Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Isotopes of tantalum

From Wikipedia, the free encyclopedia
(Redirected fromTantalum-181)

Isotopes oftantalum (73Ta)
Main isotopes[1]Decay
Isotopeabun­dancehalf-life(t1/2)modepro­duct
177Tasynth56.36 hβ+177Hf
178Tasynth2.36 hβ+178Hf
179Tasynth1.82 yε179Hf
180Tasynth8.154 hε180Hf
β180W
180mTa0.0120%observ. stable
181Ta99.988%stable
182Tasynth114.74 dβ182W
183Tasynth5.1 dβ183W
Standard atomic weightAr°(Ta)

Naturaltantalum (73Ta) consists of two stableisotopes:181Ta (99.988%) and180mTa (0.012%).

There are also 35 known artificialradioisotopes, the longest-lived of which are179Ta with a half-life of 1.82 years,182Ta with a half-life of 114.74 days,183Ta with a half-life of 5.1 days, and177Ta with a half-life of 56.46 hours. All other isotopes have half-lives under a day, most under an hour. There are also numerous isomers, the most stable of which (other than180mTa) is182m2Ta with a half-life of 15.8 minutes. All isotopes andnuclear isomers of tantalum are either radioactive orobservationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed.

Tantalum has been proposed as a "salting" material fornuclear weapons (cobalt is another, better-known salting material). A jacket of tantalum, irradiated by the intense high-energy neutron flux of the weapon, would be transmuted into the radioactive isotope182
Ta
, producing about 1.12 MeV ofgamma radiation per decay and significantly increasing the radioactivity of the weapon'sfallout for months. Such a weapon is not known to have ever been built, tested, or used.[4]

List of isotopes

[edit]
Nuclide
[n 1]
ZNIsotopic mass(Da)[5]
[n 2][n 3]
Half-life[1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6][n 7]
Spin and
parity[1]
[n 8][n 4]
Natural abundance(mole fraction)
Excitation energy[n 4]Normal proportion[1]Range of variation
155Ta7382154.97425(32)#3.2(13) msp154Hf11/2−
156Ta7383155.97209(32)#106(4) msp (71%)155Hf(2−)
β+ (29%)156Hf
156mTa94(8) keV360(40) msβ+ (95.8%)156Hf(9+)
p (4.2%)155Hf
157Ta7384156.96823(16)10.1(4) msα (96.6%)153Lu1/2+
p (3.4%)156Hf
157m1Ta22(5) keV4.3(1) msα153Lu11/2−
157m2Ta1593(9) keV1.7(1) msα153Lu25/2−#
158Ta7385157.96659(22)#49(4) msα154Lu(2)−
158m1Ta141(11) keV36.0(8) msα (95%)154Lu(9)+
158m2Ta2808(16) keV6.1(1) μsIT (98.6%)158Ta(19−)
α (1.4%)154Lu
159Ta7386158.963028(21)1.04(9) sβ+ (66%)159Hf1/2+
α (34%)155Lu
159mTa64(5) keV560(60) msα (55%)155Lu11/2−
β+ (45%)159Hf
160Ta7387159.961542(58)1.70(20) sα156Lu(2)−
160mTa[n 9]110(250) keV1.55(4) sα156Lu(9,10)+
161Ta7388160.958369(26)3# s(1/2+)
161mTa[n 9]61(23) keV3.08(11) sβ+ (93%)161Hf(11/2−)
α (7%)157Lu
162Ta7389161.957293(68)3.57(12) sβ+ (99.93%)162Hf3−#
α (0.074%)158Lu
162mTa[n 9]120(50)# keV5# s7+#
163Ta7390162.954337(41)10.6(18) sβ+ (99.8%)163Hf1/2+
163mTa138(18)# keV10# s9/2−
164Ta7391163.953534(30)14.2(3) sβ+164Hf(3+)
165Ta7392164.950780(15)31.0(15) sβ+165Hf(1/2+,3/2+)
165mTa[n 9]24(18) keV30# s(9/2−)
166Ta7393165.950512(30)34.4(5) sβ+166Hf(2)+
167Ta7394166.948093(30)1.33(7) minβ+167Hf(3/2+)
168Ta7395167.948047(30)2.0(1) minβ+168Hf(3+)
169Ta7396168.946011(30)4.9(4) minβ+169Hf(5/2+)
170Ta7397169.946175(30)6.76(6) minβ+170Hf(3+)
171Ta7398170.944476(30)23.3(3) minβ+171Hf(5/2+)
172Ta7399171.944895(30)36.8(3) minβ+172Hf(3+)
173Ta73100172.943750(30)3.14(13) hβ+173Hf5/2−
173m1Ta173.10(21) keV205.2(56) nsIT173Ta9/2−
173m2Ta1717.2(4) keV132(3) nsIT173Ta21/2−
174Ta73101173.944454(30)1.14(8) hβ+174Hf3+
175Ta73102174.943737(30)10.5(2) hβ+175Hf7/2+
175m1Ta131.41(17) keV222(8) nsIT175Ta9/2−
175m2Ta339.2(13) keV170(20) nsIT175Ta(1/2+)
175m3Ta1567.6(3) keV1.95(15) μsIT175Ta21/2−
176Ta73103175.944857(33)8.09(5) hβ+176Hf(1)−
176m1Ta103.0(10) keV1.08(7) msIT176Ta7+
176m2Ta1474.0(14) keV3.8(4) μsIT176Ta14−
176m3Ta2874.0(14) keV0.97(7) msIT176Ta20−
177Ta73104176.9444819(36)56.36(13) hβ+177Hf7/2+
177m1Ta73.16(7) keV410(7) nsIT177Ta9/2−
177m2Ta186.16(6) keV3.62(10) μsIT177Ta5/2−
177m3Ta1354.8(3) keV5.30(11) μsIT177Ta21/2−
177m4Ta4656.3(8) keV133(4) μsIT177Ta49/2−
178Ta73105177.945680(56)#2.36(8) hβ+178Hf7−
178m1Ta[n 9]100(50)# keV9.31(3) minβ+178Hf(1+)
178m2Ta1467.82(16) keV59(3) msIT178Ta15−
178m3Ta2901.9(7) keV290(12) msIT178Ta21−
179Ta73106178.9459391(16)1.82(3) yEC179Hf7/2+
179m1Ta30.7(1) keV1.42(8) μsIT179Ta9/2−
179m2Ta520.23(18) keV280(80) nsIT179Ta1/2+
179m3Ta1252.60(23) keV322(16) nsIT179Ta21/2−
179m4Ta1317.2(4) keV9.0(2) msIT179Ta25/2+
179m5Ta1328.0(4) keV1.6(4) μsIT179Ta23/2−
179m6Ta2639.3(5) keV54.1(17) msIT179Ta37/2+
180Ta73107179.9474676(22)8.154(6) hEC (85%)180Hf1+
β (15%)180W
180m1Ta75.3(14) keVObservationally stable[n 10][n 11]9−1.201(32)×10−4
180m2Ta1452.39(22) keV31.2(14) μsIT15−
180m3Ta3678.9(10) keV2.0(5) μsIT(22−)
180m4Ta4172.2(16) keV17(5) μsIT(24+)
181Ta73108180.9479985(17)Observationally stable[n 12]7/2+0.9998799(32)
181m1Ta6.237(20) keV6.05(12) μsIT181Ta9/2−
181m2Ta615.19(3) keV18(1) μsIT181Ta1/2+
181m3Ta1428(14) keV140(36) nsIT181Ta19/2+#
181m4Ta1483.43(21) keV25.2(18) μsIT181Ta21/2−
181m5Ta2227.9(9) keV210(20) μsIT181Ta29/2−
182Ta73109181.9501546(17)114.74(12) dβ182W3−
182m1Ta16.273(4) keV283(3) msIT182Ta5+
182m2Ta519.577(16) keV15.84(10) minIT182Ta10−
183Ta73110182.9513754(17)5.1(1) dβ183W7/2+
183m1Ta73.164(14) keV106(10) nsIT183Ta9/2−
183m2Ta1335(14) keV0.9(3) μsIT183Ta(19/2+)
184Ta73111183.954010(28)8.7(1) hβ184W(5−)
185Ta73112184.955561(15)49.4(15) minβ185W(7/2+)
185m1Ta406(1) keV0.9(3) μsIT185Ta(3/2+)
185m2Ta1273.4(4) keV11.8(14) msIT185Ta21/2−
186Ta73113185.958553(64)10.5(3) minβ186W3#
186mTa336(20) keV1.54(5) min9+#
187Ta73114186.960391(60)2.3(60) minβ187W(7/2+)
187m1Ta1778(1) keV7.3(9) sIT187Ta(25/2−)
187m2Ta[7]2933(14) keV136(24) sβ187mW41/2+#
[≥35/2]
IT187m1Ta
188Ta73115187.96360(22)#19.6(20) sβ188W(1−)
188m1Ta99(33) keV19.6(20) s(7−)
188m2Ta391(33) keV3.6(4) μsIT188Ta10+#
189Ta73116188.96569(22)#20# s
[>300 ns]
β189W7/2+#
189mTa1650(100)# keV1.6(2) μsIT189Ta21/2−#
190Ta73117189.96917(22)#5.3(7) sβ190W(3)
191Ta73118190.97153(32)#460# ms
[>300 ns]
7/2+#
192Ta73119191.97520(43)#2.2(7) sβ192W(2)
193Ta73120192.97766(43)#220# ms
[>300 ns]
7/2+#
194Ta73121193.98161(54)#2# s
[>300 ns]
This table header & footer:
  1. ^mTa – Excitednuclear isomer.
  2. ^( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^abc# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. ^Modes of decay:
    EC:Electron capture


    IT:Isomeric transition


    p:Proton emission
  6. ^Bold italics symbol as daughter – Daughter product is nearly stable.
  7. ^Bold symbol as daughter – Daughter product is stable.
  8. ^( ) spin value – Indicates spin with weak assignment arguments.
  9. ^abcdeOrder of ground state and isomer is uncertain.
  10. ^Only known observationally stable nuclear isomer, believed to decay by isomeric transition to180Ta, β decay to180W, or electron capture to180Hf with a half-life over 2.9×1017 years;[6] also theorized to undergo α decay to176Lu
  11. ^One of the few (observationally) stableodd-odd nuclei
  12. ^Believed to undergo α decay to177Lu

Tantalum-180m

[edit]

The nuclide180m
Ta
(m denotes ametastable state) is one of a very fewnuclear isomers which are more stable than their ground states. Although it is not unique in this regard (this property is shared bybismuth-210m (210mBi) andamericium-242m (242mAm), among other nuclides), it is exceptional in that it isobservationally stable: no decay hasever been observed. In contrast, the ground state nuclide180
Ta
has a half-life of only 8 hours.

180m
Ta
has sufficient energy to decay in three ways:isomeric transition to theground state of180
Ta
,beta decay to180
W
, orelectron capture to180
Hf
. However, no radioactivity from any of these theoretically possible decay modes has ever been observed. As of 2023, the half-life of180mTa is calculated from experimental observation to be at least2.9×1017 (290 quadrillion) years.[6][8][9] The very slow decay of180m
Ta
is attributed to its high spin (9 units) and the low spin of lower-lying states. Gamma or beta decay would require many units of angular momentum to be removed in a single step, so that the process would be very slow.[10] Similar suppression of gamma or beta decay occurs for210mBi, a rather short-lived alpha emitter.[11]

Because of this stability,180m
Ta
is aprimordial nuclide, the only naturally occurringnuclear isomer (excluding short-lived radiogenic and cosmogenic nuclides). It is also the rarest primordial nuclide in the Universe observed for any element which has any stable isotopes. In ans-process stellar environment with a thermal energykBT =26 keV (i.e. a temperature of 300 million kelvin), the nuclear isomers are expected to be fully thermalized, meaning that180Ta is equilibrated between spin states and its overall half-life is predicted to be 11 hours.[12]

It is one of onlyfive stable nuclides to have both an odd number of protons and an odd number of neutrons, the other four stableodd-odd nuclides being2H,6Li,10B and14N.[13]

See also

[edit]

Daughter products other than tantalum

References

[edit]
  1. ^abcdeKondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021)."The NUBASE2020 evaluation of nuclear properties"(PDF).Chinese Physics C.45 (3) 030001.doi:10.1088/1674-1137/abddae.
  2. ^"Standard Atomic Weights: Tantalum".CIAAW. 2005.
  3. ^Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04)."Standard atomic weights of the elements 2021 (IUPAC Technical Report)".Pure and Applied Chemistry.doi:10.1515/pac-2019-0603.ISSN 1365-3075.
  4. ^D. T. Win; M. Al Masum (2003)."Weapons of Mass Destruction"(PDF).Assumption University Journal of Technology.6 (4):199–219.
  5. ^Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*".Chinese Physics C.45 (3) 030003.doi:10.1088/1674-1137/abddaf.
  6. ^abArnquist, I. J.; Avignone III, F. T.; Barabash, A. S.; Barton, C. J.; Bhimani, K. H.; Blalock, E.; Bos, B.; Busch, M.; Buuck, M.; Caldwell, T. S.; Christofferson, C. D.; Chu, P.-H.; Clark, M. L.; Cuesta, C.; Detwiler, J. A.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Haufe, C. R.; Henning, R.; Aguilar, D. Hervas; Hoppe, E. W.; Hostiuc, A.; Kim, I.; Kouzes, R. T.; Lannen V., T. E.; Li, A.; López-Castaño, J. M.; Massarczyk, R.; Meijer, S. J.; Meijer, W.; Oli, T. K.; Paudel, L. S.; Pettus, W.; Poon, A. W. P.; Radford, D. C.; Reine, A. L.; Rielage, K.; Rouyer, A.; Ruof, N. W.; Schaper, D. C.; Schleich, S. J.; Smith-Gandy, T. A.; Tedeschi, D.; Thompson, J. D.; Varner, R. L.; Vasilyev, S.; Watkins, S. L.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yu, C.-H. (13 October 2023). "Constraints on the Decay of180mTa".Phys. Rev. Lett.131 (15) 152501.arXiv:2306.01965.doi:10.1103/PhysRevLett.131.152501.
  7. ^Chen, J. L.; Watanabe, H.; Walker, P. M.; et al. (2025). "Direct observation ofβ andγ decay from a high-spin long-lived isomer in187Ta".Physical Review C.111 (014304).arXiv:2501.02848.doi:10.1103/PhysRevC.111.014304.
  8. ^Conover, Emily (2016-10-03)."Rarest nucleus reluctant to decay".Science News. Retrieved2016-10-05.
  9. ^Lehnert, Björn; Hult, Mikael; Lutter, Guillaume; Zuber, Kai (2017). "Search for the decay of nature's rarest isotope180mTa".Physical Review C.95 (4) 044306.arXiv:1609.03725.Bibcode:2017PhRvC..95d4306L.doi:10.1103/PhysRevC.95.044306.S2CID 118497863.
  10. ^Quantum mechanics for engineers Leon van Dommelen, Florida State University
  11. ^Tuggle, D. G. (August 1976).Decay studies of a long lived high spin isomer of210Bi (Thesis). California Univ., Berkeley (USA): Lawrence Berkeley Lab. See the section "210mBi Decay to210Po".
  12. ^P. Mohr; F. Kaeppeler; R. Gallino (2007). "Survival of Nature's Rarest Isotope180Ta under Stellar Conditions".Phys. Rev. C.75 012802.arXiv:astro-ph/0612427.doi:10.1103/PhysRevC.75.012802.S2CID 44724195.
  13. ^Lide, David R., ed. (2002).Handbook of Chemistry & Physics (88th ed.). CRC.ISBN 978-0-8493-0486-6.OCLC 179976746. Archived fromthe original on 24 July 2017. Retrieved2008-05-23.
Group12 3456789101112131415161718
PeriodHydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gensChal­co­gensHalo­gensNoble gases
12
345678910
1112131415161718
192021222324252627282930313233343536
373839404142434445464748495051525354
55561 asterisk71727374757677787980818283848586
87881 asterisk103104105106107108109110111112113114115116117118
119120
1 asterisk5758596061626364656667686970 
1 asterisk8990919293949596979899100101102
Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_tantalum&oldid=1322565022#Tantalum-181"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp