Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Solar eclipse of November 23, 2003

From Wikipedia, the free encyclopedia
Total eclipse
Solar eclipse of November 23, 2003
Total eclipse
Map
Gamma−0.9638
Magnitude1.0379
Maximum eclipse
Duration117 s (1 min 57 s)
Coordinates72°42′S88°24′E / 72.7°S 88.4°E /-72.7; 88.4
Max. width of band495 km (308 mi)
Times (UTC)
Greatest eclipse22:50:22
References
Saros152 (12 of 70)
Catalog # (SE5000)9516

A totalsolar eclipse occurred at the Moon'sdescending node of orbit between Sunday, November 23 and Monday, November 24, 2003,[1][2] with amagnitude of 1.0379. Asolar eclipse occurs when theMoon passes betweenEarth and theSun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon'sapparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 25 minutes beforeperigee (on November 23, 2003, at 23:15 UTC), the Moon's apparent diameter was near its maximum.[3] Perigee did occur just past the greatest point of this eclipse.

For most solar eclipses the path of totality moves eastwards. In this case the path moved south and then west round Antarctica.

Totality was visible from a corridor in easternAntarctica. A partial eclipse was visible for parts ofAustralia,New Zealand,Antarctica, southernChile, and southernArgentina.

Observations

[edit]

A Russian icebreaker departed fromPort Elizabeth,South Africa carrying tourists to observe the eclipse near theShackleton Ice Shelf andNovolazarevskaya Station, and then sailed toHobart,Tasmania. About 100 people from 15 countries were on board, including Iranian amateur astronomerBabak Amin Tafreshi,NASA'sGoddard Space Flight Center astrophysicistFred Espenak,Williams College professorJay Pasachoff. There are also about 200 scientists and tourists taking two commercialcharter flights to observe it over Antarctica. This was the first time humans observed a total solar eclipse from Antarctica.[4][5][6]

Images

[edit]
A photo of the eclipse.


Eclipse timing

[edit]

Places experiencing partial eclipse

[edit]
Solar Eclipse of November 23, 2003
(Local Times)
Country or territoryCity or placeStart of partial eclipseMaximum eclipseEnd of partial eclipseDuration of eclipse (hr:min)Maximum coverage
 Timor-LesteBaucau[a]06:04:18 (sunrise)06:09:3606:19:380:150.34%
 Timor-LesteDili[a]06:07:39 (sunrise)06:10:0606:22:280:150.65%
 Timor-LesteSame[a]06:06:41 (sunrise)06:10:2706:24:490:181.01%
 Timor-LesteSuai[a]06:07:47 (sunrise)06:10:5406:27:060:191.47%
 AustraliaDarwin[a]06:22:2406:41:3507:01:210:392.40%
 IndonesiaKupang[a]05:13:09 (sunrise)05:15:2905:33:150:203.11%
 AustraliaTennant Creek[a]06:17:2206:48:4807:21:501:0410.54%
 AustraliaAlice Springs[a]06:17:0706:54:0607:33:181:1617.97%
 AustraliaBrisbane[a]07:04:1307:31:4608:00:380:564.34%
 AustraliaEucla[a]05:36:1206:21:0607:09:041:3338.56%
 AustraliaPerth[a]05:05:01 (sunrise)05:39:5506:27:571:2352.53%
 AustraliaAdelaide[a]07:25:0308:10:5809:00:121:3532.88%
 AustraliaLord Howe Island[a]08:14:3808:42:0909:10:550:563.66%
 AustraliaSydney[a]08:02:0308:42:1809:25:121:2315.27%
 AustraliaCanberra[a]08:01:0108:44:0309:30:021:2920.11%
 AustraliaMelbourne[a]08:00:2808:47:1309:37:211:3729.69%
 AustraliaHobart[a]08:07:3108:57:2309:50:491:4335.02%
 New ZealandWellington[a]10:52:3911:16:4411:41:310:491.65%
 New ZealandChristchurch[a]10:43:0711:18:2611:55:141:125.93%
 New ZealandOban[a]10:34:1811:19:5512:07:561:3415.70%
 New ZealandDunedin[a]10:38:0911:20:2912:04:531:2711.48%
 New ZealandChatham Islands[a]12:13:1212:19:4712:26:240:130.03%
 AntarcticaCasey Station[a]05:42:0606:35:2407:30:481:4995.21%
 AntarcticaDavis Station[a]04:55:3205:45:4106:37:081:4298.53%
 Falkland IslandsStanley20:25:5220:32:3420:36:51 (sunset)0:114.46%
 AntarcticaOrcadas Base20:05:4620:33:4020:41:50 (sunset)0:3640.80%
 AntarcticaMarambio Base20:05:5520:54:0521:40:511:3559.27%
 AntarcticaCarlini Base20:09:4620:57:0621:42:581:3354.58%
 ArgentinaUshuaia20:26:2521:09:0021:34:28 (sunset)1:0833.51%
 ChilePunta Arenas20:30:5121:11:4521:36:10 (sunset)1:0528.23%
References:[1]

Eclipse details

[edit]

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the Moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[7]

November 23, 2003 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact2003 November 23 at 20:47:10.0 UTC
First Umbral External Contact2003 November 23 at 22:20:25.7 UTC
First Central Line2003 November 23 at 22:23:45.1 UTC
First Umbral Internal Contact2003 November 23 at 22:27:31.3 UTC
Greatest Duration2003 November 23 at 22:50:18.7 UTC
Greatest Eclipse2003 November 23 at 22:50:21.7 UTC
Ecliptic Conjunction2003 November 23 at 23:00:01.3 UTC
Equatorial Conjunction2003 November 23 at 23:21:19.7 UTC
Last Umbral Internal Contact2003 November 23 at 23:12:52.0 UTC
Last Central Line2003 November 23 at 23:16:38.4 UTC
Last Umbral External Contact2003 November 23 at 23:19:57.9 UTC
Last Penumbral External Contact2003 November 24 at 00:53:20.5 UTC
November 23, 2003 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude1.03789
Eclipse Obscuration1.07721
Gamma−0.96381
Sun Right Ascension15h56m23.2s
Sun Declination-20°24'22.8"
Sun Semi-Diameter16'11.8"
Sun Equatorial Horizontal Parallax08.9"
Moon Right Ascension15h55m07.5s
Moon Declination-21°20'45.7"
Moon Semi-Diameter16'44.7"
Moon Equatorial Horizontal Parallax1°01'27.3"
ΔT64.5 s

Eclipse season

[edit]
See also:Eclipse cycle

This eclipse is part of aneclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by afortnight.

Eclipse season of November 2003
November 9
Ascending node (full moon)
November 23
Descending node (new moon)
Total lunar eclipse
Lunar Saros 126
Total solar eclipse
Solar Saros 152

Related eclipses

[edit]

Eclipses in 2003

[edit]

Metonic

[edit]

Tzolkinex

[edit]

Half-Saros

[edit]

Tritos

[edit]

Solar Saros 152

[edit]

Inex

[edit]

Triad

[edit]

Solar eclipses of 2000–2003

[edit]

This eclipse is a member of asemester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternatingnodes of the Moon's orbit.[8]

The partial solar eclipses onFebruary 5, 2000 andJuly 31, 2000 occur in the previous lunar year eclipse set.

Solar eclipse series sets from 2000 to 2003
Ascending node Descending node
SarosMapGammaSarosMapGamma
117July 1, 2000

Partial
−1.28214122

Partial projection inMinneapolis, MN, USA
December 25, 2000

Partial
1.13669
127

Totality inLusaka, Zambia
June 21, 2001

Total
−0.57013132

Partial inMinneapolis, MN, USA
December 14, 2001

Annular
0.40885
137

Partial inLos Angeles, CA, USA
June 10, 2002

Annular
0.19933142

Totality inWoomera, South Australia
December 4, 2002

Total
−0.30204
147

Annularity inCulloden, Scotland
May 31, 2003

Annular
0.99598152
November 23, 2003

Total
−0.96381

Saros 152

[edit]

This eclipse is a part ofSaros series 152, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on July 26, 1805. It contains total eclipses fromNovember 2, 1967 through September 14, 2490; hybrid eclipses from September 26, 2508 through October 17, 2544; and annular eclipses from October 29, 2562 through June 16, 2941. The series ends at member 70 as a partial eclipse on August 20, 3049. Its eclipses are tabulated in three columns; every third eclipse in the same column is oneexeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality will be produced by member 30 at 5 minutes, 16 seconds on June 9, 2328, and the longest duration of annularity will be produced by member 53 at 5 minutes, 20 seconds on February 16, 2743. All eclipses in this series occur at the Moon’sdescending node of orbit.[9]

Series members 1–22 occur between 1805 and 2200:
123

July 26, 1805

August 6, 1823

August 16, 1841
456

August 28, 1859

September 7, 1877

September 18, 1895
789

September 30, 1913

October 11, 1931

October 21, 1949
101112

November 2, 1967

November 12, 1985

November 23, 2003
131415

December 4, 2021

December 15, 2039

December 26, 2057
161718

January 6, 2076

January 16, 2094

January 29, 2112
192021

February 8, 2130

February 19, 2148

March 2, 2166
22

March 12, 2184

Metonic series

[edit]

Themetonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between September 12, 1931 and July 1, 2011
September 11–12June 30–July 1April 17–19February 4–5November 22–23
114116118120122

September 12, 1931

June 30, 1935

April 19, 1939

February 4, 1943

November 23, 1946
124126128130132

September 12, 1950

June 30, 1954

April 19, 1958

February 5, 1962

November 23, 1965
134136138140142

September 11, 1969

June 30, 1973

April 18, 1977

February 4, 1981

November 22, 1984
144146148150152

September 11, 1988

June 30, 1992

April 17, 1996

February 5, 2000

November 23, 2003
154156

September 11, 2007

July 1, 2011

Tritos series

[edit]

This eclipse is a part of atritos cycle, repeating at alternating nodes every 135synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with theanomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

The partial solar eclipses on November 16, 2134 (part of Saros 164) and October 16, 2145 (part of Saros 165) are also a part of this series but are not included in the table below.

Series members between 1801 and 2069

June 6, 1807
(Saros 134)

May 5, 1818
(Saros 135)

April 3, 1829
(Saros 136)

March 4, 1840
(Saros 137)

February 1, 1851
(Saros 138)

December 31, 1861
(Saros 139)

November 30, 1872
(Saros 140)

October 30, 1883
(Saros 141)

September 29, 1894
(Saros 142)

August 30, 1905
(Saros 143)

July 30, 1916
(Saros 144)

June 29, 1927
(Saros 145)

May 29, 1938
(Saros 146)

April 28, 1949
(Saros 147)

March 27, 1960
(Saros 148)

February 25, 1971
(Saros 149)

January 25, 1982
(Saros 150)

December 24, 1992
(Saros 151)

November 23, 2003
(Saros 152)

October 23, 2014
(Saros 153)

September 21, 2025
(Saros 154)

August 21, 2036
(Saros 155)

July 22, 2047
(Saros 156)

June 21, 2058
(Saros 157)

May 20, 2069
(Saros 158)

Inex series

[edit]

This eclipse is a part of the long periodinex cycle, repeating at alternating nodes, every 358synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with theanomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200

April 13, 1801
(Saros 145)

March 24, 1830
(Saros 146)

March 4, 1859
(Saros 147)

February 11, 1888
(Saros 148)

January 23, 1917
(Saros 149)

January 3, 1946
(Saros 150)

December 13, 1974
(Saros 151)

November 23, 2003
(Saros 152)

November 3, 2032
(Saros 153)

October 13, 2061
(Saros 154)

September 23, 2090
(Saros 155)

September 5, 2119
(Saros 156)

August 14, 2148
(Saros 157)

July 25, 2177
(Saros 158)

Notes

[edit]
  1. ^abcdefghijklmnopqrstuvwxThe times listed for this location occur on November 24, 2003, local time.

References

[edit]
  1. ^ab"November 23–24, 2003 Total Solar Eclipse". timeanddate. Retrieved11 August 2024.
  2. ^"Eclipse of sun viewed on Antarctic for first time".Whitehorse Daily Star. 2003-11-24. p. 16. Retrieved2023-10-25 – via Newspapers.com.
  3. ^"Moon Distances for London, United Kingdom, England". timeanddate. Retrieved11 August 2024.
  4. ^"Ice and fire: A total solar eclipse over Antarctica". Australian Antarctic Division. Archived fromthe original on 4 February 2016.
  5. ^"Antarctica – 23 November 2003". Archived fromthe original on 7 March 2016.
  6. ^Glenn Schneider."TSE 2003 & TOTAL ECLIPSE IMAGING From the Flight Deck of QF2901/Antarctica 23 November 2003". Archived fromthe original on 20 December 2015.
  7. ^"Total Solar Eclipse of 2003 Nov 23". EclipseWise.com. Retrieved11 August 2024.
  8. ^van Gent, R.H."Solar- and Lunar-Eclipse Predictions from Antiquity to the Present".A Catalogue of Eclipse Cycles. Utrecht University. Retrieved6 October 2018.
  9. ^"NASA - Catalog of Solar Eclipses of Saros 152".eclipse.gsfc.nasa.gov.

External links

[edit]

Photos:

Features
Lists of eclipses
By era
Saros series (list)
Visibility
Historical
21 August 2017 total solar eclipse
Total/hybrid eclipses
next total/hybrid
10 May 2013 annular eclipse
Annular eclipses
next annular
23 October 2014 partial eclipse
Partial eclipses
next partial
Other bodies
Related
Retrieved from "https://en.wikipedia.org/w/index.php?title=Solar_eclipse_of_November_23,_2003&oldid=1316871184"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp