Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Temsirolimus

From Wikipedia, the free encyclopedia
Chemical compound
Pharmaceutical compound
Temsirolimus
Clinical data
Trade namesTorisel
Other namesCCI-779
AHFS/Drugs.comMonograph
MedlinePlusa607071
License data
Pregnancy
category
Routes of
administration
Intravenous
ATC code
Legal status
Legal status
Pharmacokinetic data
MetabolismLiver
Eliminationhalf-life17.3 hours (temsirolimus); 54.6 hours (sirolimus)[2]
ExcretionUrine (4.6%), faeces (78%)[2]
Identifiers
  • (1R,2R,4S)-4-{(2R)-2-[(3S,6R,7E,9R,10R,12R,14S,15E,17E,19E,21S,23S,26R,27R,34aS)-9,27-dihydroxy-10,21-dimethoxy-6,8,12,14,20,26-hexamethyl-1,5,11,28,29-pentaoxo-1,4,5,6,9,10,11,12,13,14,21,22,23,24,25,26,27,28,29,31,32,33,34,34a-tetracosahydro-3H-23,27-epoxypyrido[2,1-c][1,4]oxazacyclohentriacontin-3-yl]propyl}-2-methoxycyclohexyl 3-hydroxy-2-(hydroxymethyl)-2-methylpropanoate
CAS Number
PubChemCID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEMBL
CompTox Dashboard(EPA)
ECHA InfoCard100.211.882Edit this at Wikidata
Chemical and physical data
FormulaC56H87NO16
Molar mass1030.303 g·mol−1
 ☒NcheckY (what is this?)  (verify)

Temsirolimus, sold under the brand nameTorisel, is an intravenous drug for the treatment ofrenal cell carcinoma (RCC), developed byWyeth Pharmaceuticals and approved by the U.S.Food and Drug Administration (FDA) in May 2007,[3] and was also approved by theEuropean Medicines Agency (EMA) in November 2007.[1] It is a derivative and prodrug ofsirolimus.

Mechanism of action

[edit]

Temsirolimus is a specific inhibitor ofmTOR and interferes with the synthesis of proteins that regulate proliferation, growth, and survival of tumor cells. Though temsirolimus shows activity on its own, it is also known to be converted to sirolimus (rapamycin) in vivo;[4] therefore, its activity may be more attributed to its metabolite rather than theprodrug itself (despite claims to the contrary by the manufacturer).[5] Treatment with temsirolimus leads tocell cycle arrest in theG1 phase, and also inhibitstumor angiogenesis by reducing synthesis ofVEGF.[6]

mTOR (mammalian target of rapamycin) is akinaseenzyme inside the cell that collects and interprets the numerous and varied growth and survival signals received by tumor cells.[7] When the kinase activity of mTOR is activated, its downstream effectors, the synthesis of cell cycle proteins such ascyclin D and hypoxia-inducible factor-1a (HIF-1a) are increased. HIF-1a then stimulatesVEGF.[8] Whether or not mTOR kinase is activated, determines whether the tumor cell produces keyproteins needed for proliferation, growth, survival, andangiogenesis.[9]

mTOR is activated in tumor cells by various mechanisms including growth factor surface receptor tyrosine kinases,oncogenes, and loss oftumor suppressor genes. These activating factors are known to be important formalignant transformation and progression.[10] mTOR is particularly important in the biology ofrenal cancer (RCC) owing to its function in regulating HIF-1a levels. Mutation or loss of thevon Hippel Lindau tumor-suppressor gene is common in RCC and is manifested by reduced degradation of HIF-1a. In RCC tumors, activated mTOR further exacerbates accumulation of HIF-1a by increasing synthesis of this transcription factor and its angiogenic target gene products.[11]

Efficacy

[edit]

In an international three-arm phase III study with 626 previously untreated, poor-prognosis patients, temsirolimus, interferon-α and the combination of both agents was compared. Median overall survival improved significantly in the temsirolimus group (10.9 months) compared with interferon-α group (7.3 months) and the combination group (8.4 months). Further studies are needed to determine the role of temsirolimus in the first-line treatment of patients with a more favorable prognosis, how it can be combined with other targeted agents and as sequential therapy withsunitinib orsorafenib.[12]

Adverse reactions

[edit]

The toxicity profile is based on what was found in the phase III trial.[13]

  • adverse reaction
  • hematologic abnormalities
  • laboratory abnormalities
    • triglycerides increased
    • glucose increased
    • phosphorus decreased

Temsirolimus has been generally well tolerated in clinical settings by patients with advanced RCC.In patients with RCC, the adverse effect profile of temsirolimus is primarily metabolic in nature, with minimal impact on QoL compared with the commonly seen side-effects with oral multikinase inhibitors. Temsirolimus' high level of specificity for mTOR likely contributes to the tolerability of temsirolimus. However, temsirolimus increases mortality in cancer patients.[14]

Lung toxicity

[edit]

Temsirolimus is associated with lung toxicity, and the risk of developing this complication may be increased among subjects with abnormal pre-treatment pulmonary functions or history of lung disease.[15] The risk of interstitial lung disease is increased with temsirolimus doses greater than 25 mg, symptoms of which may include dry cough, fever, eosinophilia, chest pain, and dyspnea on exertion. Toxicity usually occurred early (within days to weeks) or late (months to years) after treatment.[16]

Dosing

[edit]

Although infusion reactions can occur while temsirolimus is being administered, most hypersensitivity reactions occurring on the same day as temsirolimus administration were not severe.Antihistamine pretreatment (e.g. 25–50 mg diphenhydramine, 30 minutes prior to administration) is recommended to minimize the risk of an allergic reaction.[13][16]

See also

[edit]

References

[edit]
  1. ^ab"Torisel EPAR".European Medicines Agency. 17 September 2018. Retrieved6 November 2020.
  2. ^abTemsirolimus Drug Monograph. Cancer Care Ontario. June 2014. p. 2.
  3. ^"FDA Approves New Drug for Advanced Kidney Cancer" (Press release). U.S.Food and Drug Administration (FDA). May 30, 2007. Archived fromthe original on October 16, 2012. RetrievedOctober 15, 2013.
  4. ^Hastings, Kenneth."Pharmacology Review, Application Number 22-088"(PDF). FDA. Archived fromthe original(PDF) on March 4, 2016. Retrieved7 March 2015.
  5. ^"Temsirolimus Monograph for Professionals".Drugs.com. Retrieved7 March 2015.
  6. ^Wan X, Shen N, Mendoza A, Khanna C, Helman LJ (May 2006)."CCI-779 inhibits rhabdomyosarcoma xenograft growth by an antiangiogenic mechanism linked to the targeting of mTOR/Hif-1alpha/VEGF signaling".Neoplasia.8 (5):394–401.doi:10.1593/neo.05820.PMC 1592447.PMID 16790088.
  7. ^Rubio-Viqueira B, Hidalgo M (June 2006). "Targeting mTOR for cancer treatment".Current Opinion in Investigational Drugs.7 (6):501–12.PMID 16784020.
  8. ^Hudson CC, Liu M, Chiang GG, Otterness DM, Loomis DC, Kaper F, et al. (October 2002)."Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin".Molecular and Cellular Biology.22 (20):7004–14.doi:10.1128/MCB.22.20.7004-7014.2002.PMC 139825.PMID 12242281.
  9. ^Del Bufalo D, Ciuffreda L, Trisciuoglio D, Desideri M, Cognetti F, Zupi G, Milella M (June 2006). "Antiangiogenic potential of the Mammalian target of rapamycin inhibitor temsirolimus".Cancer Research.66 (11):5549–54.doi:10.1158/0008-5472.CAN-05-2825.PMID 16740688.
  10. ^Dancey JE (September 2006)."Therapeutic targets: MTOR and related pathways".Cancer Biology & Therapy.5 (9):1065–73.doi:10.4161/cbt.5.9.3175.PMID 16969122.
  11. ^Thomas GV, Tran C, Mellinghoff IK, Welsbie DS, Chan E, Fueger B, et al. (January 2006). "Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer".Nature Medicine.12 (1):122–7.doi:10.1038/nm1337.PMID 16341243.S2CID 1853822.
  12. ^Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A, et al. (May 2007)."Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma".The New England Journal of Medicine.356 (22):2271–81.doi:10.1056/NEJMoa066838.PMID 17538086.
  13. ^abBellmunt J, Szczylik C, Feingold J, Strahs A, Berkenblit A (August 2008)."Temsirolimus safety profile and management of toxic effects in patients with advanced renal cell carcinoma and poor prognostic features".Annals of Oncology.19 (8):1387–92.doi:10.1093/annonc/mdn066.PMID 18385198.
  14. ^Choueiri TK, Je Y, Sonpavde G, Richards CJ, Galsky MD, Nguyen PL, et al. (August 2013)."Incidence and risk of treatment-related mortality in cancer patients treated with the mammalian target of rapamycin inhibitors".Annals of Oncology.24 (8):2092–7.doi:10.1093/annonc/mdt155.PMID 23658373.
  15. ^Duran I, Siu LL, Oza AM, Chung TB, Sturgeon J, Townsley CA, et al. (August 2006). "Characterisation of the lung toxicity of the cell cycle inhibitor temsirolimus".European Journal of Cancer.42 (12):1875–80.doi:10.1016/j.ejca.2006.03.015.PMID 16806903.
  16. ^abTemsirolimus Drug Monograph. Cancer Care Ontario. June 2014. p. 4.

External links

[edit]
CImonoclonal antibodies ("-mab")
Receptor tyrosine kinase
Others for solid tumors
Leukemia/lymphoma
Other
Tyrosine kinase inhibitors ("-nib")
Receptor tyrosine kinase
Non-receptor
Other
Intracellular
(initiation)
Antimetabolites
Macrolides/
otherIL-2 inhibitors
IMiDs
JAK inhibitors
Intracellular
(reception)
IL-1 receptor antagonists
mTOR
Extracellular
Antibodies
Monoclonal
Serum target
(noncellular)
Cellular
target
Unsorted
Polyclonal
-cept (Fusion)
Unsorted
Portal:
Retrieved from "https://en.wikipedia.org/w/index.php?title=Temsirolimus&oldid=1301029724"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp