Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Solar eclipse of November 12, 1928

From Wikipedia, the free encyclopedia
20th-century partial solar eclipse
Solar eclipse of November 12, 1928
Partial eclipse
Map
Gamma1.0861
Magnitude0.8078
Maximum eclipse
Coordinates62°36′N81°06′E / 62.6°N 81.1°E /62.6; 81.1
Times (UTC)
Greatest eclipse9:48:24
References
Saros122 (53 of 70)
Catalog # (SE5000)9348

A partialsolar eclipse occurred at the Moon'sdescending node of orbit on Monday, November 12, 1928,[1] with amagnitude of 0.8078. Asolar eclipse occurs when theMoon passes betweenEarth and theSun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

A partial eclipse was visible for parts ofNortheast Africa,Europe,West Asia,Central Asia, andSouth Asia.

Eclipse details

[edit]

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the Moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[2]

November 12, 1928 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1928 November 12 at 07:33:47.2 UTC
Equatorial Conjunction1928 November 12 at 08:58:05.5 UTC
Ecliptic Conjunction1928 November 12 at 09:35:37.7 UTC
Greatest Eclipse1928 November 12 at 09:48:24.3 UTC
Last Penumbral External Contact1928 November 12 at 12:03:24.1 UTC
November 12, 1928 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude0.80778
Eclipse Obscuration0.72803
Gamma1.08611
Sun Right Ascension15h09m18.3s
Sun Declination-17°41'18.0"
Sun Semi-Diameter16'09.8"
Sun Equatorial Horizontal Parallax08.9"
Moon Right Ascension15h10m47.3s
Moon Declination-16°46'39.9"
Moon Semi-Diameter14'44.8"
Moon Equatorial Horizontal Parallax0°54'07.3"
ΔT24.1 s

Eclipse season

[edit]
See also:Eclipse cycle

This eclipse is part of aneclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by afortnight.

Eclipse season of November 1928
November 12
Descending node (new moon)
November 27
Ascending node (full moon)
Partial solar eclipse
Solar Saros 122
Total lunar eclipse
Lunar Saros 134

Related eclipses

[edit]

Eclipses in 1928

[edit]

Metonic

[edit]

Tzolkinex

[edit]

Half-Saros

[edit]

Tritos

[edit]

Solar Saros 122

[edit]

Inex

[edit]

Triad

[edit]

Solar eclipses of 1928–1931

[edit]

This eclipse is a member of asemester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternatingnodes of the Moon's orbit.[3]

The partial solar eclipse onJune 17, 1928 occurs in the previous lunar year eclipse set, and the partial solar eclipse onSeptember 12, 1931 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 1928 to 1931
Ascending node Descending node
SarosMapGammaSarosMapGamma
117May 19, 1928

Total (non-central)
1.0048122November 12, 1928

Partial
1.0861
127May 9, 1929

Total
−0.2887132November 1, 1929

Annular
0.3514
137April 28, 1930

Hybrid
0.473142October 21, 1930

Total
−0.3804
147April 18, 1931

Partial
1.2643152October 11, 1931

Partial
−1.0607

Saros 122

[edit]

This eclipse is a part ofSaros series 122, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on April 17, 991 AD. It contains total eclipses from July 12, 1135 through August 3, 1171; hybrid eclipses on August 13, 1189 and August 25, 1207; and annular eclipses from September 4, 1225 through October 10, 1874. The series ends at member 70 as a partial eclipse on May 17, 2235. Its eclipses are tabulated in three columns; every third eclipse in the same column is oneexeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 9 at 1 minutes, 25 seconds on July 12, 1135, and the longest duration of annularity was produced by member 50 at 6 minutes, 28 seconds on October 10, 1874. All eclipses in this series occur at the Moon’sdescending node of orbit.[4]

Series members 46–68 occur between 1801 and 2200:
464748

August 28, 1802

September 7, 1820

September 18, 1838
495051

September 29, 1856

October 10, 1874

October 20, 1892
525354

November 2, 1910

November 12, 1928

November 23, 1946
555657

December 4, 1964

December 15, 1982

December 25, 2000
585960

January 6, 2019

January 16, 2037

January 27, 2055
616263

February 7, 2073

February 18, 2091

March 1, 2109
646566

March 13, 2127

March 23, 2145

April 3, 2163
6768

April 14, 2181

April 25, 2199

Metonic series

[edit]

Themetonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between April 8, 1902 and August 31, 1989
April 7–8January 24–25November 12August 31–September 1June 19–20
108110112114116

April 8, 1902

August 31, 1913

June 19, 1917
118120122124126

April 8, 1921

January 24, 1925

November 12, 1928

August 31, 1932

June 19, 1936
128130132134136

April 7, 1940

January 25, 1944

November 12, 1947

September 1, 1951

June 20, 1955
138140142144146

April 8, 1959

January 25, 1963

November 12, 1966

August 31, 1970

June 20, 1974
148150152154

April 7, 1978

January 25, 1982

November 12, 1985

August 31, 1989

Tritos series

[edit]

This eclipse is a part of atritos cycle, repeating at alternating nodes every 135synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with theanomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200

October 19, 1808
(Saros 111)

September 19, 1819
(Saros 112)

August 18, 1830
(Saros 113)

July 18, 1841
(Saros 114)

June 17, 1852
(Saros 115)

May 17, 1863
(Saros 116)

April 16, 1874
(Saros 117)

March 16, 1885
(Saros 118)

February 13, 1896
(Saros 119)

January 14, 1907
(Saros 120)

December 14, 1917
(Saros 121)

November 12, 1928
(Saros 122)

October 12, 1939
(Saros 123)

September 12, 1950
(Saros 124)

August 11, 1961
(Saros 125)

July 10, 1972
(Saros 126)

June 11, 1983
(Saros 127)

May 10, 1994
(Saros 128)

April 8, 2005
(Saros 129)

March 9, 2016
(Saros 130)

February 6, 2027
(Saros 131)

January 5, 2038
(Saros 132)

December 5, 2048
(Saros 133)

November 5, 2059
(Saros 134)

October 4, 2070
(Saros 135)

September 3, 2081
(Saros 136)

August 3, 2092
(Saros 137)

July 4, 2103
(Saros 138)

June 3, 2114
(Saros 139)

May 3, 2125
(Saros 140)

April 1, 2136
(Saros 141)

March 2, 2147
(Saros 142)

January 30, 2158
(Saros 143)

December 29, 2168
(Saros 144)

November 28, 2179
(Saros 145)

October 29, 2190
(Saros 146)

Inex series

[edit]

This eclipse is a part of the long periodinex cycle, repeating at alternating nodes, every 358synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with theanomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200

February 1, 1813
(Saros 118)

January 11, 1842
(Saros 119)

December 22, 1870
(Saros 120)

December 3, 1899
(Saros 121)

November 12, 1928
(Saros 122)

October 23, 1957
(Saros 123)

October 3, 1986
(Saros 124)

September 13, 2015
(Saros 125)

August 23, 2044
(Saros 126)

August 3, 2073
(Saros 127)

July 15, 2102
(Saros 128)

June 25, 2131
(Saros 129)

June 4, 2160
(Saros 130)

May 15, 2189
(Saros 131)

References

[edit]
  1. ^"November 12, 1928 Partial Solar Eclipse". timeanddate. Retrieved3 August 2024.
  2. ^"Partial Solar Eclipse of 1928 Nov 12". EclipseWise.com. Retrieved3 August 2024.
  3. ^van Gent, R.H."Solar- and Lunar-Eclipse Predictions from Antiquity to the Present".A Catalogue of Eclipse Cycles. Utrecht University. Retrieved6 October 2018.
  4. ^"NASA - Catalog of Solar Eclipses of Saros 122".eclipse.gsfc.nasa.gov.

External links

[edit]
Features
Lists of eclipses
By era
Saros series (list)
Visibility
Historical
21 August 2017 total solar eclipse
Total/hybrid eclipses
next total/hybrid
10 May 2013 annular eclipse
Annular eclipses
next annular
23 October 2014 partial eclipse
Partial eclipses
next partial
Other bodies
Related
Retrieved from "https://en.wikipedia.org/w/index.php?title=Solar_eclipse_of_November_12,_1928&oldid=1321560575"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp