Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Symmetric monoidal category

From Wikipedia, the free encyclopedia
Concept in mathematical category theory

Incategory theory, a branch ofmathematics, asymmetric monoidal category is amonoidal category (i.e. a category in which a "tensor product"{\displaystyle \otimes } is defined) such that the tensor product is symmetric (i.e.AB{\displaystyle A\otimes B} is, in a certain strict sense,naturally isomorphic toBA{\displaystyle B\otimes A} for all objectsA{\displaystyle A} andB{\displaystyle B} of the category). One of the prototypical examples of a symmetric monoidal category is thecategory of vector spaces over some fixedfieldk, using the ordinarytensor product of vector spaces.

Definition

[edit]

A symmetric monoidal category is amonoidal category (C, ⊗,I) such that, for every pairA,B of objects inC, there is an isomorphismsAB:ABBA{\displaystyle s_{AB}:A\otimes B\to B\otimes A} called theswap map[1] that isnatural in bothA andB and such that the following diagrams commute:

  • The unit coherence:
  • The associativity coherence:
  • The inverse law:

In the diagrams above,a,l, andr are the associativity isomorphism, the left unit isomorphism, and the right unit isomorphism respectively.

Examples

[edit]

Some examples and non-examples of symmetric monoidal categories:

Properties

[edit]

Theclassifying space (geometric realization of thenerve) of a symmetric monoidal category is anE{\displaystyle E_{\infty }} space, so itsgroup completion is aninfinite loop space.[2]

Specializations

[edit]

Adagger symmetric monoidal category is a symmetric monoidal category with a compatibledagger structure.

Acosmos is acomplete cocompleteclosed symmetric monoidal category.

Generalizations

[edit]

In a symmetric monoidal category, the natural isomorphismssAB:ABBA{\displaystyle s_{AB}:A\otimes B\to B\otimes A} are theirown inverses in the sense thatsBAsAB=1AB{\displaystyle s_{BA}\circ s_{AB}=1_{A\otimes B}}. If we abandon this requirement (but still require thatAB{\displaystyle A\otimes B} be naturally isomorphic toBA{\displaystyle B\otimes A}), we obtain the more general notion of abraided monoidal category.

References

[edit]
  1. ^Fong, Brendan;Spivak, David I. (2018-10-12). "Seven Sketches in Compositionality: An Invitation to Applied Category Theory".arXiv:1803.05316 [math.CT].
  2. ^Thomason, R.W. (1995)."Symmetric Monoidal Categories Model all Connective Spectra"(PDF).Theory and Applications of Categories.1 (5):78–118.CiteSeerX 10.1.1.501.2534.doi:10.70930/tac/pmzqeksd (inactive 7 September 2025).{{cite journal}}: CS1 maint: DOI inactive as of September 2025 (link)
Key concepts
Key concepts
Universal constructions
Limits
Colimits
Algebraic categories
Constructions on categories
A simple triangular commutative diagram
Key concepts
n-categories
Weakn-categories
Strictn-categories
Categorified concepts
Retrieved from "https://en.wikipedia.org/w/index.php?title=Symmetric_monoidal_category&oldid=1320221024"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp