Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

TMPRSS2

From Wikipedia, the free encyclopedia

Protein-coding gene in humans
TMPRSS2
Identifiers
AliasesTMPRSS2, PP9284, PRSS10, transmembrane protease, serine 2, transmembrane serine protease 2
External IDsOMIM:602060;MGI:1354381;HomoloGene:4136;GeneCards:TMPRSS2;OMA:TMPRSS2 - orthologs
Gene location (Human)
Chromosome 21 (human)
Chr.Chromosome 21 (human)[1]
Chromosome 21 (human)
Genomic location for TMPRSS2
Genomic location for TMPRSS2
Band21q22.3Start41,464,300bp[1]
End41,531,116bp[1]
Gene location (Mouse)
Chromosome 16 (mouse)
Chr.Chromosome 16 (mouse)[2]
Chromosome 16 (mouse)
Genomic location for TMPRSS2
Genomic location for TMPRSS2
Band16 C4|16 57.53 cMStart97,365,882bp[2]
End97,412,395bp[2]
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • mucosa of transverse colon

  • mucosa of sigmoid colon

  • body of pancreas

  • rectum

  • prostate

  • parotid gland

  • duodenum

  • mucosa of ileum

  • olfactory zone of nasal mucosa

  • pylorus
Top expressed in
  • Paneth cell

  • transitional epithelium of urinary bladder

  • left colon

  • crypt of lieberkuhn of small intestine

  • epithelium of stomach

  • yolk sac

  • mucous cell of stomach

  • medullary collecting duct

  • pyloric antrum

  • duodenum
More reference expression data
BioGPS


More reference expression data
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo /QuickGO
Orthologs
SpeciesHumanMouse
Entrez

7113

50528

Ensembl

ENSG00000184012

ENSMUSG00000000385

UniProt

O15393

Q9JIQ8

RefSeq (mRNA)

NM_001135099
NM_005656
NM_001382720

NM_015775

RefSeq (protein)

NP_001128571
NP_005647
NP_001369649

NP_056590

Location (UCSC)Chr 21: 41.46 – 41.53 MbChr 16: 97.37 – 97.41 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Transmembrane protease, serine 2 is anenzyme that in humans is encoded by theTMPRSS2gene.[5][6][7] It belongs to theTMPRSS family of proteins, whose members aretransmembrane proteins which have aserine protease activity.[8] The TMPRSS2 protein is found in high concentration in thecell membranes ofepithelial cells of thelung and of theprostate, but also in theheart,liver andgastrointestinal tract.[8]

Mutations of theTMPRSS2 gene are often involved inprostate cancer. Several viruses, includingSARS-CoV-2, use the protease activity of the TMPRSS2 protein in the process of entering cells.[8]

Function

[edit]

TheTMPRSS2 gene encodes a protein that belongs to theserine protease family. The encoded protein contains a type II transmembranedomain, alow density lipoprotein receptor class A domain, ascavenger receptor cysteine-rich domain and a protease domain. Serine proteases are known to be involved in many physiological andpathological processes. This gene is up-regulated byandrogenic hormones inprostate cancer cells and down-regulated inandrogen-independent prostate cancer tissue. The protease domain of this protein is thought to be cleaved and secreted into cell media afterautocleavage.[6]TMPRSS2 participates in proteolytic cascades necessary for normal physiological function of the prostate.[7] Geneknockout mice lackingTMPRSS2 show no abnormalities.[9]

Structure

[edit]
His296, Asp345, and Ser441 catalytic triad within the Serine Peptidase domain on TMPRSS2 that is characteristic of almost all Type II Serine proteases. The serine (green) engages innucleophilic attack, the histidine (cyan) acts as a generalbase to reset theserine and theaspartate (magenta) neutralizes thehistidine intransition states during reactions that cause proteolytic cleavage. This structure was solved viaX-ray crystallography with a resolution of 1.95Angstroms (PDB: 7MEQ).[10] Image made inChimera.[11]
Solved structure of TMPRSS2 is shown here (PDB: 7MEQ)[1], the entire protein is oriented with theextracellular side towards the top and thecytoplasmic side towards the bottom.[10] Boundcalcium ions are shown in blue and function as stabilizingcofactors. This view (generated in Chimera) illustrates the largelyopen conformation that exposes thecatalytic triad.

As a type II transmembraneprotease, TMPRSS2 consists of an intracellularN-terminal domain, atransmembrane domain, a stem region that extends extracellularly and aC-terminal domain that catalyzes itsserine protease (SP) activity.[12] This serine protease activity is orchestrated by acatalytic triad containing the residues His296, Asp345, and Ser441.[12][10] This noted catalytic triad is typically responsible for the cleaving of basic amino acid residues (lysine orarginine residues)— consistent with what is observed in the S1/S2 cleavage site found inSARS-CoV-2.[12] A notable domain in the stem region that has been examined through mutational analysis is the low density lipoprotein receptor class A domain (LDLRA).[12] Experimental evidence suggests that this domain likely participates in enzymatic activity of the protein and has been examined alongside anothermotif in the stem region: the scavenger receptor cysteine-rich domain (SRCR).[12] This domain may be implicated in the binding ofextracellular molecules and other nearby cells.[13][14] Interestingly, SRCR may have a role in overall proteolytic activity of the protein, which could lead to implications on the overallvirulence of SARS-CoV-2.[15][12][16]

Clinical significance

[edit]

In prostate cancer

[edit]
See also:ERG (gene) § TMPRSS2 gene fusion

TMPRSS2 protein's function in prostate carcinogenesis relies on overexpression ofETS transcription factors, such asERG andETV1, throughgene fusion. TMPRSS2-ERG fusion gene is the most frequent, present in 40% - 80% of prostate cancers in humans. ERG overexpression contributes to development of androgen-independence in prostate cancer through disruption ofandrogen receptor signaling.[17]

Coronaviruses

[edit]

Some coronaviruses, e.g.SARS-CoV-1,MERS-CoV, andSARS-CoV-2 (although less well by theomicron variant[18]), are activated by TMPRSS2 and can thus be inhibited by TMPRSS2 inhibitors.[19][20]SARS-CoV-2 uses the SARS-CoV receptorACE2 for entry and the serine protease TMPRSS2 for S protein priming.[21]

Cleavage of theSARS-CoV-2S2spike protein required for viral entry into cells can be accomplished byproteases TMPRSS2 located on the cell membrane, or bycathepsins (primarilycathepsin L) inendolysosomes.[22]Hydroxychloroquine inhibits the action of cathepsin L in endolysosomes, but because cathepsin L cleavage is minor compared to TMPRSS2 cleavage, hydroxychloroquine does little to inhibit SARS-CoV-2 infection.[22]

The enzymeAdam17 has similarACE2 cleavage activity as TMPRSS2, but by forming soluble ACE2, Adam17 may actually have the protective effect of blocking circulating SARS‑CoV‑2 virus particles.[23] By not releasing soluble ACE2, TMPRSS2 cleavage is more harmful.[23]

A TMPRSS2 inhibitor such ascamostat approved for clinical use blocked entry and might constitute a treatment option.[20][22] Another experimental candidate as a TMPRSS2 inhibitor for potential use against both influenza and coronavirus infections in general, including those prior to the advent ofCOVID-19, is the over-the-counter (in most countries) mucolytic cough medicinebromhexine,[24] which is also being investigated as a possible treatment for COVID-19 itself as well.[25] The fact that TMPRSS2 has no known irreplaceable function makes it a promising target for preventing SARS-CoV-2 virus transmission.[9]

The fact that severe illness and death from Sars-Cov-2 is more common in males than females, and that TMPRSS2 is expressed several times more highly inprostateepithelium than any tissue, suggests a role for TMPRSS2 in the gender difference.[26][27]Prostate cancer patients receivingandrogen deprivation therapy have a lower risk of SARS-CoV-2 infection than those not receiving that therapy.[26][27]

Inhibitors

[edit]

Camostat is an inhibitor of the serine protease activity of TMPRSS2. It is used to treatpancreatitis andreflux esophagitis.[28] It was found not to be effective against COVID-19.[29] A novel inhibitor of TMPRSS2 (N-0385) has been found to be effective against SARS-CoV-2 infection in cell and animal models.[30][31]

References

[edit]
  1. ^abcGRCh38: Ensembl release 89: ENSG00000184012Ensembl, May 2017
  2. ^abcGRCm38: Ensembl release 89: ENSMUSG00000000385Ensembl, May 2017
  3. ^"Human PubMed Reference:".National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^"Mouse PubMed Reference:".National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^Paoloni-Giacobino A, Chen H, Peitsch MC, Rossier C, Antonarakis SE (September 1997). "Cloning of the TMPRSS2 gene, which encodes a novel serine protease with transmembrane, LDLRA, and SRCR domains and maps to 21q22.3".Genomics.44 (3):309–320.doi:10.1006/geno.1997.4845.PMID 9325052.
  6. ^ab"Entrez Gene: TMPRSS2 transmembrane protease, serine 2".
  7. ^ab"UniProt Protein: TMPS2_HUMAN transmembrane protease".
  8. ^abcThunders M, Delahunt B (December 2020)."Gene of the month:TMPRSS2 (transmembrane serine protease 2)".Journal of Clinical Pathology.73 (12):773–776.doi:10.1136/jclinpath-2020-206987.PMC 7470178.PMID 32873700.
  9. ^abSarker J, Das P, Sarker S, Roy AK, Momen AZ (2021)."A Review on Expression, Pathological Roles, and Inhibition of TMPRSS2, the Serine Protease Responsible for SARS-CoV-2 Spike Protein Activation".Scientifica.2021 2706789.doi:10.1155/2021/2706789.PMC 8313365.PMID 34336361.
  10. ^abcFraser BJ, Beldar S, Seitova A, Hutchinson A, Mannar D, Li Y, et al. (September 2022)."Structure and activity of human TMPRSS2 protease implicated in SARS-CoV-2 activation".Nature Chemical Biology.18 (9):963–971.doi:10.1038/s41589-022-01059-7.PMID 35676539.
  11. ^"Supplemental Information 4: UCSF Chimera".doi:10.7717/peerj.4593/supp-4.{{cite web}}:Missing or empty|url= (help)
  12. ^abcdefWettstein L, Kirchhoff F, Münch J (January 2022)."The Transmembrane Protease TMPRSS2 as a Therapeutic Target for COVID-19 Treatment".International Journal of Molecular Sciences.23 (3): 1351.doi:10.3390/ijms23031351.PMC 8836196.PMID 35163273.
  13. ^Paoloni-Giacobino A, Chen H, Peitsch MC, Rossier C, Antonarakis SE (September 1997). "Cloning of the TMPRSS2 gene, which encodes a novel serine protease with transmembrane, LDLRA, and SRCR domains and maps to 21q22.3".Genomics.44 (3):309–320.doi:10.1006/geno.1997.4845.PMID 9325052.
  14. ^Wettstein L, Kirchhoff F, Münch J (January 2022)."The Transmembrane Protease TMPRSS2 as a Therapeutic Target for COVID-19 Treatment".International Journal of Molecular Sciences.23 (3): 1351.doi:10.3390/ijms23031351.PMC 8836196.PMID 35163273.
  15. ^Guipponi M, Antonarakis SE, Scott HS (January 2008)."TMPRSS3, a type II transmembrane serine protease mutated in non-syndromic autosomal recessive deafness".Frontiers in Bioscience.13 (13):1557–1567.doi:10.2741/2780.PMID 17981648.
  16. ^Afar DE, Vivanco I, Hubert RS, Kuo J, Chen E, Saffran DC, et al. (February 2001). "Catalytic cleavage of the androgen-regulated TMPRSS2 protease results in its secretion by prostate and prostate cancer epithelia".Cancer Research.61 (4):1686–1692.PMID 11245484.
  17. ^Yu J, Yu J, Mani RS, Cao Q, Brenner CJ, Cao X, et al. (May 2010)."An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression".Cancer Cell.17 (5):443–454.doi:10.1016/j.ccr.2010.03.018.PMC 2874722.PMID 20478527.
  18. ^Meng B, Abdullahi A, Ferreira IA, Goonawardane N, Saito A, Kimura I, et al. (March 2022)."Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity".Nature.603 (7902):706–714.Bibcode:2022Natur.603..706M.doi:10.1038/s41586-022-04474-x.PMC 8942856.PMID 35104837.
  19. ^Huggins DJ (November 2020)."Structural analysis of experimental drugs binding to the SARS-CoV-2 target TMPRSS2".Journal of Molecular Graphics & Modelling.100 107710.Bibcode:2020JMGM..100j7710H.doi:10.1016/j.jmgm.2020.107710.PMC 7417922.PMID 32829149.
  20. ^abHoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. (April 2020)."SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor".Cell.181 (2): 271–280.e8.doi:10.1016/j.cell.2020.02.052.PMC 7102627.PMID 32142651.
  21. ^Rahman N, Basharat Z, Yousuf M, Castaldo G, Rastrelli L, Khan H (May 2020)."Virtual Screening of Natural Products against Type II Transmembrane Serine Protease (TMPRSS2), the Priming Agent of Coronavirus 2 (SARS-CoV-2)".Molecules.25 (10): 2271.doi:10.3390/molecules25102271.PMC 7287752.PMID 32408547.
  22. ^abcJackson CB, Farzan M, Chen B, Choe H (January 2022)."Mechanisms of SARS-CoV-2 entry into cells".Nature Reviews. Molecular Cell Biology.23 (1):3–20.doi:10.1038/s41580-021-00418-x.PMC 8491763.PMID 34611326.
  23. ^abZipeto D, Palmeira JD, Argañaraz GA, Argañaraz ER (2020)."ACE2/ADAM17/TMPRSS2 Interplay May Be the Main Risk Factor for COVID-19".Frontiers in Immunology.11 576745.doi:10.3389/fimmu.2020.576745.PMC 7575774.PMID 33117379.
  24. ^Shen LW, Mao HJ, Wu YL, Tanaka Y, Zhang W (November 2017)."TMPRSS2: A potential target for treatment of influenza virus and coronavirus infections".Biochimie.142:1–10.doi:10.1016/j.biochi.2017.07.016.PMC 7116903.PMID 28778717.
  25. ^Depfenhart M, de Villiers D, Lemperle G, Meyer M, Di Somma S (August 2020)."Potential new treatment strategies for COVID-19: is there a role for bromhexine as add-on therapy?".Internal and Emergency Medicine.15 (5):801–812.doi:10.1007/s11739-020-02383-3.PMC 7249615.PMID 32458206.
  26. ^abMollica V, Rizzo A, Massari F (September 2020)."The pivotal role of TMPRSS2 in coronavirus disease 2019 and prostate cancer".Future Oncology.16 (27):2029–2033.doi:10.2217/fon-2020-0571.PMC 7359420.PMID 32658591.
  27. ^abEpstein RJ (2021)."The secret identities of TMPRSS2: Fertility factor, virus trafficker, inflammation moderator, prostate protector and tumor suppressor".Tumour Biology.43 (1):159–176.doi:10.3233/TUB-211502.PMID 34420994.S2CID 237268413.
  28. ^Breining P, Frølund AL, Højen JF, Gunst JD, Staerke NB, Saedder E, Cases-Thomas M, Little P, Nielsen LP, Søgaard OS, Kjolby M (February 2021)."Camostat mesylate against SARS-CoV-2 and COVID-19-Rationale, dosing and safety".Basic & Clinical Pharmacology & Toxicology.128 (2):204–212.doi:10.1111/bcpt.13533.PMID 33176395.
  29. ^"ACTG announces Camostat will not advance to phase 3 in outpatient treatment study for COVID-19".EurekAlert!. Retrieved2021-07-01.
  30. ^Shapira T, Monreal IA, Dion SP, Buchholz DW, Imbiakha B, Olmstead AD, et al. (March 2022)."A TMPRSS2 inhibitor acts as a pan-SARS-CoV-2 prophylactic and therapeutic".Nature.605 (7909):340–348.Bibcode:2022Natur.605..340S.doi:10.1038/s41586-022-04661-w.PMC 9095466.PMID 35344983.
  31. ^Pérez-Vargas J, Lemieux G, Thompson CA, Désilets A, Ennis S, Gao G, Gordon DG, Schulz AL, Niikura M, Nabi IR, Krajden M, Boudreault PL, Leduc R, Jean F (May 2024)."Nanomolar anti-SARS-CoV-2 Omicron activity of the host-directed TMPRSS2 inhibitor N-0385 and synergistic action with direct-acting antivirals".Antiviral Research.225 105869.doi:10.1016/j.antiviral.2024.105869.PMID 38548023.

Further reading

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=TMPRSS2&oldid=1318018125"
Category:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp