} is given by∇ T = ∂ T ∂ x i ⊗ e i {\displaystyle {\boldsymbol {\nabla }}{\boldsymbol {T}}={\cfrac {\partial {\boldsymbol {T}}}{\partial x_{i}}}\otimes \mathbf {e} _{i}}
Since the basis vectors do not vary in a Cartesian coordinate system we have the following relations for the gradients of a scalar fieldϕ {\displaystyle \phi } , a vector fieldv , and a second-order tensor fieldS {\displaystyle {\boldsymbol {S}}} .∇ ϕ = ∂ ϕ ∂ x i e i = ϕ , i e i ∇ v = ∂ ( v j e j ) ∂ x i ⊗ e i = ∂ v j ∂ x i e j ⊗ e i = v j , i e j ⊗ e i ∇ S = ∂ ( S j k e j ⊗ e k ) ∂ x i ⊗ e i = ∂ S j k ∂ x i e j ⊗ e k ⊗ e i = S j k , i e j ⊗ e k ⊗ e i {\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\phi &={\cfrac {\partial \phi }{\partial x_{i}}}~\mathbf {e} _{i}=\phi _{,i}~\mathbf {e} _{i}\\{\boldsymbol {\nabla }}\mathbf {v} &={\cfrac {\partial (v_{j}\mathbf {e} _{j})}{\partial x_{i}}}\otimes \mathbf {e} _{i}={\cfrac {\partial v_{j}}{\partial x_{i}}}~\mathbf {e} _{j}\otimes \mathbf {e} _{i}=v_{j,i}~\mathbf {e} _{j}\otimes \mathbf {e} _{i}\\{\boldsymbol {\nabla }}{\boldsymbol {S}}&={\cfrac {\partial (S_{jk}\mathbf {e} _{j}\otimes \mathbf {e} _{k})}{\partial x_{i}}}\otimes \mathbf {e} _{i}={\cfrac {\partial S_{jk}}{\partial x_{i}}}~\mathbf {e} _{j}\otimes \mathbf {e} _{k}\otimes \mathbf {e} _{i}=S_{jk,i}~\mathbf {e} _{j}\otimes \mathbf {e} _{k}\otimes \mathbf {e} _{i}\end{aligned}}}
Curvilinear coordinates [ edit ] Ifg 1 , g 2 , g 3 {\displaystyle \mathbf {g} ^{1},\mathbf {g} ^{2},\mathbf {g} ^{3}} are thecontravariant basis vectors in acurvilinear coordinate system, with coordinates of points denoted by (ξ 1 , ξ 2 , ξ 3 {\displaystyle \xi ^{1},\xi ^{2},\xi ^{3}} ), then the gradient of the tensor fieldT {\displaystyle {\boldsymbol {T}}} is given by[ 3] ∇ T = ∂ T ∂ ξ i ⊗ g i {\displaystyle {\boldsymbol {\nabla }}{\boldsymbol {T}}={\frac {\partial {\boldsymbol {T}}}{\partial \xi ^{i}}}\otimes \mathbf {g} ^{i}}
From this definition we have the following relations for the gradients of a scalar fieldϕ {\displaystyle \phi } , a vector fieldv , and a second-order tensor fieldS {\displaystyle {\boldsymbol {S}}} .∇ ϕ = ∂ ϕ ∂ ξ i g i ∇ v = ∂ ( v j g j ) ∂ ξ i ⊗ g i = ( ∂ v j ∂ ξ i + v k Γ i k j ) g j ⊗ g i = ( ∂ v j ∂ ξ i − v k Γ i j k ) g j ⊗ g i ∇ S = ∂ ( S j k g j ⊗ g k ) ∂ ξ i ⊗ g i = ( ∂ S j k ∂ ξ i − S l k Γ i j l − S j l Γ i k l ) g j ⊗ g k ⊗ g i {\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\phi &={\frac {\partial \phi }{\partial \xi ^{i}}}~\mathbf {g} ^{i}\\[1.2ex]{\boldsymbol {\nabla }}\mathbf {v} &={\frac {\partial \left(v^{j}\mathbf {g} _{j}\right)}{\partial \xi ^{i}}}\otimes \mathbf {g} ^{i}\\&=\left({\frac {\partial v^{j}}{\partial \xi ^{i}}}+v^{k}~\Gamma _{ik}^{j}\right)~\mathbf {g} _{j}\otimes \mathbf {g} ^{i}=\left({\frac {\partial v_{j}}{\partial \xi ^{i}}}-v_{k}~\Gamma _{ij}^{k}\right)~\mathbf {g} ^{j}\otimes \mathbf {g} ^{i}\\[1.2ex]{\boldsymbol {\nabla }}{\boldsymbol {S}}&={\frac {\partial \left(S_{jk}~\mathbf {g} ^{j}\otimes \mathbf {g} ^{k}\right)}{\partial \xi ^{i}}}\otimes \mathbf {g} ^{i}\\&=\left({\frac {\partial S_{jk}}{\partial \xi _{i}}}-S_{lk}~\Gamma _{ij}^{l}-S_{jl}~\Gamma _{ik}^{l}\right)~\mathbf {g} ^{j}\otimes \mathbf {g} ^{k}\otimes \mathbf {g} ^{i}\end{aligned}}}
where theChristoffel symbol Γ i j k {\displaystyle \Gamma _{ij}^{k}} is defined usingΓ i j k g k = ∂ g i ∂ ξ j ⟹ Γ i j k = ∂ g i ∂ ξ j ⋅ g k = − g i ⋅ ∂ g k ∂ ξ j {\displaystyle \Gamma _{ij}^{k}~\mathbf {g} _{k}={\frac {\partial \mathbf {g} _{i}}{\partial \xi ^{j}}}\quad \implies \quad \Gamma _{ij}^{k}={\frac {\partial \mathbf {g} _{i}}{\partial \xi ^{j}}}\cdot \mathbf {g} ^{k}=-\mathbf {g} _{i}\cdot {\frac {\partial \mathbf {g} ^{k}}{\partial \xi ^{j}}}}
Cylindrical polar coordinates [ edit ] Incylindrical coordinates , the gradient is given by∇ ϕ = ∂ ϕ ∂ r e r + 1 r ∂ ϕ ∂ θ e θ + ∂ ϕ ∂ z e z {\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\phi ={}\quad &{\frac {\partial \phi }{\partial r}}~\mathbf {e} _{r}+{\frac {1}{r}}~{\frac {\partial \phi }{\partial \theta }}~\mathbf {e} _{\theta }+{\frac {\partial \phi }{\partial z}}~\mathbf {e} _{z}\\\end{aligned}}}
∇ v = ∂ v r ∂ r e r ⊗ e r + 1 r ( ∂ v r ∂ θ − v θ ) e r ⊗ e θ + ∂ v r ∂ z e r ⊗ e z + ∂ v θ ∂ r e θ ⊗ e r + 1 r ( ∂ v θ ∂ θ + v r ) e θ ⊗ e θ + ∂ v θ ∂ z e θ ⊗ e z + ∂ v z ∂ r e z ⊗ e r + 1 r ∂ v z ∂ θ e z ⊗ e θ + ∂ v z ∂ z e z ⊗ e z {\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\mathbf {v} ={}\quad &{\frac {\partial v_{r}}{\partial r}}~\mathbf {e} _{r}\otimes \mathbf {e} _{r}+{\frac {1}{r}}\left({\frac {\partial v_{r}}{\partial \theta }}-v_{\theta }\right)~\mathbf {e} _{r}\otimes \mathbf {e} _{\theta }+{\frac {\partial v_{r}}{\partial z}}~\mathbf {e} _{r}\otimes \mathbf {e} _{z}\\{}+{}&{\frac {\partial v_{\theta }}{\partial r}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{r}+{\frac {1}{r}}\left({\frac {\partial v_{\theta }}{\partial \theta }}+v_{r}\right)~\mathbf {e} _{\theta }\otimes \mathbf {e} _{\theta }+{\frac {\partial v_{\theta }}{\partial z}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{z}\\{}+{}&{\frac {\partial v_{z}}{\partial r}}~\mathbf {e} _{z}\otimes \mathbf {e} _{r}+{\frac {1}{r}}{\frac {\partial v_{z}}{\partial \theta }}~\mathbf {e} _{z}\otimes \mathbf {e} _{\theta }+{\frac {\partial v_{z}}{\partial z}}~\mathbf {e} _{z}\otimes \mathbf {e} _{z}\\\end{aligned}}}
∇ S = ∂ S r r ∂ r e r ⊗ e r ⊗ e r + ∂ S r r ∂ z e r ⊗ e r ⊗ e z + 1 r [ ∂ S r r ∂ θ − ( S θ r + S r θ ) ] e r ⊗ e r ⊗ e θ + ∂ S r θ ∂ r e r ⊗ e θ ⊗ e r + ∂ S r θ ∂ z e r ⊗ e θ ⊗ e z + 1 r [ ∂ S r θ ∂ θ + ( S r r − S θ θ ) ] e r ⊗ e θ ⊗ e θ + ∂ S r z ∂ r e r ⊗ e z ⊗ e r + ∂ S r z ∂ z e r ⊗ e z ⊗ e z + 1 r [ ∂ S r z ∂ θ − S θ z ] e r ⊗ e z ⊗ e θ + ∂ S θ r ∂ r e θ ⊗ e r ⊗ e r + ∂ S θ r ∂ z e θ ⊗ e r ⊗ e z + 1 r [ ∂ S θ r ∂ θ + ( S r r − S θ θ ) ] e θ ⊗ e r ⊗ e θ + ∂ S θ θ ∂ r e θ ⊗ e θ ⊗ e r + ∂ S θ θ ∂ z e θ ⊗ e θ ⊗ e z + 1 r [ ∂ S θ θ ∂ θ + ( S r θ + S θ r ) ] e θ ⊗ e θ ⊗ e θ + ∂ S θ z ∂ r e θ ⊗ e z ⊗ e r + ∂ S θ z ∂ z e θ ⊗ e z ⊗ e z + 1 r [ ∂ S θ z ∂ θ + S r z ] e θ ⊗ e z ⊗ e θ + ∂ S z r ∂ r e z ⊗ e r ⊗ e r + ∂ S z r ∂ z e z ⊗ e r ⊗ e z + 1 r [ ∂ S z r ∂ θ − S z θ ] e z ⊗ e r ⊗ e θ + ∂ S z θ ∂ r e z ⊗ e θ ⊗ e r + ∂ S z θ ∂ z e z ⊗ e θ ⊗ e z + 1 r [ ∂ S z θ ∂ θ + S z r ] e z ⊗ e θ ⊗ e θ + ∂ S z z ∂ r e z ⊗ e z ⊗ e r + ∂ S z z ∂ z e z ⊗ e z ⊗ e z + 1 r ∂ S z z ∂ θ e z ⊗ e z ⊗ e θ {\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}{\boldsymbol {S}}={}\quad &{\frac {\partial S_{rr}}{\partial r}}~\mathbf {e} _{r}\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{r}+{\frac {\partial S_{rr}}{\partial z}}~\mathbf {e} _{r}\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{z}+{\frac {1}{r}}\left[{\frac {\partial S_{rr}}{\partial \theta }}-(S_{\theta r}+S_{r\theta })\right]~\mathbf {e} _{r}\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{\theta }\\{}+{}&{\frac {\partial S_{r\theta }}{\partial r}}~\mathbf {e} _{r}\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{r}+{\frac {\partial S_{r\theta }}{\partial z}}~\mathbf {e} _{r}\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{z}+{\frac {1}{r}}\left[{\frac {\partial S_{r\theta }}{\partial \theta }}+(S_{rr}-S_{\theta \theta })\right]~\mathbf {e} _{r}\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{\theta }\\{}+{}&{\frac {\partial S_{rz}}{\partial r}}~\mathbf {e} _{r}\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{r}+{\frac {\partial S_{rz}}{\partial z}}~\mathbf {e} _{r}\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{z}+{\frac {1}{r}}\left[{\frac {\partial S_{rz}}{\partial \theta }}-S_{\theta z}\right]~\mathbf {e} _{r}\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{\theta }\\{}+{}&{\frac {\partial S_{\theta r}}{\partial r}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{r}+{\frac {\partial S_{\theta r}}{\partial z}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{z}+{\frac {1}{r}}\left[{\frac {\partial S_{\theta r}}{\partial \theta }}+(S_{rr}-S_{\theta \theta })\right]~\mathbf {e} _{\theta }\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{\theta }\\{}+{}&{\frac {\partial S_{\theta \theta }}{\partial r}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{r}+{\frac {\partial S_{\theta \theta }}{\partial z}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{z}+{\frac {1}{r}}\left[{\frac {\partial S_{\theta \theta }}{\partial \theta }}+(S_{r\theta }+S_{\theta r})\right]~\mathbf {e} _{\theta }\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{\theta }\\{}+{}&{\frac {\partial S_{\theta z}}{\partial r}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{r}+{\frac {\partial S_{\theta z}}{\partial z}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{z}+{\frac {1}{r}}\left[{\frac {\partial S_{\theta z}}{\partial \theta }}+S_{rz}\right]~\mathbf {e} _{\theta }\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{\theta }\\{}+{}&{\frac {\partial S_{zr}}{\partial r}}~\mathbf {e} _{z}\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{r}+{\frac {\partial S_{zr}}{\partial z}}~\mathbf {e} _{z}\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{z}+{\frac {1}{r}}\left[{\frac {\partial S_{zr}}{\partial \theta }}-S_{z\theta }\right]~\mathbf {e} _{z}\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{\theta }\\{}+{}&{\frac {\partial S_{z\theta }}{\partial r}}~\mathbf {e} _{z}\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{r}+{\frac {\partial S_{z\theta }}{\partial z}}~\mathbf {e} _{z}\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{z}+{\frac {1}{r}}\left[{\frac {\partial S_{z\theta }}{\partial \theta }}+S_{zr}\right]~\mathbf {e} _{z}\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{\theta }\\{}+{}&{\frac {\partial S_{zz}}{\partial r}}~\mathbf {e} _{z}\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{r}+{\frac {\partial S_{zz}}{\partial z}}~\mathbf {e} _{z}\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{z}+{\frac {1}{r}}~{\frac {\partial S_{zz}}{\partial \theta }}~\mathbf {e} _{z}\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{\theta }\end{aligned}}}
Divergence of a tensor field [ edit ] Thedivergence of a tensor fieldT ( x ) {\displaystyle {\boldsymbol {T}}(\mathbf {x} )} is defined using the recursive relation( ∇ ⋅ T ) ⋅ c = ∇ ⋅ ( c ⋅ T T ) ; ∇ ⋅ v = tr ( ∇ v ) {\displaystyle ({\boldsymbol {\nabla }}\cdot {\boldsymbol {T}})\cdot \mathbf {c} ={\boldsymbol {\nabla }}\cdot \left(\mathbf {c} \cdot {\boldsymbol {T}}^{\textsf {T}}\right)~;\qquad {\boldsymbol {\nabla }}\cdot \mathbf {v} ={\text{tr}}({\boldsymbol {\nabla }}\mathbf {v} )}
wherec is an arbitrary constant vector andv is a vector field. IfT {\displaystyle {\boldsymbol {T}}} is a tensor field of ordern > 1 then the divergence of the field is a tensor of ordern − 1.
Cartesian coordinates [ edit ] In a Cartesian coordinate system we have the following relations for a vector fieldv and a second-order tensor fieldS {\displaystyle {\boldsymbol {S}}} .∇ ⋅ v = ∂ v i ∂ x i = v i , i ∇ ⋅ S = ∂ S i k ∂ x i e k = S i k , i e k {\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\cdot \mathbf {v} &={\frac {\partial v_{i}}{\partial x_{i}}}=v_{i,i}\\{\boldsymbol {\nabla }}\cdot {\boldsymbol {S}}&={\frac {\partial S_{ik}}{\partial x_{i}}}~\mathbf {e} _{k}=S_{ik,i}~\mathbf {e} _{k}\end{aligned}}}
wheretensor index notation for partial derivatives is used in the rightmost expressions. Note that∇ ⋅ S ≠ ∇ ⋅ S T . {\displaystyle {\boldsymbol {\nabla }}\cdot {\boldsymbol {S}}\neq {\boldsymbol {\nabla }}\cdot {\boldsymbol {S}}^{\textsf {T}}.}
For a symmetric second-order tensor, the divergence is also often written as[ 4]
∇ ⋅ S = ∂ S k i ∂ x i e k = S k i , i e k {\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\cdot {\boldsymbol {S}}&={\cfrac {\partial S_{ki}}{\partial x_{i}}}~\mathbf {e} _{k}=S_{ki,i}~\mathbf {e} _{k}\end{aligned}}}
The above expression is sometimes used as the definition of∇ ⋅ S {\displaystyle {\boldsymbol {\nabla }}\cdot {\boldsymbol {S}}} in Cartesian component form (often also written asdiv S {\displaystyle \operatorname {div} {\boldsymbol {S}}} ). Note that such a definition is not consistent with the rest of this article (see the section on curvilinear co-ordinates).
The difference stems from whether the differentiation is performed with respect to the rows or columns ofS {\displaystyle {\boldsymbol {S}}} , and is conventional. This is demonstrated by an example. In a Cartesian coordinate system the second order tensor (matrix)S {\displaystyle \mathbf {S} } is the gradient of a vector functionv {\displaystyle \mathbf {v} } .
∇ ⋅ ( ∇ v ) = ∇ ⋅ ( v i , j e i ⊗ e j ) = v i , j i e i ⋅ e i ⊗ e j = ( ∇ ⋅ v ) , j e j = ∇ ( ∇ ⋅ v ) ∇ ⋅ [ ( ∇ v ) T ] = ∇ ⋅ ( v j , i e i ⊗ e j ) = v j , i i e i ⋅ e i ⊗ e j = ∇ 2 v j e j = ∇ 2 v {\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\cdot \left({\boldsymbol {\nabla }}\mathbf {v} \right)&={\boldsymbol {\nabla }}\cdot \left(v_{i,j}~\mathbf {e} _{i}\otimes \mathbf {e} _{j}\right)=v_{i,ji}~\mathbf {e} _{i}\cdot \mathbf {e} _{i}\otimes \mathbf {e} _{j}=\left({\boldsymbol {\nabla }}\cdot \mathbf {v} \right)_{,j}~\mathbf {e} _{j}={\boldsymbol {\nabla }}\left({\boldsymbol {\nabla }}\cdot \mathbf {v} \right)\\{\boldsymbol {\nabla }}\cdot \left[\left({\boldsymbol {\nabla }}\mathbf {v} \right)^{\textsf {T}}\right]&={\boldsymbol {\nabla }}\cdot \left(v_{j,i}~\mathbf {e} _{i}\otimes \mathbf {e} _{j}\right)=v_{j,ii}~\mathbf {e} _{i}\cdot \mathbf {e} _{i}\otimes \mathbf {e} _{j}={\boldsymbol {\nabla }}^{2}v_{j}~\mathbf {e} _{j}={\boldsymbol {\nabla }}^{2}\mathbf {v} \end{aligned}}}
The last equation is equivalent to the alternative definition / interpretation[ 4]
( ∇ ⋅ ) alt ( ∇ v ) = ( ∇ ⋅ ) alt ( v i , j e i ⊗ e j ) = v i , j j e i ⊗ e j ⋅ e j = ∇ 2 v i e i = ∇ 2 v {\displaystyle {\begin{aligned}\left({\boldsymbol {\nabla }}\cdot \right)_{\text{alt}}\left({\boldsymbol {\nabla }}\mathbf {v} \right)=\left({\boldsymbol {\nabla }}\cdot \right)_{\text{alt}}\left(v_{i,j}~\mathbf {e} _{i}\otimes \mathbf {e} _{j}\right)=v_{i,jj}~\mathbf {e} _{i}\otimes \mathbf {e} _{j}\cdot \mathbf {e} _{j}={\boldsymbol {\nabla }}^{2}v_{i}~\mathbf {e} _{i}={\boldsymbol {\nabla }}^{2}\mathbf {v} \end{aligned}}}
Curvilinear coordinates [ edit ] In curvilinear coordinates, the divergences of a vector fieldv and a second-order tensor fieldS {\displaystyle {\boldsymbol {S}}} are∇ ⋅ v = ( ∂ v i ∂ ξ i + v k Γ i k i ) ∇ ⋅ S = ( ∂ S i k ∂ ξ i − S l k Γ i i l − S i l Γ i k l ) g k {\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\cdot \mathbf {v} &=\left({\cfrac {\partial v^{i}}{\partial \xi ^{i}}}+v^{k}~\Gamma _{ik}^{i}\right)\\{\boldsymbol {\nabla }}\cdot {\boldsymbol {S}}&=\left({\cfrac {\partial S_{ik}}{\partial \xi _{i}}}-S_{lk}~\Gamma _{ii}^{l}-S_{il}~\Gamma _{ik}^{l}\right)~\mathbf {g} ^{k}\end{aligned}}}
More generally,∇ ⋅ S = [ ∂ S i j ∂ q k − Γ k i l S l j − Γ k j l S i l ] g i k b j = [ ∂ S i j ∂ q i + Γ i l i S l j + Γ i l j S i l ] b j = [ ∂ S j i ∂ q i + Γ i l i S j l − Γ i j l S l i ] b j = [ ∂ S i j ∂ q k − Γ i k l S l j + Γ k l j S i l ] g i k b j {\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\cdot {\boldsymbol {S}}&=\left[{\cfrac {\partial S_{ij}}{\partial q^{k}}}-\Gamma _{ki}^{l}~S_{lj}-\Gamma _{kj}^{l}~S_{il}\right]~g^{ik}~\mathbf {b} ^{j}\\[8pt]&=\left[{\cfrac {\partial S^{ij}}{\partial q^{i}}}+\Gamma _{il}^{i}~S^{lj}+\Gamma _{il}^{j}~S^{il}\right]~\mathbf {b} _{j}\\[8pt]&=\left[{\cfrac {\partial S_{~j}^{i}}{\partial q^{i}}}+\Gamma _{il}^{i}~S_{~j}^{l}-\Gamma _{ij}^{l}~S_{~l}^{i}\right]~\mathbf {b} ^{j}\\[8pt]&=\left[{\cfrac {\partial S_{i}^{~j}}{\partial q^{k}}}-\Gamma _{ik}^{l}~S_{l}^{~j}+\Gamma _{kl}^{j}~S_{i}^{~l}\right]~g^{ik}~\mathbf {b} _{j}\end{aligned}}}
Cylindrical polar coordinates [ edit ] Incylindrical polar coordinates ∇ ⋅ v = ∂ v r ∂ r + 1 r ( ∂ v θ ∂ θ + v r ) + ∂ v z ∂ z ∇ ⋅ S = ∂ S r r ∂ r e r + ∂ S r θ ∂ r e θ + ∂ S r z ∂ r e z + 1 r [ ∂ S θ r ∂ θ + ( S r r − S θ θ ) ] e r + 1 r [ ∂ S θ θ ∂ θ + ( S r θ + S θ r ) ] e θ + 1 r [ ∂ S θ z ∂ θ + S r z ] e z + ∂ S z r ∂ z e r + ∂ S z θ ∂ z e θ + ∂ S z z ∂ z e z {\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\cdot \mathbf {v} =\quad &{\frac {\partial v_{r}}{\partial r}}+{\frac {1}{r}}\left({\frac {\partial v_{\theta }}{\partial \theta }}+v_{r}\right)+{\frac {\partial v_{z}}{\partial z}}\\{\boldsymbol {\nabla }}\cdot {\boldsymbol {S}}=\quad &{\frac {\partial S_{rr}}{\partial r}}~\mathbf {e} _{r}+{\frac {\partial S_{r\theta }}{\partial r}}~\mathbf {e} _{\theta }+{\frac {\partial S_{rz}}{\partial r}}~\mathbf {e} _{z}\\{}+{}&{\frac {1}{r}}\left[{\frac {\partial S_{\theta r}}{\partial \theta }}+(S_{rr}-S_{\theta \theta })\right]~\mathbf {e} _{r}+{\frac {1}{r}}\left[{\frac {\partial S_{\theta \theta }}{\partial \theta }}+(S_{r\theta }+S_{\theta r})\right]~\mathbf {e} _{\theta }+{\frac {1}{r}}\left[{\frac {\partial S_{\theta z}}{\partial \theta }}+S_{rz}\right]~\mathbf {e} _{z}\\{}+{}&{\frac {\partial S_{zr}}{\partial z}}~\mathbf {e} _{r}+{\frac {\partial S_{z\theta }}{\partial z}}~\mathbf {e} _{\theta }+{\frac {\partial S_{zz}}{\partial z}}~\mathbf {e} _{z}\end{aligned}}}
Curl of a tensor field [ edit ] Thecurl of an order-n > 1 tensor fieldT ( x ) {\displaystyle {\boldsymbol {T}}(\mathbf {x} )} is also defined using the recursive relation( ∇ × T ) ⋅ c = ∇ × ( c ⋅ T ) ; ( ∇ × v ) ⋅ c = ∇ ⋅ ( v × c ) {\displaystyle ({\boldsymbol {\nabla }}\times {\boldsymbol {T}})\cdot \mathbf {c} ={\boldsymbol {\nabla }}\times (\mathbf {c} \cdot {\boldsymbol {T}})~;\qquad ({\boldsymbol {\nabla }}\times \mathbf {v} )\cdot \mathbf {c} ={\boldsymbol {\nabla }}\cdot (\mathbf {v} \times \mathbf {c} )} wherec is an arbitrary constant vector andv is a vector field.
Curl of a first-order tensor (vector) field[ edit ] Consider a vector fieldv and an arbitrary constant vectorc . In index notation, the cross product is given byv × c = ε i j k v j c k e i {\displaystyle \mathbf {v} \times \mathbf {c} =\varepsilon _{ijk}~v_{j}~c_{k}~\mathbf {e} _{i}} whereε i j k {\displaystyle \varepsilon _{ijk}} is thepermutation symbol , otherwise known as the Levi-Civita symbol. Then,∇ ⋅ ( v × c ) = ε i j k v j , i c k = ( ε i j k v j , i e k ) ⋅ c = ( ∇ × v ) ⋅ c {\displaystyle {\boldsymbol {\nabla }}\cdot (\mathbf {v} \times \mathbf {c} )=\varepsilon _{ijk}~v_{j,i}~c_{k}=(\varepsilon _{ijk}~v_{j,i}~\mathbf {e} _{k})\cdot \mathbf {c} =({\boldsymbol {\nabla }}\times \mathbf {v} )\cdot \mathbf {c} } Therefore,∇ × v = ε i j k v j , i e k {\displaystyle {\boldsymbol {\nabla }}\times \mathbf {v} =\varepsilon _{ijk}~v_{j,i}~\mathbf {e} _{k}}
Curl of a second-order tensor field [ edit ] For a second-order tensorS {\displaystyle {\boldsymbol {S}}} c ⋅ S = c m S m j e j {\displaystyle \mathbf {c} \cdot {\boldsymbol {S}}=c_{m}~S_{mj}~\mathbf {e} _{j}} Hence, using the definition of the curl of a first-order tensor field,∇ × ( c ⋅ S ) = ε i j k c m S m j , i e k = ( ε i j k S m j , i e k ⊗ e m ) ⋅ c = ( ∇ × S ) ⋅ c {\displaystyle {\boldsymbol {\nabla }}\times (\mathbf {c} \cdot {\boldsymbol {S}})=\varepsilon _{ijk}~c_{m}~S_{mj,i}~\mathbf {e} _{k}=(\varepsilon _{ijk}~S_{mj,i}~\mathbf {e} _{k}\otimes \mathbf {e} _{m})\cdot \mathbf {c} =({\boldsymbol {\nabla }}\times {\boldsymbol {S}})\cdot \mathbf {c} } Therefore, we have∇ × S = ε i j k S m j , i e k ⊗ e m {\displaystyle {\boldsymbol {\nabla }}\times {\boldsymbol {S}}=\varepsilon _{ijk}~S_{mj,i}~\mathbf {e} _{k}\otimes \mathbf {e} _{m}}
Identities involving the curl of a tensor field [ edit ] The most commonly used identity involving the curl of a tensor field,T {\displaystyle {\boldsymbol {T}}} , is∇ × ( ∇ T ) = 0 {\displaystyle {\boldsymbol {\nabla }}\times ({\boldsymbol {\nabla }}{\boldsymbol {T}})={\boldsymbol {0}}} This identity holds for tensor fields of all orders. For the important case of a second-order tensor,S {\displaystyle {\boldsymbol {S}}} , this identity implies that∇ × ( ∇ S ) = 0 ⟹ S m i , j − S m j , i = 0 {\displaystyle {\boldsymbol {\nabla }}\times ({\boldsymbol {\nabla }}{\boldsymbol {S}})={\boldsymbol {0}}\quad \implies \quad S_{mi,j}-S_{mj,i}=0}
Derivative of the determinant of a second-order tensor [ edit ] The derivative of the determinant of a second order tensorA {\displaystyle {\boldsymbol {A}}} is given by∂ ∂ A det ( A ) = det ( A ) [ A − 1 ] T . {\displaystyle {\frac {\partial }{\partial {\boldsymbol {A}}}}\det({\boldsymbol {A}})=\det({\boldsymbol {A}})~\left[{\boldsymbol {A}}^{-1}\right]^{\textsf {T}}~.}
In anorthonormal basis , the components ofA {\displaystyle {\boldsymbol {A}}} can be written as a matrixA . In that case, the right hand side corresponds the cofactors of the matrix.
Derivatives of the invariants of a second-order tensor [ edit ] The principal invariants of a second order tensor areI 1 ( A ) = tr A I 2 ( A ) = 1 2 [ ( tr A ) 2 − tr A 2 ] I 3 ( A ) = det ( A ) {\displaystyle {\begin{aligned}I_{1}({\boldsymbol {A}})&={\text{tr}}{\boldsymbol {A}}\\I_{2}({\boldsymbol {A}})&={\tfrac {1}{2}}\left[({\text{tr}}{\boldsymbol {A}})^{2}-{\text{tr}}{{\boldsymbol {A}}^{2}}\right]\\I_{3}({\boldsymbol {A}})&=\det({\boldsymbol {A}})\end{aligned}}}
The derivatives of these three invariants with respect toA {\displaystyle {\boldsymbol {A}}} are∂ I 1 ∂ A = 1 ∂ I 2 ∂ A = I 1 1 − A T ∂ I 3 ∂ A = det ( A ) [ A − 1 ] T = I 2 1 − A T ( I 1 1 − A T ) = ( A 2 − I 1 A + I 2 1 ) T {\displaystyle {\begin{aligned}{\frac {\partial I_{1}}{\partial {\boldsymbol {A}}}}&={\boldsymbol {\mathit {1}}}\\[3pt]{\frac {\partial I_{2}}{\partial {\boldsymbol {A}}}}&=I_{1}\,{\boldsymbol {\mathit {1}}}-{\boldsymbol {A}}^{\textsf {T}}\\[3pt]{\frac {\partial I_{3}}{\partial {\boldsymbol {A}}}}&=\det({\boldsymbol {A}})~\left[{\boldsymbol {A}}^{-1}\right]^{\textsf {T}}\\&=I_{2}~{\boldsymbol {\mathit {1}}}-{\boldsymbol {A}}^{\textsf {T}}~\left(I_{1}~{\boldsymbol {\mathit {1}}}-{\boldsymbol {A}}^{\textsf {T}}\right)=\left({\boldsymbol {A}}^{2}-I_{1}~{\boldsymbol {A}}+I_{2}~{\boldsymbol {\mathit {1}}}\right)^{\textsf {T}}\end{aligned}}}
Derivative of the second-order identity tensor [ edit ] Let1 {\displaystyle {\boldsymbol {\mathit {1}}}} be the second order identity tensor. Then the derivative of this tensor with respect to a second order tensorA {\displaystyle {\boldsymbol {A}}} is given by∂ 1 ∂ A : T = 0 : T = 0 {\displaystyle {\frac {\partial {\boldsymbol {\mathit {1}}}}{\partial {\boldsymbol {A}}}}:{\boldsymbol {T}}={\boldsymbol {\mathsf {0}}}:{\boldsymbol {T}}={\boldsymbol {\mathit {0}}}} This is because1 {\displaystyle {\boldsymbol {\mathit {1}}}} is independent ofA {\displaystyle {\boldsymbol {A}}} .
Derivative of a second-order tensor with respect to itself [ edit ] LetA {\displaystyle {\boldsymbol {A}}} be a second order tensor. Then∂ A ∂ A : T = [ ∂ ∂ α ( A + α T ) ] α = 0 = T = I : T {\displaystyle {\frac {\partial {\boldsymbol {A}}}{\partial {\boldsymbol {A}}}}:{\boldsymbol {T}}=\left[{\frac {\partial }{\partial \alpha }}({\boldsymbol {A}}+\alpha ~{\boldsymbol {T}})\right]_{\alpha =0}={\boldsymbol {T}}={\boldsymbol {\mathsf {I}}}:{\boldsymbol {T}}}
Therefore,∂ A ∂ A = I {\displaystyle {\frac {\partial {\boldsymbol {A}}}{\partial {\boldsymbol {A}}}}={\boldsymbol {\mathsf {I}}}}
HereI {\displaystyle {\boldsymbol {\mathsf {I}}}} is the fourth order identity tensor. In index notation with respect to an orthonormal basisI = δ i k δ j l e i ⊗ e j ⊗ e k ⊗ e l {\displaystyle {\boldsymbol {\mathsf {I}}}=\delta _{ik}~\delta _{jl}~\mathbf {e} _{i}\otimes \mathbf {e} _{j}\otimes \mathbf {e} _{k}\otimes \mathbf {e} _{l}}
This result implies that∂ A T ∂ A : T = I T : T = T T {\displaystyle {\frac {\partial {\boldsymbol {A}}^{\textsf {T}}}{\partial {\boldsymbol {A}}}}:{\boldsymbol {T}}={\boldsymbol {\mathsf {I}}}^{\textsf {T}}:{\boldsymbol {T}}={\boldsymbol {T}}^{\textsf {T}}} whereI T = δ j k δ i l e i ⊗ e j ⊗ e k ⊗ e l {\displaystyle {\boldsymbol {\mathsf {I}}}^{\textsf {T}}=\delta _{jk}~\delta _{il}~\mathbf {e} _{i}\otimes \mathbf {e} _{j}\otimes \mathbf {e} _{k}\otimes \mathbf {e} _{l}}
Therefore, if the tensorA {\displaystyle {\boldsymbol {A}}} is symmetric, then the derivative is also symmetric and we get∂ A ∂ A = I ( s ) = 1 2 ( I + I T ) {\displaystyle {\frac {\partial {\boldsymbol {A}}}{\partial {\boldsymbol {A}}}}={\boldsymbol {\mathsf {I}}}^{(s)}={\frac {1}{2}}~\left({\boldsymbol {\mathsf {I}}}+{\boldsymbol {\mathsf {I}}}^{\textsf {T}}\right)} where the symmetric fourth order identity tensor isI ( s ) = 1 2 ( δ i k δ j l + δ i l δ j k ) e i ⊗ e j ⊗ e k ⊗ e l {\displaystyle {\boldsymbol {\mathsf {I}}}^{(s)}={\frac {1}{2}}~(\delta _{ik}~\delta _{jl}+\delta _{il}~\delta _{jk})~\mathbf {e} _{i}\otimes \mathbf {e} _{j}\otimes \mathbf {e} _{k}\otimes \mathbf {e} _{l}}
Derivative of the inverse of a second-order tensor [ edit ] LetA {\displaystyle {\boldsymbol {A}}} andT {\displaystyle {\boldsymbol {T}}} be two second order tensors, then∂ ∂ A ( A − 1 ) : T = − A − 1 ⋅ T ⋅ A − 1 {\displaystyle {\frac {\partial }{\partial {\boldsymbol {A}}}}\left({\boldsymbol {A}}^{-1}\right):{\boldsymbol {T}}=-{\boldsymbol {A}}^{-1}\cdot {\boldsymbol {T}}\cdot {\boldsymbol {A}}^{-1}} In index notation with respect to an orthonormal basis∂ A i j − 1 ∂ A k l T k l = − A i k − 1 T k l A l j − 1 ⟹ ∂ A i j − 1 ∂ A k l = − A i k − 1 A l j − 1 {\displaystyle {\frac {\partial A_{ij}^{-1}}{\partial A_{kl}}}~T_{kl}=-A_{ik}^{-1}~T_{kl}~A_{lj}^{-1}\implies {\frac {\partial A_{ij}^{-1}}{\partial A_{kl}}}=-A_{ik}^{-1}~A_{lj}^{-1}} We also have∂ ∂ A ( A − T ) : T = − A − T ⋅ T T ⋅ A − T {\displaystyle {\frac {\partial }{\partial {\boldsymbol {A}}}}\left({\boldsymbol {A}}^{-{\textsf {T}}}\right):{\boldsymbol {T}}=-{\boldsymbol {A}}^{-{\textsf {T}}}\cdot {\boldsymbol {T}}^{\textsf {T}}\cdot {\boldsymbol {A}}^{-{\textsf {T}}}} In index notation∂ A j i − 1 ∂ A k l T k l = − A j k − 1 T l k A l i − 1 ⟹ ∂ A j i − 1 ∂ A k l = − A l i − 1 A j k − 1 {\displaystyle {\frac {\partial A_{ji}^{-1}}{\partial A_{kl}}}~T_{kl}=-A_{jk}^{-1}~T_{lk}~A_{li}^{-1}\implies {\frac {\partial A_{ji}^{-1}}{\partial A_{kl}}}=-A_{li}^{-1}~A_{jk}^{-1}} If the tensorA {\displaystyle {\boldsymbol {A}}} is symmetric then∂ A i j − 1 ∂ A k l = − 1 2 ( A i k − 1 A j l − 1 + A i l − 1 A j k − 1 ) {\displaystyle {\frac {\partial A_{ij}^{-1}}{\partial A_{kl}}}=-{\cfrac {1}{2}}\left(A_{ik}^{-1}~A_{jl}^{-1}+A_{il}^{-1}~A_{jk}^{-1}\right)}
Integration by parts [ edit ] DomainΩ {\displaystyle \Omega } , its boundaryΓ {\displaystyle \Gamma } and the outward unit normaln {\displaystyle \mathbf {n} } Another important operation related to tensor derivatives in continuum mechanics is integration by parts. The formula for integration by parts can be written as∫ Ω F ⊗ ∇ G d Ω = ∫ Γ n ⊗ ( F ⊗ G ) d Γ − ∫ Ω G ⊗ ∇ F d Ω {\displaystyle \int _{\Omega }{\boldsymbol {F}}\otimes {\boldsymbol {\nabla }}{\boldsymbol {G}}\,d\Omega =\int _{\Gamma }\mathbf {n} \otimes ({\boldsymbol {F}}\otimes {\boldsymbol {G}})\,d\Gamma -\int _{\Omega }{\boldsymbol {G}}\otimes {\boldsymbol {\nabla }}{\boldsymbol {F}}\,d\Omega }
whereF {\displaystyle {\boldsymbol {F}}} andG {\displaystyle {\boldsymbol {G}}} are differentiable tensor fields of arbitrary order,n {\displaystyle \mathbf {n} } is the unit outward normal to the domain over which the tensor fields are defined,⊗ {\displaystyle \otimes } represents a generalized tensor product operator, and∇ {\displaystyle {\boldsymbol {\nabla }}} is a generalized gradient operator. WhenF {\displaystyle {\boldsymbol {F}}} is equal to the identity tensor, we get thedivergence theorem ∫ Ω ∇ G d Ω = ∫ Γ n ⊗ G d Γ . {\displaystyle \int _{\Omega }{\boldsymbol {\nabla }}{\boldsymbol {G}}\,d\Omega =\int _{\Gamma }\mathbf {n} \otimes {\boldsymbol {G}}\,d\Gamma \,.}
We can express the formula for integration by parts in Cartesian index notation as∫ Ω F i j k . . . . G l m n . . . , p d Ω = ∫ Γ n p F i j k . . . G l m n . . . d Γ − ∫ Ω G l m n . . . F i j k . . . , p d Ω . {\displaystyle \int _{\Omega }F_{ijk....}\,G_{lmn...,p}\,d\Omega =\int _{\Gamma }n_{p}\,F_{ijk...}\,G_{lmn...}\,d\Gamma -\int _{\Omega }G_{lmn...}\,F_{ijk...,p}\,d\Omega \,.}
For the special case where the tensor product operation is a contraction of one index and the gradient operation is a divergence, and bothF {\displaystyle {\boldsymbol {F}}} andG {\displaystyle {\boldsymbol {G}}} are second order tensors, we have∫ Ω F ⋅ ( ∇ ⋅ G ) d Ω = ∫ Γ n ⋅ ( G ⋅ F T ) d Γ − ∫ Ω ( ∇ F ) : G T d Ω . {\displaystyle \int _{\Omega }{\boldsymbol {F}}\cdot ({\boldsymbol {\nabla }}\cdot {\boldsymbol {G}})\,d\Omega =\int _{\Gamma }\mathbf {n} \cdot \left({\boldsymbol {G}}\cdot {\boldsymbol {F}}^{\textsf {T}}\right)\,d\Gamma -\int _{\Omega }({\boldsymbol {\nabla }}{\boldsymbol {F}}):{\boldsymbol {G}}^{\textsf {T}}\,d\Omega \,.}
In index notation,∫ Ω F i j G p j , p d Ω = ∫ Γ n p F i j G p j d Γ − ∫ Ω G p j F i j , p d Ω . {\displaystyle \int _{\Omega }F_{ij}\,G_{pj,p}\,d\Omega =\int _{\Gamma }n_{p}\,F_{ij}\,G_{pj}\,d\Gamma -\int _{\Omega }G_{pj}\,F_{ij,p}\,d\Omega \,.}