Tellurium is achemical element; it has thesymbolTe andatomic number 52. It is a brittle, mildly toxic, rare, silver-whitemetalloid. Tellurium is chemically related toselenium andsulfur, all three of which arechalcogens. It is occasionally found in its native form as elemental crystals. Tellurium is far more common in the universe as a whole than on Earth. Its extremerarity in the Earth's crust, comparable to that ofplatinum, is due partly to its formation ofa volatile hydride that caused tellurium to be lost to space as a gas during thehot nebularformation of Earth.
Commercially, the primary use of tellurium isCdTe solar panels andthermoelectric devices. A more traditional application in copper (tellurium copper) and steelalloys, where tellurium improvesmachinability, also consumes a considerable portion of tellurium production.
Tellurium has no biological function, although fungi can use it in place of sulfur and selenium inamino acids such astellurocysteine and telluromethionine. In humans, tellurium is partly metabolized intodimethyl telluride, (CH3)2Te, a gas with a garlic-like odor exhaled in the breath of victims of tellurium exposure or poisoning.
Tellurium has twoallotropes, crystalline and amorphous. Whencrystalline, tellurium is silvery-white with a metallic luster. The crystals aretrigonal andchiral (space group 152 or 154 depending on the chirality), like the gray form ofselenium. It is a brittle and easily pulverized metalloid. Amorphous tellurium is a black-brown powder prepared by precipitating it from a solution oftellurous acid ortelluric acid (Te(OH)6).[14] Tellurium is asemiconductor that shows greater electrical conductivity in certain directions depending onatomic alignment; the conductivity increases slightly when exposed to light (photoconductivity).[15] When molten, tellurium is corrosive to copper,iron, andstainless steel. Of thechalcogens (oxygen-family elements), tellurium has the highest melting and boiling points, at 722.66 and 1,261 K (449.51 and 987.85 °C), respectively.[16]
Crystalline tellurium consists of parallel helical chains of Te atoms, with three atoms per turn. This gray material resists oxidation by air and is not volatile.[17]
Naturally occurring tellurium has eight isotopes. Six of those isotopes,120Te,122Te,123Te,124Te,125Te, and126Te, are stable. The other two,128Te and130Te, are slightly radioactive,[18] with extremely long half-lives, including 2.2 × 1024 years for128Te. This is the longest known half-life among allradionuclides[19] and is about 160trillion (1012) times theage of the known universe.Electron capture decay should occur for123Te, but is still unobserved.[20]
A further 31 artificialradioisotopes of tellurium are known, withatomic masses ranging from 104 to 142 and with half-lives up to 19.31 days for121Te. Also, 17nuclear isomers are known, with half-lives up to 164.7 days for the same isotope. Except forberyllium-8 and beta-delayed alpha emission branches in some lighternuclides, tellurium (104Te to109Te) is the lightest element with isotopes known to undergo alpha decay.[18]
The atomic mass of tellurium (127.60 g·mol−1) exceeds that of iodine (126.90 g·mol−1), the next element in the periodic table.[21] Such inversions were thought by some to be paradoxical beforeatomic number was discovered.
With an abundance in the Earth'scrust comparable to that of platinum (about 1 μg/kg), tellurium is one of the rarest stable solid elements.[22] In comparison, eventhulium – the rarest of the stablelanthanides – has crystal abundances of 500 μg/kg (seeAbundance of the chemical elements).[23]
The rarity of tellurium in the Earth's crust is not a reflection of its cosmic abundance. Tellurium is more abundant thanrubidium in the cosmos, though rubidium is 10,000 times more abundant in the Earth's crust. The rarity of tellurium on Earth is thought to be caused by conditions during preaccretional sorting in the solar nebula, when the stable form of certain elements, in the absence ofoxygen andwater, was controlled by the reductive power of freehydrogen. Under this scenario, certain elements that form volatilehydrides, such as tellurium, were severely depleted through the evaporation of these hydrides. Tellurium and selenium are the heavy elements most depleted by this process.[24]
Tellurium is sometimes found in its native (i.e., elemental) form, but is more often found as the tellurides ofgold such ascalaverite andkrennerite (two differentpolymorphs of AuTe2),petzite, Ag3AuTe2, andsylvanite, AgAuTe4. The town ofTelluride, Colorado, was named in the hope of a strike of gold telluride (which never materialized, though gold metal ore was found). Gold itself is usually found uncombined, but when found as a chemical compound, it is often combined with tellurium.[25]
Although tellurium is found with gold more often than in uncombined form, it is found even more often combined as tellurides of more common metals (e.g.melonite, NiTe2). Naturaltellurite andtellurate minerals also occur, formed by the oxidation of tellurides near the Earth's surface. In contrast to selenium, tellurium does not usually replace sulfur in minerals because of the great difference in ion radii. Thus, many common sulfide minerals contain substantial quantities of selenium and only traces of tellurium.[26]
In the gold rush of 1893, miners inKalgoorlie discarded a pyritic material as they searched for pure gold, and it was used to fill in potholes and build sidewalks. In 1896, that tailing was discovered to becalaverite, a telluride of gold, and it sparked a second gold rush that included mining the streets.[27]
In 2023 astronomers detected the creation of tellurium during collision between two neutron stars.[28]
Tellurium (Latintellus meaning "earth") was discovered in the 18th century in a gold ore from the mines inKleinschlatten (today Zlatna), near today's city ofAlba Iulia, Romania. This ore was known as "Faczebajer weißes blättriges Golderz" (white leafy gold ore from Faczebaja, German name of Facebánya, now Fața Băii inAlba County) orantimonalischer Goldkies (antimonic gold pyrite), and according toAnton von Rupprecht, wasSpießglaskönig (argent molybdique), containing nativeantimony.[29] In 1782Franz-Joseph Müller von Reichenstein, who was then serving as the Austrian chief inspector of mines in Transylvania, concluded that the ore did not contain antimony but wasbismuth sulfide.[30] The following year, he reported that this was erroneous and that the ore contained mostly gold and an unknown metal very similar to antimony. After a thorough investigation that lasted three years and included more than fifty tests, Müller determined thespecific gravity of the mineral and noted that when heated, the new metal gives off a white smoke with aradish-like odor; that it imparts a red color tosulfuric acid; and that when this solution is diluted with water, it has a black precipitate. Nevertheless, he was not able to identify this metal and gave it the namesaurum paradoxum (paradoxical gold) andmetallum problematicum (problem metal), because it did not exhibit the properties predicted for antimony.[31][32][33]
In the early 1920s,Thomas Midgley Jr. found tellurium preventedengine knocking when added to fuel, but ruled it out due to the difficult-to-eradicate smell. Midgley went on to discover and popularize the use oftetraethyl lead.[36]
The 1960s brought an increase in thermoelectric applications for tellurium (asbismuth telluride), and infree-machiningsteel alloys, which became the dominant use. These applications were overtaken by the growing importance of CdTe inthin-film solar cells in the 2000s.[37]
Most Te (and Se) is obtained fromporphyry copper deposits, where it occurs in trace amounts.[38] The element is recovered fromanodesludges from the electrolytic refining of blistercopper. It is a component of dusts fromblast furnace refining oflead. Treatment of 1000 tons of copper ore yields approximately one kilogram (2.2 pounds) of tellurium.[39]
The anode sludges contain theselenides and tellurides of thenoble metals in compounds with the formula M2Se or M2Te (M = Cu, Ag, Au). At temperatures of 500 °C the anode sludges are roasted withsodium carbonate under air. The metal ions are reduced to the metals, while the telluride is converted tosodium tellurite.[40]
M2Te + O2 + Na2CO3 → Na2TeO3 + 2 M + CO2
Tellurites can be leached from the mixture with water and are normally present as hydrotellurites HTeO3− in solution.Selenites are also formed during this process, but they can be separated by addingsulfuric acid. The hydrotellurites are converted into the insolubletellurium dioxide while the selenites stay in solution.[40]
HTeO− 3 + OH− + H2SO4 → TeO2 +SO2− 4 + 2 H2O
The metal is produced from the oxide (reduced) either by electrolysis or by reacting thetellurium dioxide with sulfur dioxide in sulfuric acid.[40]
TeO2 + 2 SO2 + 2H2O → Te + 2SO2− 4 + 4 H+
Commercial-grade tellurium is usually marketed as 200-mesh powder but is also available as slabs, ingots, sticks, or lumps. The year-end price for tellurium in 2000 wasUS$30 per kilogram. In recent years, the tellurium price was driven up by increased demand and limited supply, reaching as high asUS$220 per pound in 2006.[41][42] The average annual price for 99.99%-pure tellurium increased from $38 per kilogram in 2017 to $74 per kilogram in 2018.[37] Despite the expectation that improved production methods will double production, theUnited States Department of Energy (DoE) anticipates a supply shortfall of tellurium by 2025.[43]
In the 2020s, China produced ca. 50% of world's tellurium and was the only country that mined Te as the main target rather than a by-product. This dominance was driven by the rapid expansion of solar cell industry in China. In 2022, the largest Te providers by volume were China (340 tonnes), Russia (80 t), Japan (70 t), Canada (50 t), Uzbekistan (50 t), Sweden (40 t) and the United States (no official data).[44]
Tellurium belongs to thechalcogen (group 16) family of elements on the periodic table, which also includesoxygen,sulfur,selenium andpolonium: Tellurium and selenium compounds are similar. Tellurium exhibits the oxidation states −2, +2, +4 and +6, with +4 being most common.[14]
Reduction of Te metal produces thetellurides and polytellurides, Ten2−. The −2 oxidation state is exhibited in binary compounds with many metals, such aszinc telluride,ZnTe, produced by heating tellurium with zinc.[45] Decomposition ofZnTe withhydrochloric acid yieldshydrogen telluride (H 2Te), a highly unstable analogue of the other chalcogen hydrides,H 2O,H 2S andH 2Se:[46]
The +2 oxidation state is exhibited by the dihalides,TeCl 2,TeBr 2 andTeI 2. The dihalides have not been obtained in pure form,[47]: 274 although they are known decomposition products of the tetrahalides in organic solvents, and the derived tetrahalotellurates are well-characterized:
Te +X 2 + 2X− →TeX2− 4
where X is Cl, Br, or I. These anions aresquare planar in geometry.[47]: 281 Polynuclear anionic species also exist, such as the dark brownTe 2I2− 6,[47]: 283 and the blackTe 4I2− 14.[47]: 285
With fluorine Te forms themixed-valenceTe 2F 4 andTeF 6. In the +6 oxidation state, the–OTeF 5 structural group occurs in a number of compounds such asHOTeF 5,B(OTeF 5) 3,Xe(OTeF 5) 2,Te(OTeF 5) 4 andTe(OTeF 5) 6.[48] Thesquare antiprismatic anionTeF2− 8 is also attested.[40] The other halogens do not form halides with tellurium in the +6 oxidation state, but only tetrahalides (TeCl 4,TeBr 4 andTeI 4) in the +4 state, and other lower halides (Te 3Cl 2,Te 2Cl 2,Te 2Br 2,Te 2I and two forms ofTeI). In the +4 oxidation state, halotellurate anions are known, such asTeCl2− 6 andTe 2Cl2− 10. Halotellurium cations are also attested, includingTeI+ 3, found inTeI 3AsF 6.[49]
Tellurium monoxide was first reported in 1883 as a black amorphous solid formed by the heat decomposition ofTeSO 3 in vacuum, disproportionating intotellurium dioxide,TeO 2 and elemental tellurium upon heating.[50][51] Since then, however, existence in the solid phase is doubted and in dispute, although it is known as a vapor fragment; the black solid may be merely an equimolar mixture of elemental tellurium and tellurium dioxide.[52]
Tellurium dioxide is formed by heating tellurium in air, where it burns with a blue flame.[45] Tellurium trioxide, β-TeO 3, is obtained by thermal decomposition ofTe(OH) 6. The other two forms of trioxide reported in the literature, the α- and γ- forms, were found not to be true oxides of tellurium in the +6 oxidation state, but a mixture ofTe4+ ,OH− andO− 2.[53] Tellurium also exhibits mixed-valence oxides,Te 2O 5 andTe 4O 9.[53]
The tellurium oxides and hydrated oxides form a series of acids, includingtellurous acid (H 2TeO 3),orthotelluric acid (Te(OH) 6) and metatelluric acid ((H 2TeO 4) n).[52] The two forms of telluric acid formtellurate salts containing the TeO2– 4 and TeO6− 6 anions, respectively. Tellurous acid formstellurite salts containing the anion TeO2− 3.[54]
When tellurium is treated with concentrated sulfuric acid, the result is a red solution of theZintl ion,Te2+ 4.[55] The oxidation of tellurium byAsF 5 in liquidSO 2 produces the samesquare planar cation, in addition to thetrigonal prismatic, yellow-orangeTe4+ 6:[40]
4 Te + 3AsF 5 →Te2+ 4(AsF− 6) 2 +AsF 3
6 Te + 6AsF 5 →Te4+ 6(AsF− 6) 4 + 2AsF 3
Other tellurium Zintl cations include the polymericTe2+ 7 and the blue-blackTe2+ 8, consisting of two fused 5-membered tellurium rings. The latter cation is formed by the reaction of tellurium withtungsten hexachloride:[40]
8 Te + 2WCl 6 →Te2+ 8(WCl− 6) 2
Interchalcogen cations also exist, such asTe 2Se2+ 6 (distorted cubic geometry) andTe 2Se2+ 8. These are formed by oxidizing mixtures of tellurium and selenium withAsF 5 orSbF 5.[40]
Tellurium does not readily form analogues ofalcohols andthiols, with the functional group –TeH, that are calledtellurols. The –TeH functional group is also attributed using the prefixtellanyl-.[56] LikeH2Te, these species are unstable with respect to loss of hydrogen. Telluraethers (R–Te–R) are more stable, as aretelluroxides.[57]
Recently, physicists and materials scientists have been discovering unusual quantum properties associated with layered compounds composed of tellurium that's combined with certainrare-earth elements, as well asyttrium (Y).[58]
These novel materials have the general formula ofR Te3, where "R " represents a rare-earth lanthanide (or Y), with the full family consisting ofR = Y,lanthanum (La),cerium (Ce),praseodymium (Pr),neodymium (Nd),samarium (Sm),gadolinium (Gd),terbium (Tb),dysprosium (Dy),holmium (Ho),erbium (Er), andthulium (Tm). Compounds containingpromethium (Pm),europium (Eu),ytterbium (Yb), andlutetium (Lu) have not yet been observed. These materials have a two-dimensional character within anorthorhombic crystal structure, with slabs ofR Te separated by sheets of pure tellurium.[58]
It is thought that this 2-D layered structure is what leads to a number of interesting quantum features, such ascharge-density waves,high carrier mobility,superconductivity under specific conditions, and other peculiar properties whose natures are only now emerging.[58]
For example, in 2022, a small group of physicists atBoston College in Massachusetts led an international team that used optical methods to demonstrate a novel axial mode of aHiggs-like particle inR Te3 compounds that incorporate either of two rare-earth elements (R = La, Gd).[59] This long-hypothesized, axial, Higgs-like particle also shows magnetic properties and may serve as a candidate fordark matter.[60]
In 2022, the major applications of tellurium werethin-film solar cells (40%),thermoelectrics (30%), metallurgy (15%), and rubber (5%), with the first two applications experiencing a rapid increase owing to the worldwide tendency of reducing dependence on thefossil fuel.[44][37] In metallurgy, tellurium is added toiron,stainless steel,copper, andleadalloys. It improves the machinability of copper without reducing its high electrical conductivity. It increases resistance to vibration and fatigue of lead and stabilizes various carbides and in malleable iron.[37]
Tellurium oxides are components of commercial oxidation catalysts. Te-containing catalysts are used for theammoxidation route toacrylonitrile (CH2=CH–C≡N):[61]
Synthetic rubber vulcanized with tellurium shows mechanical and thermal properties that in some ways are superior tosulfur-vulcanized materials.[62][61]
Tellurium compounds are specialized pigments forceramics.[25]
Selenides and tellurides greatly increase the optical refraction of glass widely used inglass optical fibers for telecommunications.[63][64]
Mixtures of selenium and tellurium are used withbarium peroxide as an oxidizer in the delay powder of electricblasting caps.[65]
Neutron bombardment of tellurium is the most common way to produceiodine-131.[66] This in turn is used to treat somethyroid conditions, and as a tracer compound inhydraulic fracturing, among other applications.
In 2018, China installed thin-film solar panels with a total power output of 175 GW, more than any other country in the world; most of those panels were made of CdTe.[37] In June 2022, China set goals of generating 25% of energy consumption and installing 1.2 billion kilowatts of capacity for wind and solar power by 2030. This proposal will increase the demand for tellurium and its production worldwide, especially in China, where the annual volumes of Te refining increased from 280 tonnes in 2017 to 340 tonnes in 2022.[44]
(Cd,Zn)Te is an efficient material for detectingX-rays.[68] It is being used in the NASA space-based X-ray telescopeNuSTAR.
Organotellurium compounds are mainly of interest in the research context. Several have been examined such as precursors formetalorganic vapor phase epitaxy growth of II-VIcompound semiconductors. These precursor compounds includedimethyl telluride, diethyl telluride, diisopropyl telluride, diallyl telluride, and methyl allyl telluride.[69] Diisopropyl telluride (DIPTe) is the preferred precursor for low-temperature growth of CdHgTe byMOVPE.[70] The greatest puritymetalorganics of bothselenium and tellurium are used in these processes. The compounds for semiconductor industry and are prepared byadduct purification.[71][72]
Tellurium shows up in a number ofphotocathodes used in solar blindphotomultiplier tubes[77] and for high brightnessphotoinjectors driving modern particle accelerators. The photocathode Cs-Te, which is predominantly Cs2Te, has a photoemission threshold of 3.5 eV and exhibits the uncommon combination of high quantum efficiency (>10%) and high durability in poor vacuum environments (lasting for months under use in RF electron guns).[78] This has made it the go to choice for photoemission electron guns used in drivingfree electron lasers.[79] In this application, it is usually driven at the wavelength 267 nm which is the third harmonic of commonly usedTi-sapphire lasers. More Te containing photocathodes have been grown using other alkali metals such as rubidium, potassium, and sodium, but they have not found the same popularity that Cs-Te has enjoyed.[80][81]
Tellurium itself can be used as a high-performance elemental thermoelectric material. A trigonal Te with the space group of P3121 can transfer into a topological insulator phase, which is suitable for thermoelectric material. Though often not considered as a thermoelectric material alone, polycrystalline tellurium does show great thermoelectric performance with the thermoelectric figure of merit, zT, as high as 1.0, which is even higher than some of other conventional TE materials like SiGe and BiSb.[82]
Telluride, which is a compound form of tellurium, is a more common TE material. Typical and ongoing research includes Bi2Te3, and La3−xTe4, etc. Bi2Te3 is widely used from energy conversion to sensing to cooling due to its great TE properties. The BiTe-based TE material can achieve a conversion efficiency of 8%, an average zT value of 1.05 for p-type and 0.84 for n-type bismuth telluride alloys.[83] Lanthanum telluride can be potentially used in deep space as a thermoelectric generator due to the huge temperature difference in space. The zT value reaches to a maximum of ~1.0 for a La3−xTe4 system with x near 0.2. This composition also allows other chemical substitution which may enhance the TE performance. The addition of Yb, for example, may increase the zT value from 1.0 to 1.2 at 1275K, which is greater than the current SiGe power system.[84]
Tellurium has no known biological function, although fungi can incorporate it in place of sulfur and selenium into amino acids such astellurocysteine andtelluromethionine.[85][86] Organisms have shown a highly variable tolerance to tellurium compounds. Many bacteria, such asPseudomonas aeruginosa andGayadomonas sp, take up tellurite and reduce it to elemental tellurium, which accumulates and causes a characteristic and often dramatic darkening of cells.[87][88] In yeast, this reduction is mediated by thesulfate assimilation pathway.[89] Tellurium accumulation seems to account for a major part of the toxicity effects. Many organisms also metabolize tellurium partly to form dimethyl telluride, although dimethyl ditelluride is also formed by some species. Dimethyl telluride has been observed inhot springs at very low concentrations.[90][91]
Tellurium and tellurium compounds are considered to be mildlytoxic and need to be handled with care, although acute poisoning is rare.[95] Tellurium poisoning is particularly difficult to treat as manychelation agents used in the treatment of metal poisoning will increase the toxicity of tellurium. Tellurium is not reported to be carcinogenic, but it may be fatal if inhaled, swallowed, or absorbed through skin.[95][96]
Humans exposed to as little as 0.01 mg/m3 or less in air exude a foulgarlic-like odor known as "tellurium breath".[25][97]This is caused by the body converting tellurium from any oxidation state todimethyl telluride, (CH3)2Te, a volatile compound with a pungent garlic-like smell. Volunteers given 15 mg of tellurium still had this characteristic smell on their breath eight months later. In laboratories, this odor makes it possible to discern which scientists are responsible for tellurium chemistry, and even which books they have handled in the past.[98] Even though the metabolic pathways of tellurium are not known, it is generally assumed that they resemble those of the more extensively studiedselenium because the final methylated metabolic products of the two elements are similar.[99][100][101]
^The thermal expansion of tellurium is highlyanisotropic: the parameters (at 20 °C) for each crystal axis are αa = 29.6×10−6/K, αc = −2.28×10−6/K, and αaverage = αV/3 = 19.0×10−6/K.[3]
^abcArblaster, John W. (2018).Selected Values of the Crystallographic Properties of Elements. Materials Park, Ohio: ASM International.ISBN978-1-62708-155-9.
^Te(V) is mentioned by Greenwood and Earnshaw, but they do not give any example of a Te(V) compound. What was long thought to beditellurium decafluoride (Te2F10) is actually bis(pentafluorotelluryl) oxide, F5TeOTeF5: seeWatkins, P. M. (1974). "Ditellurium decafluoride - A Continuing Myth".Journal of Chemical Education.51 (9):520–521.Bibcode:1974JChEd..51..520W.doi:10.1021/ed051p520. However, Te(V) has been observed inHTeO−,TeO−,HTeO−2, andTeO−3; seeKläning, Ulrik K.; Sehested, K. (2001)."Tellurium(V). A Pulse Radiolysis Study".The Journal of Physical Chemistry A.105 (27):6637–45.Bibcode:2001JPCA..105.6637K.doi:10.1021/jp010577i.
^Adenis, C.; Langer, V.; Lindqvist, O. (15 June 1989). "Reinvestigation of the structure of tellurium".Acta Crystallographica Section C Crystal Structure Communications.45 (6):941–942.doi:10.1107/S0108270188014453.
^abLeddicotte, G. W. (1961).The radiochemistry of tellurium(PDF). Nuclear science series. Subcommittee on Radiochemistry, National Academy of Sciences-National Research Council, U.S. p. 5. Archived fromthe original(PDF) on 2021-11-06. Retrieved2010-01-28.
^"Noble Gas Research". Laboratory for Space Sciences, Washington University in St. Louis. 2008. Archived fromthe original on September 28, 2011. Retrieved2013-01-10.
^Alessandrello, A.; Arnaboldi, C.; Brofferio, C.; Capelli, S.; Cremonesi, O.; Fiorini, E.; Nucciotti, A.; Pavan, M.; Pessina, G.; Pirro, S.; Previtali, E.; Sisti, M.; Vanzini, M.; Zanotti, L.; Giuliani, A.; Pedretti, M.; Bucci, C.; Pobes, C. (2003). "New limits on naturally occurring electron capture of123Te".Physical Review C.67 (1) 014323.arXiv:hep-ex/0211015.Bibcode:2003PhRvC..67a4323A.doi:10.1103/PhysRevC.67.014323.S2CID119523039.
^abDiemann, Ekkehard; Müller, Achim; Barbu, Horia (2002). "Die spannende Entdeckungsgeschichte des Tellurs (1782–1798) Bedeutung und Komplexität von Elemententdeckungen".Chemie in unserer Zeit.36 (5):334–337.doi:10.1002/1521-3781(200210)36:5<334::AID-CIUZ334>3.0.CO;2-1.
^Klaproth (1798)"Ueber die siebenbürgischen Golderze, und das in selbigen enthaltene neue Metall" (On the Transylvanian gold ore, and the new metal contained in it),Chemische Annalen für die Freunde der Naturlehre, Arzneygelahrtheit, Haushaltungskunst und Manufacturen (Chemical Annals for the Friends of Science, Medicine, Economics, and Manufacturing),1 : 91–104. Frompage 100: "… ; und welchem ich hiermit den, von der alten Muttererde entlehnten, NamenTellurium beylege." ( … ; and to which I hereby bestow the nametellurium, derived from the old Mother of the Earth.)
Klaproth (1798)."Analyse chimique de la mine de Tellure de Transylvanie" [Chemical analysis of tellurium ores from Transylvania].Mémoires de l'Académie royale des sciences et belles-lettres (Berlin). § Classe de philosophie expérimentale (in French):17–37.
^abcdefgWiberg, Egon; Holleman, Arnold Frederick (2001). Nils Wiberg (ed.).Inorganic chemistry. translated by Mary Eagleson. Academic Press. p. 588.ISBN0-12-352651-5.
^Singh, G. (2007).Chemistry of lanthanides and actinides. New Delhi: Discovery Publishing House. p. 279.ISBN978-81-8356-241-6.OCLC949703811.
^abcdEmeleus, H. J. (1990). A. G. Sykes (ed.).Advances in Inorganic Chemistry. Vol. 35. Academic Press.ISBN0-12-023635-4.
^Holloway, John H.; Laycock, David (1983). "Preparations and Reactions of Inorganic Main-Group Oxide-Fluorides". In Harry Julius Emeléus; A. G. Sharpe (eds.).Advances in inorganic chemistry and radiochemistry. Serial Publication Series. Vol. 27. Academic Press. p. 174.ISBN0-12-023627-3.
^Shenai-Khatkhate, Deodatta V.; Webb, Paul; Cole-Hamilton, David J.; Blackmore, Graham W.; Brian Mullin, J. (1988). "Ultra-pure organotellurium precursors for the low-temperature MOVPE growth of II/VI compound semiconductors".Journal of Crystal Growth.93 (1–4):744–749.Bibcode:1988JCrGr..93..744S.doi:10.1016/0022-0248(88)90613-6.
^Shenai-Khatkhate, Deodatta V.; Parker, M. B.; McQueen, A. E. D.; Mullin, J. B.; Cole-Hamilton, D. J.; Day, P. (1990). "Organometallic Molecules for Semiconductor Fabrication [and Discussion]".Phil. Trans. R. Soc. Lond. A.330 (1610):173–182.Bibcode:1990RSPTA.330..173S.doi:10.1098/rsta.1990.0011.S2CID100757359.
^Mullin, J.B.; Cole-Hamilton, D.J.; Shenai-Khatkhate, D.V.; Webb P. (May 26, 1992)U.S. patent 5,117,021 "Method for purification of tellurium and selenium alkyls"
^US 4196257, Engstrom, Ralph W. & McDonie, Arthur F., "Bi-alkali telluride photocathode", published 1980-04-01, issued 1978-07-20, assigned toRCA Corporation
^Trautner, H. (2000).Spectral Response of Cesium Telluride and Rubidium Telluride Photocathodes for the Production of Highly Charged Electron Bunches. CERN.
^Ramadan, Shadia E.; Razak, A. A.; Ragab, A. M.; El-Meleigy, M. (1989). "Incorporation of tellurium into amino acids and proteins in a tellurium-tolerant fungi".Biological Trace Element Research.20 (3):225–32.Bibcode:1989BTER...20..225R.doi:10.1007/BF02917437.PMID2484755.S2CID9439946.
^Chasteen, Thomas G.; Bentley, Ronald (2003). "Biomethylation of Selenium and Tellurium: Microorganisms and Plants".Chemical Reviews.103 (1):1–26.doi:10.1021/cr010210+.PMID12517179.
^Müller, R.; Zschiesche, W.; Steffen, H. M.; Schaller, K. H. (1989). "Tellurium-intoxication".Klinische Wochenschrift.67 (22):1152–5.doi:10.1007/BF01726117.PMID2586020.