Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Smith space

From Wikipedia, the free encyclopedia

Infunctional analysis and related areas ofmathematics, aSmith space is acompletecompactly generatedlocally convex topological vector spaceX{\displaystyle X} having auniversal compact set, i.e. a compact setK{\displaystyle K} which absorbs every other compact setTX{\displaystyle T\subseteq X} (i.e.TλK{\displaystyle T\subseteq \lambda \cdot K} for someλ>0{\displaystyle \lambda >0}).

Smith spaces are named afterMarianne Ruth Freundlich Smith, who introduced them[1] as duals toBanach spaces in some versions of duality theory fortopological vector spaces. All Smith spaces arestereotype and are in the stereotype duality relations withBanach spaces:[2][3]

Smith spaces are special cases ofBrauner spaces.

Examples

[edit]
XXX.{\displaystyle X^{*}\to X^{\star }\to X'.}
IfX{\displaystyle X} is infinite-dimensional, then no two of these topologies coincide. At the same time, for infinite dimensionalX{\displaystyle X} the spaceX{\displaystyle X^{\star }} is notbarreled (and even is not aMackey space ifX{\displaystyle X} isreflexive as a Banach space[5]).

See also

[edit]

Notes

[edit]
  1. ^Smith 1952.
  2. ^Akbarov 2003, p. 220.
  3. ^Akbarov 2009, p. 467.
  4. ^Thestereotype dual space to a locally convex spaceX{\displaystyle X} is the spaceX{\displaystyle X^{\star }} of all linear continuous functionalsf:XC{\displaystyle f:X\to \mathbb {C} } endowed with the topology of uniform convergence ontotally bounded sets inX{\displaystyle X}.
  5. ^Akbarov 2003, p. 221, Example 4.8.
  6. ^Akbarov 2009, p. 468.
  7. ^Akbarov 2003, p. 272.

References

[edit]
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
Basic concepts
Main results
Maps
Types of sets
Set operations
Types of TVSs
Stub icon

Thismathematical analysis–related article is astub. You can help Wikipedia byadding missing information.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Smith_space&oldid=1143458908"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp