Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Tangent vector

From Wikipedia, the free encyclopedia
Vector tangent to a curve or surface at a given point

Inmathematics, atangent vector is avector that istangent to acurve orsurface at a given point. Tangent vectors are described in thedifferential geometry of curves in the context of curves inRn. More generally, tangent vectors are elements of atangent space of adifferentiable manifold. Tangent vectors can also be described in terms ofgerms. Formally, a tangent vector at the pointx{\displaystyle x} is a linearderivation of the algebra defined by the set of germs atx{\displaystyle x}.

Motivation

[edit]

Before proceeding to a general definition of the tangent vector, we discuss its use incalculus and itstensor properties.

Calculus

[edit]

Letr(t){\displaystyle \mathbf {r} (t)} be a parametricsmooth curve. The tangent vector is given byr(t){\displaystyle \mathbf {r} '(t)} provided it exists and providedr(t)0{\displaystyle \mathbf {r} '(t)\neq \mathbf {0} }, where we have used a prime instead of the usual dot to indicate differentiation with respect to parametert.[1] The unit tangent vector is given byT(t)=r(t)|r(t)|.{\displaystyle \mathbf {T} (t)={\frac {\mathbf {r} '(t)}{|\mathbf {r} '(t)|}}\,.}

Example

[edit]

Given the curver(t)={(1+t2,e2t,cost)tR}{\displaystyle \mathbf {r} (t)=\left\{\left(1+t^{2},e^{2t},\cos {t}\right)\mid t\in \mathbb {R} \right\}}inR3{\displaystyle \mathbb {R} ^{3}}, the unit tangent vector att=0{\displaystyle t=0} is given byT(0)=r(0)r(0)=(2t,2e2t,sint)4t2+4e4t+sin2t|t=0=(0,1,0).{\displaystyle \mathbf {T} (0)={\frac {\mathbf {r} '(0)}{\|\mathbf {r} '(0)\|}}=\left.{\frac {(2t,2e^{2t},-\sin {t})}{\sqrt {4t^{2}+4e^{4t}+\sin ^{2}{t}}}}\right|_{t=0}=(0,1,0)\,.}Where the components of the tangent vector are found by taking the derivative of each corresponding component of the curve with respect tot{\displaystyle t}.

Contravariance

[edit]

Ifr(t){\displaystyle \mathbf {r} (t)} is given parametrically in then-dimensional coordinate systemxi (here we have used superscripts as an index instead of the usual subscript) byr(t)=(x1(t),x2(t),,xn(t)){\displaystyle \mathbf {r} (t)=(x^{1}(t),x^{2}(t),\ldots ,x^{n}(t))} orr=xi=xi(t),atb,{\displaystyle \mathbf {r} =x^{i}=x^{i}(t),\quad a\leq t\leq b\,,}then the tangent vector fieldT=Ti{\displaystyle \mathbf {T} =T^{i}} is given byTi=dxidt.{\displaystyle T^{i}={\frac {dx^{i}}{dt}}\,.}Under a change of coordinatesui=ui(x1,x2,,xn),1in{\displaystyle u^{i}=u^{i}(x^{1},x^{2},\ldots ,x^{n}),\quad 1\leq i\leq n}the tangent vectorT¯=T¯i{\displaystyle {\bar {\mathbf {T} }}={\bar {T}}^{i}} in theui-coordinate system is given byT¯i=duidt=uixsdxsdt=Tsuixs{\displaystyle {\bar {T}}^{i}={\frac {du^{i}}{dt}}={\frac {\partial u^{i}}{\partial x^{s}}}{\frac {dx^{s}}{dt}}=T^{s}{\frac {\partial u^{i}}{\partial x^{s}}}}where we have used theEinstein summation convention. Therefore, a tangent vector of a smooth curve will transform as acontravariant tensor of order one under a change of coordinates.[2]

Definition

[edit]

Letf:RnR{\displaystyle f:\mathbb {R} ^{n}\to \mathbb {R} } be a differentiable function and letv{\displaystyle \mathbf {v} } be a vector inRn{\displaystyle \mathbb {R} ^{n}}. We define thedirectional derivative in thev{\displaystyle \mathbf {v} } direction at a pointxRn{\displaystyle \mathbf {x} \in \mathbb {R} ^{n}} byvf(x)=ddtf(x+tv)|t=0=i=1nvifxi(x).{\displaystyle \nabla _{\mathbf {v} }f(\mathbf {x} )=\left.{\frac {d}{dt}}f(\mathbf {x} +t\mathbf {v} )\right|_{t=0}=\sum _{i=1}^{n}v_{i}{\frac {\partial f}{\partial x_{i}}}(\mathbf {x} )\,.}The tangent vector at the pointx{\displaystyle \mathbf {x} } may then be defined[3] asv(f(x))(v(f))(x).{\displaystyle \mathbf {v} (f(\mathbf {x} ))\equiv (\nabla _{\mathbf {v} }(f))(\mathbf {x} )\,.}

Properties

[edit]

Letf,g:RnR{\displaystyle f,g:\mathbb {R} ^{n}\to \mathbb {R} } be differentiable functions, letv,w{\displaystyle \mathbf {v} ,\mathbf {w} } be tangent vectors inRn{\displaystyle \mathbb {R} ^{n}} atxRn{\displaystyle \mathbf {x} \in \mathbb {R} ^{n}}, and leta,bR{\displaystyle a,b\in \mathbb {R} }. Then

  1. (av+bw)(f)=av(f)+bw(f){\displaystyle (a\mathbf {v} +b\mathbf {w} )(f)=a\mathbf {v} (f)+b\mathbf {w} (f)}
  2. v(af+bg)=av(f)+bv(g){\displaystyle \mathbf {v} (af+bg)=a\mathbf {v} (f)+b\mathbf {v} (g)}
  3. v(fg)=f(x)v(g)+g(x)v(f).{\displaystyle \mathbf {v} (fg)=f(\mathbf {x} )\mathbf {v} (g)+g(\mathbf {x} )\mathbf {v} (f)\,.}

Tangent vector on manifolds

[edit]

LetM{\displaystyle M} be a differentiable manifold and letA(M){\displaystyle A(M)} be the algebra of real-valued differentiable functions onM{\displaystyle M}. Then the tangent vector toM{\displaystyle M} at a pointx{\displaystyle x} in the manifold is given by thederivationDv:A(M)R{\displaystyle D_{v}:A(M)\rightarrow \mathbb {R} } which shall be linear — i.e., for anyf,gA(M){\displaystyle f,g\in A(M)} anda,bR{\displaystyle a,b\in \mathbb {R} } we have

Dv(af+bg)=aDv(f)+bDv(g).{\displaystyle D_{v}(af+bg)=aD_{v}(f)+bD_{v}(g)\,.}

Note that the derivation will by definition have the Leibniz property

Dv(fg)(x)=Dv(f)(x)g(x)+f(x)Dv(g)(x).{\displaystyle D_{v}(f\cdot g)(x)=D_{v}(f)(x)\cdot g(x)+f(x)\cdot D_{v}(g)(x)\,.}

See also

[edit]

References

[edit]
  1. ^J. Stewart (2001)
  2. ^D. Kay (1988)
  3. ^A. Gray (1993)

Bibliography

[edit]
  • Gray, Alfred (1993),Modern Differential Geometry of Curves and Surfaces, Boca Raton: CRC Press.
  • Stewart, James (2001),Calculus: Concepts and Contexts, Australia: Thomson/Brooks/Cole.
  • Kay, David (1988),Schaums Outline of Theory and Problems of Tensor Calculus, New York: McGraw-Hill.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Tangent_vector&oldid=1319420320"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp