Snub apeiroapeirogonal tiling | |
---|---|
![]() Poincaré disk model of thehyperbolic plane | |
Type | Hyperbolic uniform tiling |
Vertex configuration | 3.3.∞.3.∞ |
Schläfli symbol | s{∞,4} sr{∞,∞} or |
Wythoff symbol | | ∞ ∞ 2 |
Coxeter diagram | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Symmetry group | [∞,∞]+, (∞∞2) |
Dual | Infinitely-infinite-order floret pentagonal tiling |
Properties | Vertex-transitiveChiral |
Ingeometry, thesnub apeiroapeirogonal tiling is a uniform tiling of thehyperbolic plane. It hasSchläfli symbol of s{∞,∞}. It has 3 equilateral triangles and 2apeirogons around every vertex, withvertex figure 3.3.∞.3.∞.
Paracompact uniform tilings in [∞,∞] family | ||||||
---|---|---|---|---|---|---|
![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
{∞,∞} | t{∞,∞} | r{∞,∞} | 2t{∞,∞}=t{∞,∞} | 2r{∞,∞}={∞,∞} | rr{∞,∞} | tr{∞,∞} |
Dual tilings | ||||||
![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
V∞∞ | V∞.∞.∞ | V(∞.∞)2 | V∞.∞.∞ | V∞∞ | V4.∞.4.∞ | V4.4.∞ |
Alternations | ||||||
[1+,∞,∞] (*∞∞2) | [∞+,∞] (∞*∞) | [∞,1+,∞] (*∞∞∞∞) | [∞,∞+] (∞*∞) | [∞,∞,1+] (*∞∞2) | [(∞,∞,2+)] (2*∞∞) | [∞,∞]+ (2∞∞) |
![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | |
h{∞,∞} | s{∞,∞} | hr{∞,∞} | s{∞,∞} | h2{∞,∞} | hrr{∞,∞} | sr{∞,∞} |
Alternation duals | ||||||
![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() |
![]() | ![]() | ![]() | ![]() | |||
V(∞.∞)∞ | V(3.∞)3 | V(∞.4)4 | V(3.∞)3 | V∞∞ | V(4.∞.4)2 | V3.3.∞.3.∞ |
Thesnub tetrapeirogonal tiling is last in an infinite series of snub polyhedra and tilings withvertex figure 3.3.n.3.n.
4n2 symmetry mutations of snub tilings:3.3.n.3.n | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry 4n2 | Spherical | Euclidean | Compact hyperbolic | Paracompact | |||||||
222 | 322 | 442 | 552 | 662 | 772 | 882 | ∞∞2 | ||||
Snub figures | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | |||
Config. | 3.3.2.3.2 | 3.3.3.3.3 | 3.3.4.3.4 | 3.3.5.3.5 | 3.3.6.3.6 | 3.3.7.3.7 | 3.3.8.3.8 | 3.3.∞.3.∞ | |||
Gyro figures | ![]() | ![]() | ![]() | ![]() | |||||||
Config. | V3.3.2.3.2 | V3.3.3.3.3 | V3.3.4.3.4 | V3.3.5.3.5 | V3.3.6.3.6 | V3.3.7.3.7 | V3.3.8.3.8 | V3.3.∞.3.∞ |
![]() | Thishyperbolic geometry-related article is astub. You can help Wikipedia byexpanding it. |