Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Skew normal distribution

From Wikipedia, the free encyclopedia
Probability distribution
Skew Normal
Probability density function
Probability density plots of skew normal distributions
Cumulative distribution function
Cumulative distribution function plots of skew normal distributions
Parametersξ{\displaystyle \xi \,}location (real)
ω{\displaystyle \omega \,}scale (positive,real)
α{\displaystyle \alpha \,}shape (real)
Supportx(;+){\displaystyle x\in (-\infty ;+\infty )\!}
PDF2ω2πe(xξ)22ω2α(xξω)12πet22 dt{\displaystyle {\frac {2}{\omega {\sqrt {2\pi }}}}e^{-{\frac {(x-\xi )^{2}}{2\omega ^{2}}}}\int _{-\infty }^{\alpha \left({\frac {x-\xi }{\omega }}\right)}{\frac {1}{\sqrt {2\pi }}}e^{-{\frac {t^{2}}{2}}}\ \mathrm {d} t}
CDFΦ(xξω)2T(xξω,α){\displaystyle \Phi \left({\frac {x-\xi }{\omega }}\right)-2T\left({\frac {x-\xi }{\omega }},\alpha \right)}
T(h,a){\displaystyle T(h,a)} isOwen's T function
Meanξ+ωδ2π{\displaystyle \xi +\omega \delta {\sqrt {\frac {2}{\pi }}}} whereδ=α1+α2{\displaystyle \delta ={\frac {\alpha }{\sqrt {1+\alpha ^{2}}}}}
Modeξ+ωmo(α){\displaystyle \xi +\omega m_{o}(\alpha )}
Varianceω2(12δ2π){\displaystyle \omega ^{2}\left(1-{\frac {2\delta ^{2}}{\pi }}\right)}
Skewnessγ1=4π2(δ2/π)3(12δ2/π)3/2{\displaystyle \gamma _{1}={\frac {4-\pi }{2}}{\frac {\left(\delta {\sqrt {2/\pi }}\right)^{3}}{\left(1-2\delta ^{2}/\pi \right)^{3/2}}}}
Excess kurtosis2(π3)(δ2/π)4(12δ2/π)2{\displaystyle 2(\pi -3){\frac {\left(\delta {\sqrt {2/\pi }}\right)^{4}}{\left(1-2\delta ^{2}/\pi \right)^{2}}}}
MGFMX(t)=2exp(ξt+ω2t22)Φ(ωδt){\displaystyle M_{X}\left(t\right)=2\exp \left(\xi t+{\frac {\omega ^{2}t^{2}}{2}}\right)\Phi \left(\omega \delta t\right)}
CFeitξt2ω2/2(1+iErfi(δωt2)){\displaystyle e^{it\xi -t^{2}\omega ^{2}/2}\left(1+i\,{\textrm {Erfi}}\left({\frac {\delta \omega t}{\sqrt {2}}}\right)\right)}

Inprobability theory andstatistics, theskew normal distribution is acontinuous probability distribution that generalises thenormal distribution to allow for non-zeroskewness.

Definition

[edit]

Letϕ(x){\displaystyle \phi (x)} denote thestandard normalprobability density function

ϕ(x)=12πex22{\displaystyle \phi (x)={\frac {1}{\sqrt {2\pi }}}e^{-{\frac {x^{2}}{2}}}}

with thecumulative distribution function given by

Φ(x)=xϕ(t) dt=12[1+erf(x2)],{\displaystyle \Phi (x)=\int _{-\infty }^{x}\phi (t)\ \mathrm {d} t={\frac {1}{2}}\left[1+\operatorname {erf} \left({\frac {x}{\sqrt {2}}}\right)\right],}

where "erf" is theerror function. Then the probability density function (pdf) of the skew-normal distribution with parameterα{\displaystyle \alpha } is given by

f(x)=2ϕ(x)Φ(αx).{\displaystyle f(x)=2\phi (x)\Phi (\alpha x).\,}

This distribution was first introduced by O'Hagan and Leonard (1976).[1] Alternative forms to this distribution, with the corresponding quantile function, have been given by Ashour and Abdel-Hamid[2] and by Mudholkar and Hutson.[3]

A stochastic process that underpins the distribution was described by Andel, Netuka and Zvara (1984).[4] Both the distribution and its stochastic process underpinnings were consequences of the symmetry argument developed in Chan and Tong (1986),[5] which applies to multivariate cases beyond normality, e.g. skew multivariate t distribution and others. The distribution is a particular case of a general class of distributions with probability density functions of the formf(x)=2ϕ(x)Φ(x){\displaystyle f(x)=2\phi (x)\Phi (x)} whereϕ(){\displaystyle \phi (\cdot )} is anyPDF symmetric about zero andΦ(){\displaystyle \Phi (\cdot )} is anyCDF whose PDF is symmetric about zero.[6]

To addlocation andscale parameters to this, one makes the usual transformxxξω{\displaystyle x\rightarrow {\frac {x-\xi }{\omega }}}. One can verify that the normal distribution is recovered whenα=0{\displaystyle \alpha =0}, and that the absolute value of theskewness increases as the absolute value ofα{\displaystyle \alpha } increases. The distribution is right skewed ifα>0{\displaystyle \alpha >0} and is left skewed ifα<0{\displaystyle \alpha <0}. The probability density function with locationξ{\displaystyle \xi }, scaleω{\displaystyle \omega }, and parameterα{\displaystyle \alpha } becomes

f(x)=2ωϕ(xξω)Φ(α(xξω)).{\displaystyle f(x)={\frac {2}{\omega }}\phi \left({\frac {x-\xi }{\omega }}\right)\Phi \left(\alpha \left({\frac {x-\xi }{\omega }}\right)\right).\,}

The skewness (γ1{\displaystyle \gamma _{1}}) of the distribution is limited to slightly less than the interval(1,1){\displaystyle (-1,1)}(seeEstimation).

As has been shown,[7] the mode (maximum)mo{\displaystyle m_{o}} of the distribution is unique. For generalα{\displaystyle \alpha } there is no analytic expression formo{\displaystyle m_{o}}, but a quite accurate (numerical) approximation is:

δ=α1+α2mo(α)2πδ(1π4)(2πδ)312πδ2sgn(α)2e(2π|α|){\displaystyle {\begin{aligned}\delta &={\frac {\alpha }{\sqrt {1+\alpha ^{2}}}}\\m_{o}(\alpha )&\approx {\sqrt {\frac {2}{\pi }}}\delta -\left(1-{\frac {\pi }{4}}\right){\frac {\left({\sqrt {\frac {2}{\pi }}}\delta \right)^{3}}{1-{\frac {2}{\pi }}\delta ^{2}}}-{\frac {\mathrm {sgn} (\alpha )}{2}}e^{\left(-{\frac {2\pi }{|\alpha |}}\right)}\\\end{aligned}}}

Estimation

[edit]

Maximum likelihood estimates forξ{\displaystyle \xi },ω{\displaystyle \omega }, andα{\displaystyle \alpha } can be computed numerically, but no closed-form expression for the estimates is available unlessα=0{\displaystyle \alpha =0}. In contrast, themethod of moments has a closed-form expression since the skewness equation can be inverted with

|δ|=π2|γ1|23|γ1|23+((4π)/2)23{\displaystyle |\delta |={\sqrt {{\frac {\pi }{2}}{\frac {|\gamma _{1}|^{\frac {2}{3}}}{|\gamma _{1}|^{\frac {2}{3}}+((4-\pi )/2)^{\frac {2}{3}}}}}}}

whereδ=α1+α2{\displaystyle \delta ={\frac {\alpha }{\sqrt {1+\alpha ^{2}}}}} and the sign ofδ{\displaystyle \delta } is the same as the sign ofγ1{\displaystyle \gamma _{1}}. Consequently,α=δ1δ2{\displaystyle \alpha ={\frac {\delta }{\sqrt {1-\delta ^{2}}}}},ω=σ12δ2/π{\displaystyle \omega ={\frac {\sigma }{\sqrt {1-2\delta ^{2}/\pi }}}}, andξ=μωδ2π{\displaystyle \xi =\mu -\omega \delta {\sqrt {\frac {2}{\pi }}}} whereμ{\displaystyle \mu } andσ{\displaystyle \sigma } are the mean and standard deviation. As long as the sample skewnessγ^1{\displaystyle {\hat {\gamma }}_{1}} is not too large, these formulas provide method of moments estimatesα^{\displaystyle {\hat {\alpha }}},ω^{\displaystyle {\hat {\omega }}}, andξ^{\displaystyle {\hat {\xi }}} based on a sample'sμ^{\displaystyle {\hat {\mu }}},σ^{\displaystyle {\hat {\sigma }}}, andγ^1{\displaystyle {\hat {\gamma }}_{1}}.

The maximum (theoretical) skewness is obtained by settingδ=1{\displaystyle {\delta =1}} in the skewness equation, givingγ10.9952717{\displaystyle \gamma _{1}\approx 0.9952717}. However it is possible that the sample skewness is larger, and thenα{\displaystyle \alpha } cannot be determined from these equations. When using the method of moments in an automatic fashion, for example to give starting values for maximum likelihood iteration, one should therefore let (for example)|γ^1|=min(0.99,|(1/n)((xiμ^)/σ^)3|){\displaystyle |{\hat {\gamma }}_{1}|=\min(0.99,|(1/n)\sum {((x_{i}-{\hat {\mu }})/{\hat {\sigma }})^{3}}|)}.

Concern has been expressed about the inference of skew normal distributions using the direct parameterization.[8]

Related distributions

[edit]

Theexponentially modified normal distribution is another 3-parameter distribution that is a generalization of the normal distribution to skewed cases. The skew normal still has a normal-like tail in the direction of the skew, with a shorter tail in the other direction; that is, its density is asymptotically proportional toekx2{\displaystyle e^{-kx^{2}}} for some positivek{\displaystyle k}. Thus, in terms of theseven states of randomness, it shows "proper mild randomness". In contrast, the exponentially modified normal has an exponential tail in the direction of the skew; its density is asymptotically proportional toek|x|{\displaystyle e^{-k|x|}}. In the same terms, it shows "borderline mild randomness".

Thus, the skew normal is useful for modeling skewed distributions which nevertheless have no more outliers than the normal, while the exponentially modified normal is useful for cases with an increased incidence of outliers in (just) one direction.

See also

[edit]

References

[edit]
  1. ^O'Hagan, A.;Leonard, Tom (1976). "Bayes estimation subject to uncertainty about parameter constraints".Biometrika.63 (1):201–203.doi:10.1093/biomet/63.1.201.ISSN 0006-3444.
  2. ^Ashour, Samir K.; Abdel-hameed, Mahmood A. (October 2010)."Approximate skew normal distribution".Journal of Advanced Research.1 (4):341–350.doi:10.1016/j.jare.2010.06.004.ISSN 2090-1232.
  3. ^Mudholkar, Govind S.; Hutson, Alan D. (February 2000). "The epsilon–skew–normal distribution for analyzing near-normal data".Journal of Statistical Planning and Inference.83 (2):291–309.doi:10.1016/s0378-3758(99)00096-8.ISSN 0378-3758.
  4. ^Andel, J., Netuka, I. and Zvara, K. (1984) On threshold autoregressive processes. Kybernetika, 20, 89-106
  5. ^Chan, K. S.; Tong, H. (March 1986)."A note on certain integral equations associated with non-linear time series analysis".Probability Theory and Related Fields.73 (1):153–158.doi:10.1007/bf01845999.ISSN 0178-8051.S2CID 121106515.
  6. ^Azzalini, A. (1985). "A class of distributions which includes the normal ones".Scandinavian Journal of Statistics.12:171–178.
  7. ^Azzalini, Adelchi; Capitanio, Antonella (2014).The skew-normal and related families. pp. 32–33.ISBN 978-1-107-02927-9.
  8. ^Pewsey, Arthur (2000). "Problems of inference for Azzalini's skewnormal distribution".Journal of Applied Statistics.27 (7):859–870.Bibcode:2000JApSt..27..859P.doi:10.1080/02664760050120542.

External links

[edit]
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
andsingular
Degenerate
Dirac delta function
Singular
Cantor
Families
Continuous data
Center
Dispersion
Shape
Count data
Summary tables
Dependence
Graphics
Study design
Survey methodology
Controlled experiments
Adaptive designs
Observational studies
Statistical theory
Frequentist inference
Point estimation
Interval estimation
Testing hypotheses
Parametric tests
Specific tests
Goodness of fit
Rank statistics
Bayesian inference
Correlation
Regression analysis
Linear regression
Non-standard predictors
Generalized linear model
Partition of variance
Categorical
Multivariate
Time-series
General
Specific tests
Time domain
Frequency domain
Survival
Survival function
Hazard function
Test
Biostatistics
Engineering statistics
Social statistics
Spatial statistics
Retrieved from "https://en.wikipedia.org/w/index.php?title=Skew_normal_distribution&oldid=1296420823"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp