Snailfish | |
---|---|
![]() | |
Snailfish (probablyElassodiscus tremebundus) caught in the eastern Bering Sea | |
Scientific classification![]() | |
Domain: | Eukaryota |
Kingdom: | Animalia |
Phylum: | Chordata |
Class: | Actinopterygii |
Order: | Perciformes |
Suborder: | Cottoidei |
Superfamily: | Cyclopteroidea |
Family: | Liparidae T. N. Gill, 1861 |
Type genus | |
Liparis Scopoli, 1777 |
Thesnailfishes orsea snails (not to be confused with invertebratesea snails), are afamily of marineray-finned fishes. These fishes make up theLiparidae, a family classified within theorder Scorpaeniformes.[1]
Widely distributed from theArctic toAntarctic Oceans, including the oceans in between, the snailfish family contains more than 30 genera and about 410 described species,[2] but there are also manyundescribed species.[3] Snailfish are found at depths ranging from shallow coastal waters to more than 8,300 m (27,200 ft), including in seven oceantrenches.[4]
The snailfish family, Liparidae, was first proposed by the American biologist Theodore Gill in 1861.[5] The 5th edition ofFishes of the World classifies this family within superfamilyCyclopteroidea, part of thesuborderCottoidei of the orderScorpaeniformes.[6] Other authorities do not recognise this superfamily and classify the two families within it,Cyclopteridae and Liparidae, within theinfraorder Cottales alongside thesculpins, within the orderPerciformes.[7] An osteological analysis found that the genusBathylutichthys was intermediate between thePsychrolutidae and the two families making up the Cyclopteroidea, meaning that those two families would not be supported as a superfamily within theCottoidei.[8]
Species of deep-sea snailfish have been studied and compared to otherray-finned fishes (also known as teleosts) to analyze their adaptions to deep-sea conditions. The genomes of both the Yap hadal snailfish andMariana hadal snailfish have been found to contain an abundance of thefmo3 gene, which produces thetrimethylamineN-oxide (TMAO) protein stabilizer.[4][9] Analysis of Yap hadal snailfish reveals a loss of olfactory receptors and gain of taste receptors, possibly due to the fairly restricted availability of food in the deep-sea. Additionally, perhaps due to lack of light in the deep sea, the Yap genome includes fewer copies ofcrystallin genes, which encode proteins that sense light and assist in focused vision, in comparison to other teleosts.[9] Meanwhile, Mariana hadal snailfish have lost several photoreceptor genes, decreasing their vision capabilities (especially in terms of color), and have completely lost themc1r pigmentation gene, rendering them colorless. Mariana hadal snailfish also have adjusted to pressure due to a mutation inbglap which prevents cartilage calcification, revealed in their skulls. Further, their genome includes increased amounts of genes encoding enzymes for beta oxidation and transport proteins, thereby increasing membrane fluidity.[4]
Snailfish have an elongated,tadpole-like shape. Their heads are large in comparison to their body and they have small eyes. Their bodies are slender but deep and they taper to very small tails. The extensive dorsal and analfins may merge or nearly merge with the tail fin. Snailfish are scaleless with a thin, loosegelatinous skin which surrounds the spine and can vary in terms of size and shape between species. The gelatinous layer has a high water and low protein, lipid and carbohydrate content, therefore it can provide growth with low metabolic cost. This may aid species in avoiding predation and conserving energy, especially for deep sea snailfish who live in low energy conditions.[10] Some species, such asAcantholiparis opercularis, have prickly spines as well. Their teeth are small and simple with blunt cusps. The deep-sea species have prominent, well-developed sensory pores on the head, part of the animals'lateral line system.[11]
The pectoral fins are large and provide the snailfish with its primary means of locomotion, although they are fragile. In some species such as the antarcticParaliparis devriesi, the pectoral fins have an expanded somatosensory system, including a taste bud.[12] The snailfish arebenthic fish with pelvic fins modified to form an adhesive disc; this nearly circular disc is absent inParaliparis andNectoliparis species. Research has revealed that maximum depth of living can be a significant predictor for loss of the pelvic disk in certain species of snailfish. Based on phylogenetic analysis, this ancestral feature has been lost three separate times in Snailfish.[13]
Snailfish range in size fromParaliparis australis at 5 cm (2.0 in) toPolypera simushirae at some 77 cm (30 in) in length. The latter species may reach a weight of 21 kg (46 lb), but most species are smaller. Snailfish are of no interest to commercialfisheries.
The deepest snailfish do not explode when brought to the surface, because they do not have a swim bladder. However, they do not survive capture, possibly due to molecular effects of depressurization. Many intact specimens have been retrieved in recent years for biochemical and anatomical study. Buoyancy without a swimbladder is due to gelatinous tissue and low-calcium bones [ref. 10].
Snailfish habitats vary widely. They are found in oceans worldwide, ranging from shallowintertidal zones to depths of more than 8,300 m (27,200 ft) in thehadal zone. This is a wider depth range than any other family of fish.[14] They are strictly found in cold waters, meaning that species of tropical andsubtropical regions strictly are deepwater.[3][14][15] They are common in most cold marine waters and are highly resilient, with some species, such asLiparis atlanticus andLiparus gibbus, having type-1antifreeze proteins.[16] It is the most species-rich family of fish in the Antarctic region, generally found in relatively deep waters (shallower Antarctic waters are dominated byAntarctic icefish).[12]
The diminutiveinquiline snailfish (Liparis inquilinus) of the northwestern Atlantic is known to live out its life inside themantle cavity of the scallopPlacopecten magellanicus.Liparis tunicatus lives amongst thekelp forests of theBering Strait and theGulf of St. Lawrence. The single species in genusRhodichthys is endemic to theNorwegian Sea.[17] Other species are found on muddy or silty bottoms ofcontinental slopes.
Although most snailfish live no deeper than thebathyal zone (less than 4,000 m [13,000 ft] deep), some live at greater depths than any other fish. In 2008, a UK-Japan team discovered ashoal ofPseudoliparis amblystomopsis snailfish at a depth of 7,700 m (25,300 ft) in theJapan Trench.[18] These were, at the time, the deepest living fish ever recorded on film. The record was surpassed by snailfish filmed in theMariana Trench at depths of 8,145 m (26,722 ft) in 2014[19] and 8,178 m (26,831 ft) in 2017,[14][20] and at 8,336 m (27,349 ft) in theIzu–Ogasawara Trench in 2023.[21] The species in these deepest records are unknown and may beundescribed, but have been referred to as "ethereal snailfish". The deepest-living described species isPseudoliparis swirei, of the Mariana Trench, recorded at 8,076 m (26,496 ft).[14][22]
Snailfish (notably generaNotoliparis andPseudoliparis) are the most common and dominant fish family in thehadal zone.[22]Pseudoliparis swirei possesses multiple molecular adaptations to the intense pressures of a deep sea environment, including highest-known contents of TMAO [refs. 14, 24], pressure-tolerantcartilage, pressure-stable proteins, increased transport protein activity, higher cell membrane fluidity, and loss of eyesight and other visual characteristics such as color, as shown bygenomic analysis.[4] Because ofbiochemical restrictions, 8,000–8,500 m (26,200–27,900 ft) is likely the maximum depth possible for any vertebrate.[23][24] Thelarvae of some hadal snailfish species may spend time in open water at relatively shallow depths, less than 1,000 m (3,300 ft).[25][26]
Reproductive strategies vary extensively among snailfish species, though it is thought that many abyssal benthic snailfish spawn seasonally and for relatively long intervals.[27] It appears that all species lay relatively large eggs (diameter up to 9.4 mm [0.37 in]) and the number of eggs is species dependent.[14] The larger size of eggs in hadal snailfish species indicates continuous spawning.[28] Some species deposit their egg masses amongcold-water corals,kelp, stones, orxenophyophores and males will sometimes guard the egg mass.[3][27][29][30] At least one species,Careproctus ovigerus of the North Pacific, practicesmouth brooding where the male snailfish carries the developing eggs around in his mouth. Some other species of the genusCareproctus, areparasitic, laying their eggs in the gill cavities ofking crabs. The eggs put pressure on the crabs' gills which can cause the gill tissue to be damaged or die altogether.[31] However, the survival of snailfish larvae has been shown to increase by the snailfish utilizing the crab host species as a way to care for and aerate their eggs.[3] The eggs themselves are self-adhesive and tend to form masses that replicate the shape of the internal branchial chambers of crabs. Additionally, at least one species of snailfish that utilize thegolden king crab as a host,Careproctus pallidus, has larvae with a lower energy content than normal for most marine fish. A possible explanation for starting life with less energy is due to the safety provided by the king crab, allowing the adult snailfish to not expend as much energy producing an energy-rich yolk sac.[32] A different species,Careproctus rhodomelas, was found to be a batch spawner, laying multiple batches of large eggs multiple times throughout its lifetime.[33]
After the eggs hatch, some species rapidly reach the adult size and only live for about one year,[29] but others live for more than a decade.[34]Otolith analysis (the investigation of snailfish ear bone) gives insight into longevity by seeing how it is broken into alternating translucent and opaque zones. This relays information about annual growth.[25] By further examining the morphology of the deep-sea snailfish, it may be evident that these snailfish have adapted to their extreme environment by having a short life span compared to other organisms in the same hadal environment. Many species are located in hadal trenches, which are inherently high-disturbance areas, including lots of seismic activity which can trigger turbidity flows. Because of this, they live significantly shorter lifespans than shallower species.[35]
Little is known about snailfish courtship behavior but males ofCareproctus pallidus are believed to wiggle their bodies as attractive or aggressive display.[36][37] It is thought that in an environment so dark, it is hard to find and win contests for a mate. Therefore, snailfish use hydrodynamic signals that are felt by the mechanosensorylateral line to communicate.
Larval snailfish feed on a mix ofplankton, small and largecopepods, andamphipods. The larval diet of threeBeaufort Sea snailfish species contained 28 food categories, mainly copepods and amphipods.[38]
Snailfish prey fall into six main categories:gammarid,krill,natantian decapods, other crustaceans, fish, and others.[39] Size also affects snailfish diets; snailfish smaller than 50 mm primarily eat gammarids, while species larger than 100 mm primarily eat natantian decapods. Species larger than 150 mm have the highest proportion of fish in their diet. The largest snailfish species tend to bepiscivorous.[39]
With the Okhotsk snailfish (Liparis ochotensis), the ratio between food intake and body weight changes as the organism grows; it is also highly seasonally variable. When the local environment experiences an increase in shrimp andcrangonidae numbers, there is also a subsequent decrease in decapods.[40] There are also snailfish localized to theTerpeniya Bay that purely eat zooplankton, setting them apart from other snailfish.[40]
The snailfish that live in the northern hemisphere also display a higher starvation tolerance, which may be due to the triglycerol and cholesterol levels in this species. The snailfish have different lipid concentrations depending on their habitat, making some of them better-suited for longer periods without feeding than others.[41]
The ambush hunting methods employed by the Simushir snailfish (Polypera simushirae) are unique among snailfish. They have the ability to blend into the ground, waiting to surprise the next organism to wander into their path. The top prey for this species are fish, making up 97.7% of their overall food intake.[42]
This family contains these genera as of 2020:[2]