Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Solar eclipse of August 21, 1914

From Wikipedia, the free encyclopedia
Total eclipse
Solar eclipse of August 21, 1914
Total eclipse
Map
Gamma0.7655
Magnitude1.0328
Maximum eclipse
Duration134 s (2 min 14 s)
Coordinates54°30′N27°06′E / 54.5°N 27.1°E /54.5; 27.1
Max. width of band170 km (110 mi)
Times (UTC)
Greatest eclipse12:34:27
References
Saros124 (49 of 73)
Catalog # (SE5000)9314

A totalsolar eclipse occurred at the Moon'sdescending node of orbit on Friday, August 21, 1914,[1] with amagnitude of 1.0328. Asolar eclipse occurs when theMoon passes betweenEarth and theSun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon'sapparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.7 days beforeperigee (on August 24, 1914, at 6:30 UTC), the Moon's apparent diameter was larger.[2]

The totality of this eclipse was visible from northernCanada,Greenland,Norway,Sweden,Russian Empire (the parts now belonging toÅland,Finland,Estonia,Latvia,Lithuania,Belarus,Ukraine andRussia, including cities ofRiga,Minsk,Kiev and northeastern part ofVilnius),Ottoman Empire (the parts now belonging toTurkey, northeastern tip ofSyria and northernIraq),Persia andBritish Raj (the parts now belonging toPakistan and western tip ofIndia). A partial eclipse was visible for parts of northeastNorth America,Europe,North Africa,East Africa, and theMiddle East. It was the first of four total solar eclipses that would be seen fromSweden during the next 40 years. This total solar eclipse occurred in the same calendar date as2017, but at the opposite node.

Several astronomers were setting up to observe the eclipse, in part as an attempt to confirmAlbert Einstein's theory ofgeneral relativity. However, due to the onset ofWorld War I as well as cloud cover, these experiments were unsuccessful.

Observations

[edit]

A number of observatories sent expeditions to Russia to observe the eclipse including those from Argentina, the United Kingdom, Germany, Russia, and the United States. The expeditions led byCharles Dillon Perrine of theArgentine National Observatory,Erwin Finlay-Freundlich of theBerlin-Babelsberg Observatory, Germany, andWilliam W. Campbell of theLick Observatory, California, included in their programs the second attempt to verify thegeneral relativity theory ofAlbert Einstein. (Perrine had made the first attempt at the 1912 solar eclipse in Brazil.[3]) However,World War I broke out and Freundlich and his equipment were interned in Russia, unable to carry out the necessary measurements. C. D. Perrine and W. W. Campbell, from neutral countries, Argentina and the United States, were permitted to continue with their plans, but clouds obscured the eclipse.[3][4] Perrine was able to obtain one photograph of the eclipse but the thin cloud cover was enough to obscure star locations necessary to test Einstein's theory.[5]

Eclipse details

[edit]

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the Moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[6]

August 21, 1914 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1914 August 21 at 10:12:09.6 UTC
First Umbral External Contact1914 August 21 at 11:25:24.7 UTC
First Central Line1914 August 21 at 11:26:20.7 UTC
First Umbral Internal Contact1914 August 21 at 11:27:17.1 UTC
Equatorial Conjunction1914 August 21 at 11:55:06.4 UTC
Ecliptic Conjunction1914 August 21 at 12:26:24.1 UTC
Greatest Eclipse1914 August 21 at 12:34:27.1 UTC
Greatest Duration1914 August 21 at 12:34:52.8 UTC
Last Umbral Internal Contact1914 August 21 at 13:41:59.4 UTC
Last Central Line1914 August 21 at 13:42:58.0 UTC
Last Umbral External Contact1914 August 21 at 13:43:56.1 UTC
Last Penumbral External Contact1914 August 21 at 14:56:55.9 UTC
August 21, 1914 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude1.03276
Eclipse Obscuration1.06658
Gamma0.76546
Sun Right Ascension09h59m08.5s
Sun Declination+12°18'56.8"
Sun Semi-Diameter15'48.7"
Sun Equatorial Horizontal Parallax08.7"
Moon Right Ascension10h00m29.2s
Moon Declination+12°59'43.6"
Moon Semi-Diameter16'09.7"
Moon Equatorial Horizontal Parallax0°59'18.8"
ΔT16.7 s

Eclipse season

[edit]
See also:Eclipse cycle

This eclipse is part of aneclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by afortnight.

Eclipse season of August–September 1914
August 21
Descending node (new moon)
September 4
Ascending node (full moon)
Total solar eclipse
Solar Saros 124
Partial lunar eclipse
Lunar Saros 136

Related eclipses

[edit]

Eclipses in 1914

[edit]

Metonic

[edit]

Tzolkinex

[edit]

Half-Saros

[edit]

Tritos

[edit]

Solar Saros 124

[edit]

Inex

[edit]

Triad

[edit]

Solar eclipses of 1913–1917

[edit]

This eclipse is a member of asemester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternatingnodes of the Moon's orbit.[7]

The partial solar eclipses onApril 6, 1913 andSeptember 30, 1913 occur in the previous lunar year eclipse set, and the solar eclipses onDecember 24, 1916 (partial),June 19, 1917 (partial), andDecember 14, 1917 (annular) occur in the next lunar year eclipse set.

Solar eclipse series sets from 1913 to 1917
Descending node Ascending node
SarosMapGammaSarosMapGamma
114August 31, 1913

Partial
1.4512119February 25, 1914

Annular
−0.9416
124August 21, 1914

Total
0.7655129February 14, 1915

Annular
−0.2024
134August 10, 1915

Annular
0.0124139
February 3, 1916

Total
0.4987
144July 30, 1916

Annular
−0.7709149January 23, 1917

Partial
1.1508
154July 19, 1917

Partial
−1.5101

Saros 124

[edit]

This eclipse is a part ofSaros series 124, repeating every 18 years, 11 days, and containing 73 events. The series started with a partial solar eclipse on March 6, 1049. It contains total eclipses from June 12, 1211 throughSeptember 22, 1968, and a hybrid eclipse onOctober 3, 1986. There are no annular eclipses in this set. The series ends at member 73 as a partial eclipse on May 11, 2347. Its eclipses are tabulated in three columns; every third eclipse in the same column is oneexeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 39 at 5 minutes, 46 seconds on May 3, 1734. All eclipses in this series occur at the Moon’sdescending node of orbit.[8]

Series members 43–64 occur between 1801 and 2200:
434445

June 16, 1806

June 26, 1824

July 8, 1842
464748

July 18, 1860

July 29, 1878

August 9, 1896
495051

August 21, 1914

August 31, 1932

September 12, 1950
525354

September 22, 1968

October 3, 1986

October 14, 2004
555657

October 25, 2022

November 4, 2040

November 16, 2058
585960

November 26, 2076

December 7, 2094

December 19, 2112
616263

December 30, 2130

January 9, 2149

January 21, 2167
64

January 31, 2185

Metonic series

[edit]

Themetonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between March 27, 1884 and August 20, 1971
March 27–29January 14November 1–2August 20–21June 8
108110112114116

March 27, 1884

August 20, 1895

June 8, 1899
118120122124126

March 29, 1903

January 14, 1907

November 2, 1910

August 21, 1914

June 8, 1918
128130132134136

March 28, 1922

January 14, 1926

November 1, 1929

August 21, 1933

June 8, 1937
138140142144146

March 27, 1941

January 14, 1945

November 1, 1948

August 20, 1952

June 8, 1956
148150152154

March 27, 1960

January 14, 1964

November 2, 1967

August 20, 1971

Tritos series

[edit]

This eclipse is a part of atritos cycle, repeating at alternating nodes every 135synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with theanomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200

June 26, 1805
(Saros 114)

May 27, 1816
(Saros 115)

April 26, 1827
(Saros 116)

March 25, 1838
(Saros 117)

February 23, 1849
(Saros 118)

January 23, 1860
(Saros 119)

December 22, 1870
(Saros 120)

November 21, 1881
(Saros 121)

October 20, 1892
(Saros 122)

September 21, 1903
(Saros 123)

August 21, 1914
(Saros 124)

July 20, 1925
(Saros 125)

June 19, 1936
(Saros 126)

May 20, 1947
(Saros 127)

April 19, 1958
(Saros 128)

March 18, 1969
(Saros 129)

February 16, 1980
(Saros 130)

January 15, 1991
(Saros 131)

December 14, 2001
(Saros 132)

November 13, 2012
(Saros 133)

October 14, 2023
(Saros 134)

September 12, 2034
(Saros 135)

August 12, 2045
(Saros 136)

July 12, 2056
(Saros 137)

June 11, 2067
(Saros 138)

May 11, 2078
(Saros 139)

April 10, 2089
(Saros 140)

March 10, 2100
(Saros 141)

February 8, 2111
(Saros 142)

January 8, 2122
(Saros 143)

December 7, 2132
(Saros 144)

November 7, 2143
(Saros 145)

October 7, 2154
(Saros 146)

September 5, 2165
(Saros 147)

August 4, 2176
(Saros 148)

July 6, 2187
(Saros 149)

June 4, 2198
(Saros 150)

Inex series

[edit]

This eclipse is a part of the long periodinex cycle, repeating at alternating nodes, every 358synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with theanomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200

October 20, 1827
(Saros 121)

September 29, 1856
(Saros 122)

September 8, 1885
(Saros 123)

August 21, 1914
(Saros 124)

August 1, 1943
(Saros 125)

July 10, 1972
(Saros 126)

June 21, 2001
(Saros 127)

June 1, 2030
(Saros 128)

May 11, 2059
(Saros 129)

April 21, 2088
(Saros 130)

April 2, 2117
(Saros 131)

March 12, 2146
(Saros 132)

February 21, 2175
(Saros 133)

References

[edit]
  1. ^"August 21, 1914 Total Solar Eclipse". timeanddate. Retrieved31 July 2024.
  2. ^"Moon Distances for London, United Kingdom, England". timeanddate. Retrieved31 July 2024.
  3. ^abPerrine, Charles D. (1923)."Contribution to the history of attempts to test the theory of relativity by means of astronomical observations".Astronomische Nachrichten.219 (17):281–284.Bibcode:1923AN....219..281P.doi:10.1002/asna.19232191706.
  4. ^Campbell, W.W.; Curtis, H.D. (1914). "The Lick Observatory-Crocker Eclipse Expedition to Brovarý, Russia".Publications of the Astronomical Society of the Pacific.26 (156):225–237.Bibcode:1914PASP...26..225C.doi:10.1086/122351.S2CID 120712519.
  5. ^Minniti, Edgardo; Paolantonio, Santiago (2013)."Attempts to prove Einstein's Theory of Relativity"(PDF).Córdoba Estelar. Translated by Cuestas, A.D.; Scorians, E.E.; Valotta, M.E. Córdoba, Argentina: Universidad Nacional de Córdoba. pp. 402–425.
  6. ^"Total Solar Eclipse of 1914 Aug 21". EclipseWise.com. Retrieved31 July 2024.
  7. ^van Gent, R.H."Solar- and Lunar-Eclipse Predictions from Antiquity to the Present".A Catalogue of Eclipse Cycles. Utrecht University. Retrieved6 October 2018.
  8. ^"NASA - Catalog of Solar Eclipses of Saros 124".eclipse.gsfc.nasa.gov.
Features
Lists of eclipses
By era
Saros series (list)
Visibility
Historical
21 August 2017 total solar eclipse
Total/hybrid eclipses
next total/hybrid
10 May 2013 annular eclipse
Annular eclipses
next annular
23 October 2014 partial eclipse
Partial eclipses
next partial
Other bodies
Related
Retrieved from "https://en.wikipedia.org/w/index.php?title=Solar_eclipse_of_August_21,_1914&oldid=1321559184"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp