Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Tangent–secant theorem

From Wikipedia, the free encyclopedia
(Redirected fromTangent-secant theorem)
Geometry theorem relating line segments created by a secant and tangent line
Beginning with thealternate segment theorem,PG2T=PTG1PTG2PG1T|PT||PG2|=|PG1||PT||PT|2=|PG1||PG2|{\displaystyle {\begin{array}{cl}\implies &\angle PG_{2}T=\angle PTG_{1}\\[4pt]\implies &\triangle PTG_{2}\sim \triangle PG_{1}T\\[4pt]\implies &{\frac {|PT|}{|PG_{2}|}}={\frac {|PG_{1}|}{|PT|}}\\[2pt]\implies &|PT|^{2}=|PG_{1}|\cdot |PG_{2}|\end{array}}}

InEuclidean geometry, thetangent-secant theorem describes the relation ofline segments created by asecant and atangent line with the associatedcircle. This result is found as Proposition 36 in Book 3 ofEuclid'sElements.

Given a secantg intersecting the circle at pointsG1 andG2 and a tangentt intersecting the circle at pointT and given thatg andt intersect at pointP, the following equation holds:

|PT|2=|PG1||PG2|{\displaystyle |PT|^{2}=|PG_{1}|\cdot |PG_{2}|}

The tangent-secant theorem can be proven using similar triangles (see graphic).

Like theintersecting chords theorem and theintersecting secants theorem, the tangent-secant theorem represents one of the three basic cases of a more general theorem about two intersecting lines and a circle, namely, thepower of point theorem.

References

[edit]
  • S. Gottwald:The VNR Concise Encyclopedia of Mathematics. Springer, 2012,ISBN 9789401169820, pp.175-176
  • Michael L. O'Leary:Revolutions in Geometry. Wiley, 2010,ISBN 9780470591796, p.161
  • Schülerduden - Mathematik I. Bibliographisches Institut & F.A. Brockhaus, 8. Auflage, Mannheim 2008,ISBN 978-3-411-04208-1, pp. 415-417 (German)

External links

[edit]
Mathematicians
(timeline)
Treatises
Concepts
and definitions
Results
InElements
Centers/Schools
Related
History of
Other cultures
Retrieved from "https://en.wikipedia.org/w/index.php?title=Tangent–secant_theorem&oldid=1273846552"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp