Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Step function

From Wikipedia, the free encyclopedia
Linear combination of indicator functions of real intervals
This article is about a piecewise constant function. For the unit step function, seeHeaviside step function.

In mathematics, afunction on thereal numbers is called astep function if it can be written as afinitelinear combination ofindicator functions ofintervals. Informally speaking, a step function is apiecewiseconstant function having only finitely many pieces.

An example of step functions (the red graph). In this function, each constant subfunction with a function valueαi (i = 0, 1, 2, ...) is defined by an intervalAi and intervals are distinguished by pointsxj (j = 1, 2, ...). This particular step function isright-continuous.

Definition and first consequences

[edit]

A functionf:RR{\displaystyle f\colon \mathbb {R} \rightarrow \mathbb {R} } is called astep function if it can be written as[citation needed]

f(x)=i=0nαiχAi(x){\displaystyle f(x)=\sum \limits _{i=0}^{n}\alpha _{i}\chi _{A_{i}}(x)}, for all real numbersx{\displaystyle x}

wheren0{\displaystyle n\geq 0},αi{\displaystyle \alpha _{i}} are real numbers,Ai{\displaystyle A_{i}} are intervals, andχA{\displaystyle \chi _{A}} is theindicator function ofA{\displaystyle A}:

χA(x)={1if xA0if xA{\displaystyle \chi _{A}(x)={\begin{cases}1&{\text{if }}x\in A\\0&{\text{if }}x\notin A\\\end{cases}}}

In this definition, the intervalsAi{\displaystyle A_{i}} can be assumed to have the following two properties:

  1. The intervals arepairwise disjoint:AiAj={\displaystyle A_{i}\cap A_{j}=\emptyset } forij{\displaystyle i\neq j}
  2. Theunion of the intervals is the entire real line:i=0nAi=R.{\displaystyle \bigcup _{i=0}^{n}A_{i}=\mathbb {R} .}

Indeed, if that is not the case to start with, a different set of intervals can be picked for which these assumptions hold. For example, the step function

f=4χ[5,1)+3χ(0,6){\displaystyle f=4\chi _{[-5,1)}+3\chi _{(0,6)}}

can be written as

f=0χ(,5)+4χ[5,0]+7χ(0,1)+3χ[1,6)+0χ[6,).{\displaystyle f=0\chi _{(-\infty ,-5)}+4\chi _{[-5,0]}+7\chi _{(0,1)}+3\chi _{[1,6)}+0\chi _{[6,\infty )}.}

Variations in the definition

[edit]

Sometimes, the intervals are required to be right-open[1] or allowed to be singleton.[2] The condition that the collection of intervals must be finite is often dropped, especially in school mathematics,[3][4][5] though it must still belocally finite, resulting in the definition of piecewise constant functions.

Examples

[edit]
TheHeaviside step function is an often-used step function.
Therectangular function, the next simplest step function.

Non-examples

[edit]
  • Theinteger part function is not a step function according to the definition of this article, since it has an infinite number of intervals. However, some authors[6] also define step functions with an infinite number of intervals.[6]

Properties

[edit]

See also

[edit]

References

[edit]
  1. ^"Step Function".
  2. ^"Step Functions - Mathonline".
  3. ^"Mathwords: Step Function".
  4. ^"Archived copy". Archived fromthe original on 2015-09-12. Retrieved2024-12-16.{{cite web}}: CS1 maint: archived copy as title (link)
  5. ^"Step Function".
  6. ^abBachman, Narici, Beckenstein (5 April 2002). "Example 7.2.2".Fourier and Wavelet Analysis. Springer, New York, 2000.ISBN 0-387-98899-8.{{cite book}}: CS1 maint: multiple names: authors list (link)
  7. ^Weir, Alan J (10 May 1973). "3".Lebesgue integration and measure. Cambridge University Press, 1973.ISBN 0-521-09751-7.
  8. ^Bertsekas, Dimitri P. (2002).Introduction to Probability.Tsitsiklis, John N., Τσιτσικλής, Γιάννης Ν. Belmont, Mass.: Athena Scientific.ISBN 188652940X.OCLC 51441829.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Step_function&oldid=1276070402"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp