Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

SpaceX CRS-4

From Wikipedia, the free encyclopedia
2014 American resupply spaceflight to the ISS
"CRS-4" redirects here. For the Orbital ATK CRS-4 mission, seeCygnus CRS Orb-4. For the Sardinian research centre, seeCRS4.

SpaceX CRS-4
CRS-4 Dragon approaching ISS on 23 September 2014
NamesSpX-4
Mission typeISS resupply
OperatorSpaceX
COSPAR ID2014-056AEdit this at Wikidata
SATCATno.40210Edit this on Wikidata
Mission duration34 days, 13 hours, 46 minutes
Spacecraft properties
SpacecraftDragon 1 C106
Spacecraft typeDragon 1
ManufacturerSpaceX
Launch mass6,000 kg (13,000 lb)
Dry mass4,200 kg (9,300 lb)
Start of mission
Launch date21 September 2014, 05:52:03 UTC[1]
RocketFalcon 9 v1.1 (B1010)
Launch siteCape Canaveral,SLC-40[2][3]
End of mission
DisposalRecovered
Landing date25 October 2014, 19:39 UTC[4]
Landing siteAtlantic Ocean
Orbital parameters
Reference systemGeocentric orbit
RegimeLow Earth orbit
Inclination51.6°
Berthing atInternational Space Station
Berthing portHarmonynadir
RMS capture23 September 2014, 10:52 UTC[5]
Berthing date23 September 2014, 13:21 UTC[5]
Unberthing date25 October 2014, 12:02 UTC
RMS release25 October 2014, 13:56 UTC[6]
Time berthed31 days, 22 hours, 41 minutes
Cargo
Mass2,216 kg (4,885 lb)[1]
Pressurised1,627 kg (3,587 lb)
Unpressurised589 kg (1,299 lb)

NASA SpX-4 mission patch

SpaceX CRS-4, also known asSpX-4,[7] was aCommercial Resupply Service mission to theInternational Space Station (ISS), contracted toNASA, which was launched on 21 September 2014 and arrived at the space station on 23 September 2014. It was the sixth flight forSpaceX's uncrewedDragoncargo spacecraft, and the fourth SpaceX operational mission contracted toNASA under aCommercial Resupply Services contract. The mission brought equipment and supplies to the space station, including the first 3D printer to be tested in space, a device to measure wind speed onEarth, and small satellites to be launched from the station. It also brought 20 mice for long-term research aboard the ISS.

Launch history

[edit]
Liftoff of SpaceX CRS-4 aboard a Falcon 9 launch vehicle on 21 September 2014

After a scrub due to poor weather conditions on 20 September 2014, the launch occurred on 21 September 2014 at 05:52UTC fromCape Canaveral Air Force Station (CCAFS) inFlorida.[1][2]

Primary payload

[edit]

NASA contracted for the CRS-4 mission and therefore determined the primary payload, date/time of launch, and targetorbital parameters. The CRS-4 lifted off on 21 September 2014 with a payload consisted of 4,885 lb (2,216 kg) of cargo, including 1,380 lb (630 kg) of crew supplies.[8] The cargo included theISS-RapidScat, aScatterometer designed to support weather forecasting by bouncing microwaves off the ocean's surface to measure wind speed, which was launched as an external payload to be attached on the end of the station's Columbus laboratory.[9] CRS-4 also includes the Space Station Integrated Kinetic Launcher for Orbital Payload Systems (SSIKLOPS), which will provide still another means to release other small satellites from the ISS.[10]

In addition, CRS-4 carried a new permanent life science research facility to the station: the Bone Densitometer (BD) payload, developed by Techshot, which provides a bone density scanning capability on ISS for utilization by NASA and theCenter for the Advancement of Science in Space (CASIS). The system measures bone mineral density (and lean and fat tissue) in mice usingDual-Energy X-ray Absorptiometry (DEXA).[11] TheRodent Research Hardware System was also carried to the ISS as part of the payload.

Secondary payloads

[edit]

SpaceX has primary control over manifesting, scheduling and loading secondary payloads. However, there are certain restrictions included in their contract with NASA that preclude specified hazards on thesecondary payloads, and also require contract-specified probabilities of success and safety margins for any SpaceX reboosts of the secondary satellites once the Falcon 9 second stage has achieved its initiallow Earth orbit (LEO).

The CRS-4 mission carried the 3D Printing in Zero-G Experiment to the ISS, as well as a small satellite as secondary payload that will be deployed from the ISS: SPINSAT.[12] It also brought 20 mice for long-term physiological research in space.[5]

3D Printing in Zero-G Experiment

[edit]

The 3D Printing in Zero-G Experiment will demonstrate the use of 3D printing technology in space. 3D printing works by the process of extruding streams of heated material (plastic, metal, etc.) and building a three-dimensional structure layer-upon-layer. The 3D Printing in Zero-G Experiment will test the 3D printer specifically designed for microgravity, byMade In Space, Inc., ofMountain View, California. Made In Space's customized 3D printer will be the first device to manufacture parts away from planet Earth. The 3D Printing in Zero-G Experiment will validate the capability of additive manufacturing in zero-gravity.[13] This experiment on the International Space Station is the first step towards establishing an on-demand machine shop in space, a critical enabling component for deep-space crewed missions and in-space manufacturing.[14]

SPINSAT

[edit]

SPINSAT is a 56 cm (22 in)-diameter sphere built by theU.S. governmentNaval Research Laboratory (NRL) to studyatmospheric density.

SPINSAT is a technology demonstrator for electric solid propellant (ESP) thrusters fromDigital Solid State Propulsion (DSSP).[12] DSSP's technology utilizeselectric propulsion to enable small satellites to makeorbital maneuvers that have generally not been possible in the very small, mass-constrained satellites such asCubeSats andnanosats.[15] This will be DSSP's first flight and will be deployed from theKibō module airlock. NASA safety experts approved the mission — which by its nature must start with the satellite inside the habitable volume of the ISS — because the satellite's 12 thruster-clusters burn an inert solid fuel, and then only when an electric charge is passed across it.[16]

Rodent Research Hardware System

[edit]
Main article:Rodent Research Hardware System

The mission also brought 20mice to live on the ISS for study of the long-term effects of microgravity on the rodents using the Rodent Research Hardware System.[5]

First stage landing attempt

[edit]
Main article:SpaceX reusable launch system development program

The Falcon 9 first stage for the CRS-4 mission re-entered the atmosphere over theAtlantic Ocean off theEast Coast of the United States. Its re-entry was captured on video by a NASAWB-57 aircraft as part of research into high-speedMars atmospheric entry.[17]

In November 2015, a panel from this first stage was found floating off theIsles of Scilly in the southwestUnited Kingdom.[18][19] Although much of the media suggested the part came from the laterCRS-7 launch which exploded, SpaceX confirmed it came from CRS-4.[20]

Dragon reuse

[edit]

The structural core of the CRS-4 Dragon capsule,Dragon C106, was refurbished and reused in theSpaceX CRS-11 mission, the first Dragon capsule to be reused.

Gallery

[edit]
SpaceX CRS-4
  • Launch of CRS-4
    Launch of CRS-4
  • Long-exposure image of launch
    Long-exposure image of launch
  • CRS-4 docked to the ISS
    CRS-4 docked to the ISS
  • Dragon descending under parachutes
    Dragon descending under parachutes

See also

[edit]

References

[edit]
  1. ^abcSchierholz, Stephanie (21 September 2014)."NASA Cargo Launches to Space Station aboard SpaceX Resupply Mission". NASA. Retrieved21 September 2014.Public Domain This article incorporates text from this source, which is in thepublic domain.
  2. ^ab"Tracking Station: Launch Log". Spaceflight Now. 17 March 2017. Retrieved30 June 2017.
  3. ^"SpaceX Launch Manifest". SpaceX. Retrieved31 January 2013.
  4. ^Garcia, Mark (25 October 2014)."Dragon Splashes Down — SpaceX CRS-4 Ends". NASA. Retrieved30 June 2017.Public Domain This article incorporates text from this source, which is in thepublic domain.
  5. ^abcdBergin, Chris (22 September 2014)."SpaceX's CRS-4 Dragon completes Tuesday arrival at ISS". NASASpaceFlight.com. Retrieved30 June 2017.
  6. ^Bergin, Chris (25 October 2014)."CRS-4: SpaceX Dragon returns back to Earth". NASASpaceFlight.com. Retrieved30 June 2017.
  7. ^Suffredini, Mike (14 April 2014)."International Space Station Program Status"(PDF). NASA. p. 18. Retrieved31 July 2014.
  8. ^Poladian, Charles (20 September 2014)."SpaceX Launch Delayed, Watch The Rescheduled ISS Cargo Resupply Mission Sunday".International Business Times.
  9. ^Rodriguez, Joshua (29 October 2013)."Watching Earth's Winds, On a Shoestring". NASA. Retrieved18 May 2014.
  10. ^Wolverton, Mark (3 April 2014)."Meet Space Station's Small Satellite Launcher Suite". NASA. Retrieved18 May 2014.
  11. ^"Bone Densitometer". NASA. Retrieved18 May 2014.Public Domain This article incorporates text from this source, which is in thepublic domain.
  12. ^ab"Dragon C2, CRS-1,... CRS-12". Gunter's Space Page. Retrieved18 May 2014.
  13. ^"Made In Space and NASA to Send First 3D Printer into Space". Made In Space. 31 May 2013. Archived fromthe original on 1 July 2014. Retrieved4 August 2014.
  14. ^"3D Printing In Zero-G Technology Demonstration (3D Printing In Zero-G)". NASA. 31 July 2014. Retrieved4 August 2014.Public Domain This article incorporates text from this source, which is in thepublic domain.
  15. ^Messier, Doug (6 April 2014)."Digital Solid State Propulsion is Headed to ISS". Parabolic Arc. Retrieved7 April 2014.
  16. ^"Spinsat". Gunter's Space Page. Retrieved18 May 2014.
  17. ^"Commercial Rocket Test Helps Prep for Journey to Mars". NASA. 17 October 2014. Retrieved27 November 2015.
  18. ^Ferreira, Becky (27 November 2015)."A SpaceX Rocket Washed Up in England After 14 Months at Sea". Vice.com. Retrieved27 November 2015.
  19. ^Brian, Matt (27 November 2015)."Debris from SpaceX's Falcon 9 washes up in England". Engadget. Retrieved27 November 2015.
  20. ^"Scilly space rocket Falcon 9 did not explode". BBC News. 1 December 2015. Retrieved7 December 2015.

External links

[edit]
Wikimedia Commons has media related toSpaceX CRS-4.
Portal:
Spacecraft

Hardware
Missions
Demo flights
ISS logistics
Crewed missions
  • Ongoing spaceflights inunderline
  • Italics indicates future missions
  • Symbol † indicates failed missions
SpaceX missions and payloads
Launch vehicles
Falcon 1 missions
Falcon 9 missions
Demonstrations
ISS logistics
Crewed
Commercial
satellites
Scientific
satellites
Military
satellites
  • NROL-76
  • X-37B OTV-5
  • Zuma
  • SES-16 / GovSat-1
  • Paz
  • GPS III-01
  • ANASIS-II
  • GPS III-03
  • NROL-108
  • GPS III-04
  • GPS III-05
  • COSMO-SkyMed CSG-2
  • NROL-87
  • NROL-85 (Intruder 13A/B)
  • SARah 1
  • EROS-C3
  • GPS III-06
  • Transport and Tracking Layer (Tranche 0, Flight 1)
  • Transport and Tracking Layer (Tranche 0, Flight 2)
  • 425 Project flight 1 (EO/IR)
  • SARah 2/3
  • USSF-124
  • 425 Project flight 2 (SAR #1)
  • Weather System Follow-on Microwave 1
  • NROL-146
  • NROL-186
  • NROL-113
  • NROL-167
  • NROL-126
  • GPS III-07
  • NROL-149
  • 425 Project flight 3 (SAR #2)
  • NROL-153
  • Spainsat NG I
  • NROL-57
  • NROL-69
  • NROL-192
  • NROL-145
  • 425 Project flight 4 (SAR #3)
  • GPS III-08
  • SDA Tranche 1 DES
  • Dror-1
  • USSF-36 (X-37BOTV-8)
  • National Advanced Optical System (NAOS)
  • SDA Tranche 1 Transport layer T1TL-B
  • NROL-48
  • SDA Tranche 1 Transport layer T1TL-C
  • Spainsat NG II
  • 425 Project flight 5 (SAR #4)
  • CSG-3
  • SDA Tranche 1 Transport layer T1TL-D
  • SDA Tranche 1 Transport layer T1TL-E
  • SDA Tranche 1 Tracking layer T1TR-C
  • USSF-31
  • Skynet 6A
  • SDA Tranche 1 Transport layer T1TL-F
  • SDA Tranche 1 Tracking layer T1TR-A
  • SDA Tranche 1 Tracking layer T1TR-E
  • SDA Tranche 2 Transport layer T2TL-A
  • SDA Tranche 2 Transport layer T2TL-C
  • SDA Tranche 2 Transport layer T2TL-D
  • SDA Tranche 2 Transport layer T2TL-E
  • USSF-75
  • USSF-70
  • SDA Tranche 2 Transport layer T2TL-F
  • SDA Tranche 2 Transport layer T2TL-G
  • SDA Tranche 2 Transport layer T2TL-H
Starlink
Rideshares
Transporter
Bandwagon
Falcon Heavy missions
Starship missions
Flight tests
Crewed
Commercial
satellites
  • Ongoing spaceflights are underlined
  • Future missions andvehicles under development in italics
  • Failed missions† are marked withdagger
2000–2004
2005–2009
2010–2014
2015–2019
2020–2024
2025–2029
Future
Spacecraft
  • Ongoing spaceflights inunderline
  • Future spaceflights initalics
  • † - mission failed to reach ISS
January
February
March
April
May
June
July
August
September
October
November
December
Launches are separated by dots ( • ), payloads by commas ( , ), multiple names for the same satellite by slashes ( / ).
Crewed flights are underlined. Launch failures are marked with the † sign. Payloads deployed from other spacecraft are (enclosed in parentheses).
Retrieved from "https://en.wikipedia.org/w/index.php?title=SpaceX_CRS-4&oldid=1289753835"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp