Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

TW Hydrae b

Coordinates:Sky map11h 01m 52s, −34° 42′ 17″
From Wikipedia, the free encyclopedia
Likely extrasolar planet in the constellation Hydra
TW Hydrae b
Discovery
Discovered byFirst:Setiawanet al.
New study:Atacama Large Millimeter Array
Discovery siteFirst: Germany
New study: Chile
Discovery dateFirst: December 2007 (disproven)
New study: September 2016
Orbital characteristics
22 AU (3.3×109 km)
StarTW Hydrae
Physical characteristics
~4.25R🜨
Mass23.72[1]ME
Temperature≥40 K (−233.2 °C; −387.7 °F)

TW Hydrae b is a likelyextrasolar planet orbiting the youngT Tauri starTW Hydrae approximately 176light-years (54parsecs, or nearly1.665×1016km) away in theconstellation ofHydra. It is likely a Neptune-like planet orbiting at a distance of nearly 22 AU from its star.[1]

Characteristics

[edit]

Mass, radius and temperature

[edit]

TW Hydrae b is anice giant, an exoplanet with a radius and mass close to that of the ice giantsNeptune andUranus. It may have anequilibrium temperature of around 40 K (−233.2 °C; −387.7 °F). It has an estimated mass of around 22.72ME (or 1.5MNeptune) and a possible radius of 4.25R🜨.

Host star

[edit]

The planet orbits a (K-type)T Tauri star namedTW Hydrae. The star has a mass of 0.8M and a radius of 1.1R. It has a temperature of 4000K and is about 9 million years old. In comparison, theSun is 4.6 billion years old[2] and has a temperature of 5778 K.[3] Its luminosity (L) is 28% of that of the Sun.[note 1]

The star'sapparent magnitude, or how bright it appears from Earth's perspective, is 11.27. Therefore, it is too dim to be seen with the naked eye.

Orbit

[edit]

TW Hydrae b orbits its host star at a distance of 22 AU (somewhat less than the orbital distance ofNeptune from the Sun, which is 30.11AU). The orbital period is not known, although taken its similar orbital distance as Neptune, the orbital period may be around the same value.

Discovery

[edit]

First claims

[edit]

In December 2007, a team led by Johny Setiawan of theMax Planck Institute for Astronomy inHeidelberg,Germany announced discovery of a planet orbiting TW Hydrae, dubbed "TW Hydrae b" with a minimum mass around 1.2Jupiter masses, a period of 3.56 days, and an orbital radius of 0.04astronomical units (inside the inner rim of the protoplanetary disk). Assuming it orbited in the same plane as the outer part of the dust disk (inclination 7±1°[4]), it would have a true mass of 9.8±3.3 Jupiter masses.[4][5] However, if the inclination was similar to the inner part of the dust disk (4.3±1.0°[6]), the mass would be 16+5
−3
Jupiter masses, making it abrown dwarf.[6] Since the star itself is so young, it was presumed this was the youngest extrasolar planet yet discovered, and essentially still in formation.[7] (only surpassed byK2-33b andV830 Tau b, both discovered nearly 9 years later).

Disproven status

[edit]

In 2008 a team of Spanish researchers concluded that the planet did not exist: the radial velocity variations were not consistent when observed at differentwavelengths, which would not occur if the origin of the radial velocity variations was caused by an orbiting planet. Instead, the data was better modelled bystarspots on TW Hydrae's surface passing in and out of view as the star rotates. "Results support the spot scenario rather than the presence of a hot Jupiter around TW Hya".[8] Similar wavelength-dependent radial velocity variations, also caused by starspots, have been detected on other T Tauri stars.[9]

New proposal

[edit]

In 2016, astronomers studying the protoplanetary disk of the star began to speculate why there was small dust grains in the gaps, including the one at 22 AU, but not large dust grains. Further investigations began to suggest that there may be a 1.5MNeptune ice giant orbiting within the gap at 22 AU, which would be responsible for the observed gaps.

The study was then published in the online journal archivearXiv on September 1, 2016, gaining wide interest from media outlets.[1]

Notes

[edit]
  1. ^FromL=4πR2σTeff4{\displaystyle {\begin{smallmatrix}L=4\pi R^{2}\sigma T_{\rm {eff}}^{4}\end{smallmatrix}}}, whereL{\displaystyle {\begin{smallmatrix}L\end{smallmatrix}}} is the luminosity,R{\displaystyle {\begin{smallmatrix}R\end{smallmatrix}}} is the radius,Teff{\displaystyle {\begin{smallmatrix}T_{\rm {eff}}\end{smallmatrix}}} is the effective surface temperature andσ{\displaystyle {\begin{smallmatrix}\sigma \end{smallmatrix}}} is theStefan–Boltzmann constant.

References

[edit]
  1. ^abcTsukagoshi, Takashi; Nomura, Hideko; Muto, Takayuki; Kawabe, Ryohei; Ishimoto, Daiki; Kanagawa, Kazuhiro D.; Okuzumi, Satoshi; Ida, Shigeru; Walsh, Catherine; Millar, Tom J. (2016)."A Gap with a Deficit of Large Grains in the protoplanetary disk around TW Hya".The Astrophysical Journal.829 (2): L35.arXiv:1605.00289.Bibcode:2016ApJ...829L..35T.doi:10.3847/2041-8205/829/2/L35.S2CID 41738556.
  2. ^Fraser Cain (16 September 2008)."How Old is the Sun?".Universe Today. Retrieved19 February 2011.
  3. ^Fraser Cain (15 September 2008)."Temperature of the Sun". Universe Today. Retrieved19 February 2011.
  4. ^abSetiawan, J.; Henning, Th.; Launhardt, R.; Müller, A.; Weise, P.; Kürster, M. (3 January 2008). "A young massive planet in a star–disk system".Nature.451 (7174):38–41.Bibcode:2008Natur.451...38S.doi:10.1038/nature06426.PMID 18172492.S2CID 4431370.
  5. ^McKee, Maggie (2 January 2008)."First planet discovered around a youthful star". NewScientist.com news service. Retrieved2008-01-02.
  6. ^abPontoppidan, Klaus M.; et al. (2008). "Spectro-astrometric imaging of molecular gas within protoplanetary disk gaps".The Astrophysical Journal.684 (2):1323–1329.arXiv:0805.3314.Bibcode:2008ApJ...684.1323P.doi:10.1086/590400.S2CID 15445587.
  7. ^"A young extrasolar planet in its cosmic nursery: Astronomers from Heidelberg discover planet in a dusty disk around a newborn star".Max Planck Institute for Astronomy. 2008-01-02. Retrieved2008-01-03.
  8. ^Huelamo, N.; et al. (2008). "TW Hydrae: evidence of stellar spots instead of a Hot Jupiter".Astronomy and Astrophysics.489 (2):L9 –L13.arXiv:0808.2386.Bibcode:2008A&A...489L...9H.doi:10.1051/0004-6361:200810596.S2CID 18775872.
  9. ^Prato, L.; et al. (2008). "A Young Planet Search in Visible and IR Light: DN Tau, V836 Tau, and V827 Tau".The Astrophysical Journal.687 (2):L103 –L106.arXiv:0809.3599.Bibcode:2008ApJ...687L.103P.doi:10.1086/593201.S2CID 14888302.


2016 in space
Space probe launchesSpace probes launched in 2016

Juno spacecraft with Jupiter in the background
Depiction of a planet with a rocky landscape orbiting the Alpha Centauri star system.
Impact events
SelectedNEOs
ExoplanetsExoplanets discovered in 2016
Discoveries
Novae
CometsComets in 2016
Space exploration
Retrieved from "https://en.wikipedia.org/w/index.php?title=TW_Hydrae_b&oldid=1187247425"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp