Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Suspended load

From Wikipedia, the free encyclopedia
icon
This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Suspended load" – news ·newspapers ·books ·scholar ·JSTOR
(November 2015) (Learn how and when to remove this message)

Thesuspended load of a flow offluid, such as ariver, is the portion of itssediment uplifted by the fluid's flow in the process ofsediment transportation. It is kept suspended by the fluid'sturbulence. The suspended load generally consists of smaller particles, likeclay,silt, and finesands.

Sediment transportation

[edit]
Red Colored sediment carried in the suspended Load moving in an Alluvial channel
Sediment Transportation

The suspended load is one of the three layers of thefluvialsediment transportation system. Thebed load consists of the larger sediment which is transported bysaltation, rolling, and dragging on theriverbed. The suspended load is the middle layer that consists of the smaller sediment that's suspended. Thewash load is uppermost layer which consist of the smallest sediment that can be seen with the naked eye; however, the wash load gets easily mixed with suspended load during transportation due to the very similar process. The wash load never touches the bed even outside of a current.

Composition

[edit]

The boundary betweenbed load and suspended load is not straightforward because whether a particle is in suspension or not depends on the flow velocity – it is easy to imagine a particle moving between bed load, part-suspension and full suspension in a fluid with variable flow. Suspended load generally consists of fine sand, silt and clay size particles although larger particles (coarser sands) may be carried in the lower water column in more intense flows.

Suspended load vs suspended sediment

[edit]

Suspended load andsuspended sediment are very similar, but are not the same. Suspended Sediment containssediment uplifted inFluvial zones, but unlike suspended load no turbulence is required to keep it uplifted. Suspended loads required the Velocity to keep the sediment transporting above the bed. With low velocity the sediment will deposit.

Velocity

[edit]

The suspended load is carried within the lower to middle part of the water column and moves at a large fraction of the mean flow velocity of the stream, with aRouse number between 0.8 and 1.2. The rates within the Rouse number reveal how at which the sediment will transport at the current velocity. It is the ratio of the fall velocity and uplift velocity on a grain.

Mode of TransportRouse Number
Bed Load>2.5
Suspended Load 50%>1.2, <2.5
Suspended Load 100%>0.8, <1.2
Wash Load<0.8

Diagrams

[edit]
Hjulström diagram

Suspended load is often visualised using two diagrams. TheHjulström curve uses velocity and sediment size to compare the rate of erosion, transportation, and deposition. While the diagram shows the rate, one flaw about theHjulström Diagram is that it doesn't show the depth of the creek giving an estimated rate.

The second diagram used is the Shields Diagram. The Shields Diagram (based on theShields formula) uses the critical shear stress andReynolds number to estimate transportation rate. The Shields Diagram is considered a more precise chart to estimate suspended load.[1][2]

Measuring suspended load

[edit]

Shear stress

[edit]

To find the stream power for sediment transportation,shear stress helps determine the force required to allow sediment transportation.

τ=Pw.g.d.s{\displaystyle \tau =Pw.g.d.s}

Critical shear stress

[edit]

The point at which the sediment is transported within a stream

τc=τc.g.(pspw)d50{\displaystyle \tau {\scriptstyle {\text{c}}}=\tau {\scriptstyle {\text{c}}}.g.(p{\scriptstyle {\text{s}}}-p{\scriptstyle {\text{w}}})d50}

Suspended load transport rate

[edit]

qs=w.h.ca.[((a/h)z(a/h))/((1a/h)Z.(1.2Z))]{\displaystyle q{\scriptstyle {\text{s}}}=w.h.c{\scriptstyle {\text{a}}}.[((a/h)^{z}-(a/h))/((1-a/h)Z.(1.2-Z))]}

See also

[edit]

References

[edit]
  1. ^Shields, A.. (1936).Anwendung der Aehnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung [Application of similarity mechanics and turbulence research on shear flow](PDF). Mitteilungen der Preußischen Versuchsanstalt für Wasserbau (in German). Vol. 26. Berlin: Preußische Versuchsanstalt für Wasserbau. Archived fromthe original on 2011-07-18.
  2. ^Shields, A. (1936)."Application of similarity principles and turbulence research to bed-load movement (translated version)".Caltech Library. Mitteilungen der Preußischen Versuchsanstalt für Wasserbau.26. Berlin: Preußische Versuchsanstalt für Wasserbau.

Further reading

[edit]
  • "Sediment Transport and Deposition".Fondriest Environmental Learning Center. Fondriest Environmental, Inc. Retrieved23 March 2019.
  • Lemke, Karen A. (12 September 2017)."Stream Sediment".Geography/Geology 312: Geomorphology. University of Wisconsin-Stevens Point. Retrieved23 March 2019.
Rivers
(lists)
Streams
Springs
(list)
Sedimentary processes
anderosion
Fluvial landforms
Fluvial flow
Surface runoff
Floods andstormwater
Point source pollution
River measurement
and modelling
River engineering
River sports
Related
Water
Glacial
Hillslope
Aeolian
Retrieved from "https://en.wikipedia.org/w/index.php?title=Suspended_load&oldid=1259237696"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp