Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Soil salinity

From Wikipedia, the free encyclopedia
Salt content in the soil
Visibly salt-affected soils on rangeland in Colorado. Salts dissolved from the soil accumulate at the soil surface and are deposited on the ground and at the base of the fence post.
Saline incrustation in a PVC irrigation pipe from Brazil

Soil salinity is thesalt content in thesoil; the process of increasing the salt content is known assalinization (also calledsalination inAmerican English).[1] Salts occur naturally within soils and water. Salinization can be caused by natural processes such asmineral weathering or by the gradual withdrawal of an ocean. It can also come about through artificial processes such asirrigation androad salt.

Natural occurrence

[edit]

Salts are a natural component in soils and water.Theions responsible for salinization are:Na+,K+,Ca2+,Mg2+ andCl.

Over long periods of time, as soil mineralsweather and release salts, these salts are flushed or leached out of the soil by drainage water in areas with sufficient precipitation. In addition to mineral weathering, salts are also deposited via dust and precipitation. Salts may accumulate in dry regions, leading to naturally saline soils. This is the case, for example, inlarge parts of Australia.

Human practices can increase the salinity of soils by the addition of salts in irrigation water. Proper irrigation management can prevent salt accumulation by providing adequate drainage water to leach added salts from the soil. Disrupting drainage patterns that provide leaching can also result in salt accumulations. An example of this occurred inEgypt in 1970 when theAswan High Dam was built. The change in the level ofground water before the construction had enabledsoil erosion, which led to high concentration of salts in the water table. After the construction, the continuous high level of the water table led to the salinization ofarable land.[citation needed]

Sodic soils

[edit]

When the Na+ (sodium) predominates, soils can becomesodic. ThepH of sodic soils may beacidic, neutral, oralkaline.

Sodic soils present particular challenges because they tend to have very poor structure which limits or preventswater infiltration and drainage. They tend to accumulate certain elements likeboron andmolybdenum in theroot zone at levels that may be toxic for plants.[2] The most common compound used forreclamation of sodic soil isgypsum, and some plants that are tolerant to salt andion toxicity may present strategies for improvement.[3][failed verification]

The term "sodic soil" is sometimes used imprecisely in scholarship. It's been used interchangeably with the termalkali soil, which is used in two meanings: 1) a soil with a pH greater than 8.2, 2) soil with an exchangeable sodium content above 15% of exchange capacity. The term "alkali soil" is often, but not always, used for soils that meet both of these characteristics.[4]

Dry land salinity

[edit]

Salinity in drylands can occur when the water table is between two and three metres from the surface of the soil. The salts from the groundwater are raised by capillary action to the surface of the soil. This occurs when groundwater is saline (which is true in many areas), and is favored by land use practices allowing more rainwater to enter the aquifer than it could accommodate. For example, the clearing of trees for agriculture is a major reason for dryland salinity in some areas, since deep rooting of trees has been replaced by shallow rooting of annual crops.

Salinity due to irrigation

[edit]
Rain or irrigation, in the absence of leaching, can bring salts to the surface by capillary action.
Main article:Environmental impacts of irrigation

Salinity fromirrigation can occur over time wherever irrigation occurs, since almost all water (even natural rainfall) contains some dissolved salts.[5] When the plants use the water, the salts are left behind in the soil and eventually begin to accumulate. This water in excess of plant needs is called theleaching fraction. Salinization from irrigation water is also greatly increased by poordrainage anduse of saline water for irrigating agricultural crops.

Salinity in urban areas often results from the combination of irrigation and groundwater processes. Irrigation is also now common in cities (gardens and recreation areas).

Consequences of soil salinity

[edit]

The consequences of salinity are

  • Detrimental effects on plant growth and yield
  • Damage to infrastructure (roads, bricks, corrosion of pipes and cables)
  • Reduction of water quality for users, sedimentation problems, increased leaching of metals,[6] especially copper, cadmium, manganese and zinc.
  • Soil erosion ultimately, when crops are too strongly affected by the amounts of salts.
  • More energy required to desalinate

Salinity is an importantland degradation problem. Soil salinity can be reduced byleaching soluble salts out of soil with excess irrigation water.Soil salinity control involveswatertable control andflushing in combination withtile drainage or another form ofsubsurface drainage.[7][8] A comprehensive treatment of soil salinity is available from theUnited NationsFood and Agriculture Organization.[9]

Salt tolerance of crops

[edit]
Main article:Salt tolerance of crops
Further information:Maas–Hoffman model andVan Genuchten–Gupta model

High levels of soil salinity can be tolerated if salt-tolerant plants are grown. Sensitive crops lose their vigor already in slightly saline soils, most crops are negatively affected by (moderately) saline soils, and only salinity-resistant crops thrive in severely saline soils. The University of Wyoming[10] and the Government of Alberta[11] report data on the salt tolerance of plants.

Field data in irrigated lands, under farmers' conditions, are scarce, especially in developing countries. However, some on-farm surveys have been made in Egypt,[12] India,[13] and Pakistan.[14] Some examples are shown in the following gallery, with crops arranged from sensitive to very tolerant.[15][16]

  • Graphs of crop yield and soil salinity in farmers' fields ordered by increasing salt tolerance.
  • Fig. 1. Berseem (clover), cultivated in Egypt's Nile Delta, is a salt-sensitive crop and tolerates an ECe value up to 2.4 dS/m, whereafter yields start to decline.
    Fig. 1. Berseem (clover), cultivated in Egypt's Nile Delta, is a salt-sensitive crop and tolerates an ECe value up to 2.4 dS/m, whereafter yields start to decline.
  • Fig. 2. Wheat grown in Sampla, Haryana, India, is slightly sensitive, tolerating an ECe value of 4.9 dS/m.
    Fig. 2. Wheat grown in Sampla, Haryana, India, is slightly sensitive, tolerating an ECe value of 4.9 dS/m.
  • Fig. 3. The field measurements in wheat fields in Gohana, Haryana, India, showed a higher tolerance level of ECe = 7.1 dS/m. (The Egyptian wheat, not shown here, exhibited a tolerance point of 7.8 dS/m).
    Fig. 3. The field measurements in wheat fields in Gohana, Haryana, India, showed a higher tolerance level of ECe = 7.1 dS/m.
    (The Egyptian wheat, not shown here, exhibited a tolerance point of 7.8 dS/m).
  • Fig. 4. The cotton grown in the Nile Delta can be called salt-tolerant, with a critical ECe value of 8.0 dS/m. However, due to scarcity of data beyond 8 dS/m, the maximum tolerance level cannot be precisely determined and may actually be higher than that.
    Fig. 4. The cotton grown in the Nile Delta can be called salt-tolerant, with a critical ECe value of 8.0 dS/m. However, due to scarcity of data beyond 8 dS/m, the maximum tolerance level cannot be precisely determined and may actually be higher than that.
  • Fig. 5. Sorghum from Khairpur, Pakistan, is quite tolerant; it grows well up to ECe = 10.5 dS/m.
    Fig. 5. Sorghum from Khairpur, Pakistan, is quite tolerant; it grows well up to ECe = 10.5 dS/m.
  • Fig. 6. Cotton from Khairpur, Pakistan, is very tolerant; it grows well up to ECe = 15.5 dS/m.
    Fig. 6. Cotton from Khairpur, Pakistan, is very tolerant; it grows well up to ECe = 15.5 dS/m.

Calcium has been found to have a positive effect in combating salinity in soils. It has been shown to ameliorate the negative effects that salinity has such as reduced water usage of plants.[17]

Soil salinity activatesgenes associated with stress conditions for plants.[18] These genes initiate the production of plant stressenzymes such assuperoxide dismutase,L-ascorbate oxidase, and Delta 1DNA polymerase. Limiting this process can be achieved by administering exogenousglutamine to plants. The decrease in the level of expression of genes responsible for the synthesis of superoxide dismutase increases with the increase in glutamine concentration.[18]

Regions affected

[edit]

From the FAO/UNESCO Soil Map of the World the following salinised areas can be derived.[19]

RegionArea (106 ha)
Africa69.5
Near and Middle East53.1
Asia and Far East19.5
Latin America59.4
Australia84.7
North America16.0
Europe20.7

See also

[edit]

References

[edit]
  1. ^Allaby, Michael, ed. (2019)."salinization".A Dictionary of Plant Sciences (fourth ed.). Oxford University Press.ISBN 978-0-19-883333-8 – viaOxford Reference.
  2. ^"4. SODIC SOILS AND THEIR MANAGEMENT".www.fao.org. Retrieved2023-02-08.
  3. ^Chesworth, Ward (2007-11-22).Encyclopedia of Soil Science. Springer Science & Business Media.ISBN 978-1-4020-3994-2.
  4. ^Gupta, S. K.; Gupta, I. C. (2017-10-01).Genesis and Management of Sodic (Alkali) Soils. Scientific Publishers.ISBN 978-93-87869-64-6.
  5. ^Effectiveness and Social/Environmental Impacts of Irrigation Projects: a Review(PDF), Annual Report 1988 of the International Institute for Land Reclamation and Improvement, Wageningen, The Netherlands: waterlog.info, 1989, pp. 18–34,archived(PDF) from the original on Feb 16, 2024
  6. ^"Saltier waterways are creating dangerous 'chemical cocktails'".phys.org. December 3, 2018.Archived from the original on Jul 9, 2023.
  7. ^Drainage Manual: A Guide to Integrating Plant, Soil, and Water Relationships for Drainage of Irrigated Lands, Interior Dept., Bureau of Reclamation, 1993,ISBN 978-0-16-061623-5
  8. ^"Free articles and software on drainage of waterlogged land and soil salinity control". Retrieved2010-07-28.
  9. ^Salt-Affected Soils and their Management, FAO Soils Bulletin 39 (http://www.fao.org/docrep/x5871e/x5871e00.htm)
  10. ^Alan D. Blaylock, 1994,Soil Salinity and Salt tolerance of Horticultural and Landscape Plants.University of WyomingArchived 2010-05-08 at theWayback Machine
  11. ^Government of Alberta,Salt tolerance of PlantsArchived 2010-02-21 at theWayback Machine
  12. ^H.J. Nijland and S. El Guindy,Crop yields, watertable depth and soil salinity in the Nile Delta, Egypt. In: Annual report 1983. International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands.
  13. ^D. P. Sharma, K. N. Singh and K. V. G. K. Rao (1990),Crop Production and soil salinity: evaluation of field data from India. Paper published in Proceedings of the Symposium on Land Drainage for Salinity Control in Arid and Semi-Arid Regions, February, 25th to March 2nd, 1990, Cairo, Egypt, Vol. 3, Session V, p. 373–383. On line:[1]
  14. ^R.J. Oosterbaan,Crop yields, soil salinity and water table depth in Pakistan. In: Annual Report 1981, pp. 50–54. International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands, reprinted in Indus 24 (1983) 2, pp. 29–33. On line[2]
  15. ^"Crop tolerance for soil salinity in farmers' fields".www.waterlog.info. Retrieved2023-02-08.
  16. ^Crop Tolerance to Soil Salinity, Statistical Analysis of Data Measured in Farm Lands. In: International Journal of Agricultural Science, October 2018. On line:[3]
  17. ^Kaya, C; Kirnak, H; Higgs, D; Saltali, K (2002-02-28). "Supplementary calcium enhances plant growth and fruit yield in strawberry cultivars grown at high (NaCl) salinity".Scientia Horticulturae.93 (1):65–74.Bibcode:2002ScHor..93...65K.doi:10.1016/S0304-4238(01)00313-2.
  18. ^abUlukapi, Kamile; Nasircilar, Ayse Gul (February 2024)."The role of exogenous glutamine on germination, plant development and transcriptional expression of some stress-related genes in onion under salt stres".Folia Horticulturae.36 (1). Polish Society of Horticultural Science:19–34.doi:10.2478/fhort-2024-0002.S2CID 19887643.
  19. ^R. Brinkman, 1980. Saline and sodic soils. In: Land reclamation and water management, pp. 62–68. International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands.

External links

[edit]
Main fields
Soil topics
Applications
Related fields
Societies, Initiatives
Scientific journals
See also
Soil type
World Reference Base for Soil Resources (1998–)
USDA soil
taxonomy
Other systems
Non-systematic soil types
Soil on bodies other than Earth
International
National
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Soil_salinity&oldid=1325145515"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp