⟩
This is the right-handed angular bracket used for writingaverages orbra–ket notation, with other applications primarily inmathematics andphysics, for use when inline html rendering is desired rather thanTeX rendering.
This is used in the{{braket}} template. When creating bra or ket vectors, or inner products, use{{Braket}} to save the trouble of typing | (for the pipe symbol),{{langle}}, or{{rangle}} every time.
The superposition of states can be written |p⟩ + |q⟩ + |χ⟩ + |ψ⟩, which is inline with the text.
Another superposition of states: |P⟩ + |Q⟩ + |Φ⟩ + |Ψ⟩, again inline.
The superposition of states can be written |p{{rangle}} + |q{{rangle}} + |χ{{rangle}} + |ψ{{rangle}}, which is inline with the text.Another superposition of states: |P{{rangle}} + |Q{{rangle}} + |Φ{{rangle}} + |Ψ{{rangle}}, again inline.
Due to the vertical bar | used in template coding, the html code| must be used when bra–ket notation is used in tables, else some parts will not show up because of code interference.
The correct way:
| Right bracket alone | Ket |
|---|---|
| Φ⟩ + Ψ⟩ | |Φ⟩ + |Ψ⟩ |
and the wrong way:
| Right bracket alone | Ket |
|---|---|
| Φ⟩ + Ψ⟩ | Φ⟩ + |Ψ⟩ |
The correct way:{|class="wikitable"|-! Right bracket alone! Ket|-| Φ{{rangle}} + Ψ{{rangle}}||Φ{{rangle}} +|Ψ{{rangle}}|}and the wrong way:{|class="wikitable"|-! Right bracket alone! Ket|-| Φ{{rangle}} + Ψ{{rangle}}||Φ{{rangle}} + |Ψ{{rangle}}|}
One sum of inner products is ⟨p|q⟩ + ⟨χ|ψ⟩, a real number.
A sum of average values could be ⟨P|E|Q⟩ + ⟨Φ|p|Ψ⟩, another real number.
One sum of inner products is{{langle}}p|q{{rangle}} +{{langle}}χ|ψ{{rangle}}, a real number.A sum of average values could be{{langle}}P|''E''|Q{{rangle}} +{{langle}}Φ|''p''|Ψ{{rangle}}, another real number.
The average of a quantityq may be written ⟨q⟩. The root mean square is then √⟨q2⟩, i.e. square every value, then average, then take the root.
The average of a quantity''q'' may be written{{langle}}''q''{{rangle}}. The root mean square is then √{{langle}}''q''<sup>2</sup>{{rangle}}, i.e. square every value, then average, then take the root.