Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Skellam distribution

From Wikipedia, the free encyclopedia
Discrete probability distribution
Skellam
Probability mass function
Examples of the probability mass function for the Skellam distribution.
Examples of the probability mass function for the Skellam distribution. The horizontal axis is the indexk. (The function is only defined at integer values ofk. The connecting lines do not indicate continuity.)
Parametersμ10,  μ20{\displaystyle \mu _{1}\geq 0,~~\mu _{2}\geq 0}
Supportk{,2,1,0,1,2,}{\displaystyle k\in \{\ldots ,-2,-1,0,1,2,\ldots \}}
PMFe(μ1+μ2)(μ1μ2)k/2Ik(2μ1μ2){\displaystyle e^{-(\mu _{1}\!+\!\mu _{2})}\left({\frac {\mu _{1}}{\mu _{2}}}\right)^{k/2}\!\!I_{k}(2{\sqrt {\mu _{1}\mu _{2}}})}
Meanμ1μ2{\displaystyle \mu _{1}-\mu _{2}\,}
MedianN/A
Varianceμ1+μ2{\displaystyle \mu _{1}+\mu _{2}\,}
Skewnessμ1μ2(μ1+μ2)3/2{\displaystyle {\frac {\mu _{1}-\mu _{2}}{(\mu _{1}+\mu _{2})^{3/2}}}}
Excess kurtosis1μ1+μ2{\displaystyle {\frac {1}{\mu _{1}+\mu _{2}}}}
MGFe(μ1+μ2)+μ1et+μ2et{\displaystyle e^{-(\mu _{1}+\mu _{2})+\mu _{1}e^{t}+\mu _{2}e^{-t}}}
CFe(μ1+μ2)+μ1eit+μ2eit{\displaystyle e^{-(\mu _{1}+\mu _{2})+\mu _{1}e^{it}+\mu _{2}e^{-it}}}

TheSkellam distribution is thediscrete probability distribution of the differenceN1N2{\displaystyle N_{1}-N_{2}} of twostatistically independentrandom variablesN1{\displaystyle N_{1}} andN2,{\displaystyle N_{2},} eachPoisson-distributed with respectiveexpected valuesμ1{\displaystyle \mu _{1}} andμ2{\displaystyle \mu _{2}}. It is useful in describing the statistics of the difference of two images with simplephoton noise, as well as describing thepoint spread distribution in sports where all scored points are equal, such asbaseball,hockey andsoccer.

The distribution is also applicable to a special case of the difference of dependent Poisson random variables, but just the obvious case where the two variables have a common additive random contribution which is cancelled by the differencing: see Karlis & Ntzoufras (2003) for details and an application.

Theprobability mass function for the Skellam distribution for a differenceK=N1N2{\displaystyle K=N_{1}-N_{2}} between two independent Poisson-distributed random variables with meansμ1{\displaystyle \mu _{1}} andμ2{\displaystyle \mu _{2}} is given by:

p(k;μ1,μ2)=Pr{K=k}=e(μ1+μ2)(μ1μ2)k/2Ik(2μ1μ2){\displaystyle p(k;\mu _{1},\mu _{2})=\Pr\{K=k\}=e^{-(\mu _{1}+\mu _{2})}\left({\mu _{1} \over \mu _{2}}\right)^{k/2}I_{k}(2{\sqrt {\mu _{1}\mu _{2}}})}

whereIk(z) is themodified Bessel function of the first kind. Sincek is an integer we have thatIk(z) = I|k|(z).

Derivation

[edit]

Theprobability mass function of aPoisson-distributed random variable with mean μ is given by

p(k;μ)=μkk!eμ.{\displaystyle p(k;\mu )={\mu ^{k} \over k!}e^{-\mu }.\,}

fork0{\displaystyle k\geq 0} (and zero otherwise). The Skellam probability mass function for the difference of two independent countsK=N1N2{\displaystyle K=N_{1}-N_{2}} is theconvolution of two Poisson distributions: (Skellam, 1946)

p(k;μ1,μ2)=n=p(k+n;μ1)p(n;μ2)=e(μ1+μ2)n=max(0,k)μ1k+nμ2nn!(k+n)!{\displaystyle {\begin{aligned}p(k;\mu _{1},\mu _{2})&=\sum _{n=-\infty }^{\infty }p(k+n;\mu _{1})p(n;\mu _{2})\\&=e^{-(\mu _{1}+\mu _{2})}\sum _{n=\max(0,-k)}^{\infty }{{\mu _{1}^{k+n}\mu _{2}^{n}} \over {n!(k+n)!}}\end{aligned}}}Since the Poisson distribution is zero for negative values of the count(p(N<0;μ)=0){\displaystyle (p(N<0;\mu )=0)}, the second sum is only taken for those terms wheren0{\displaystyle n\geq 0} andn+k0{\displaystyle n+k\geq 0}. It can be shown that the above sum implies that

p(k;μ1,μ2)p(k;μ1,μ2)=(μ1μ2)k{\displaystyle {\frac {p(k;\mu _{1},\mu _{2})}{p(-k;\mu _{1},\mu _{2})}}=\left({\frac {\mu _{1}}{\mu _{2}}}\right)^{k}}

so that:

p(k;μ1,μ2)=e(μ1+μ2)(μ1μ2)k/2I|k|(2μ1μ2){\displaystyle p(k;\mu _{1},\mu _{2})=e^{-(\mu _{1}+\mu _{2})}\left({\mu _{1} \over \mu _{2}}\right)^{k/2}I_{|k|}(2{\sqrt {\mu _{1}\mu _{2}}})}

whereI k(z) is themodified Bessel function of the first kind. The special case forμ1=μ2(=μ){\displaystyle \mu _{1}=\mu _{2}(=\mu )} is given by Irwin (1937):

p(k;μ,μ)=e2μI|k|(2μ).{\displaystyle p{\left(k;\mu ,\mu \right)}=e^{-2\mu }I_{|k|}(2\mu ).}

Using the limiting values of the modified Bessel function for small arguments, we can recover the Poisson distribution as a special case of the Skellam distribution forμ2=0{\displaystyle \mu _{2}=0}.

Properties

[edit]

As it is a discrete probability function, the Skellam probability mass function is normalized:

k=p(k;μ1,μ2)=1.{\displaystyle \sum _{k=-\infty }^{\infty }p(k;\mu _{1},\mu _{2})=1.}

We know that theprobability generating function (pgf) for aPoisson distribution is:

G(t;μ)=eμ(t1).{\displaystyle G\left(t;\mu \right)=e^{\mu (t-1)}.}

It follows that the pgf,G(t;μ1,μ2){\displaystyle G(t;\mu _{1},\mu _{2})}, for a Skellam probability mass function will be:

G(t;μ1,μ2)=k=p(k;μ1,μ2)tk=G(t;μ1)G(1/t;μ2)=e(μ1+μ2)+μ1t+μ2/t.{\displaystyle {\begin{aligned}G(t;\mu _{1},\mu _{2})&=\sum _{k=-\infty }^{\infty }p(k;\mu _{1},\mu _{2})t^{k}\\[4pt]&=G\left(t;\mu _{1}\right)G\left(1/t;\mu _{2}\right)\\[4pt]&=e^{-(\mu _{1}+\mu _{2})+\mu _{1}t+\mu _{2}/t}.\end{aligned}}}

Notice that the form of theprobability-generating function implies that the distribution of the sums or the differences of any number of independent Skellam-distributed variables are again Skellam-distributed. It is sometimes claimed that any linear combination of two Skellam distributed variables are again Skellam-distributed, but this is clearly not true since any multiplier other than±1{\displaystyle \pm 1} would change thesupport of the distribution and alter the pattern ofmoments in a way that no Skellam distribution can satisfy.

Themoment-generating function is given by:

M(t;μ1,μ2)=G(et;μ1,μ2)=k=0tkk!mk{\displaystyle M\left(t;\mu _{1},\mu _{2}\right)=G(e^{t};\mu _{1},\mu _{2})=\sum _{k=0}^{\infty }{t^{k} \over k!}\,m_{k}}

which yields the raw momentsmk . Define:

Δ =def μ1μ2{\displaystyle \Delta \ {\stackrel {\mathrm {def} }{=}}\ \mu _{1}-\mu _{2}}

μ =def 12(μ1+μ2).{\displaystyle \mu \ {\stackrel {\mathrm {def} }{=}}\ {\tfrac {1}{2}}(\mu _{1}+\mu _{2}).}

Then the raw momentsmk are

m1=Δm2=2μ+Δ2m3=Δ(1+6μ+Δ2){\displaystyle {\begin{aligned}m_{1}&=\Delta \\m_{2}&=2\mu +\Delta ^{2}\\m_{3}&=\Delta \left(1+6\mu +\Delta ^{2}\right)\end{aligned}}}

Thecentral momentsMk are

M2=2μ,M3=Δ,M4=2μ+12μ2.{\displaystyle {\begin{aligned}M_{2}&=2\mu ,\\M_{3}&=\Delta ,\\M_{4}&=2\mu +12\mu ^{2}.\,\end{aligned}}}

Themean,variance,skewness, andkurtosis excess are respectively:

E(n)=Δ,σ2=2μ,γ1=Δ/(2μ)3/2,γ2=1/2.{\displaystyle {\begin{aligned}\operatorname {E} (n)&=\Delta ,\\[4pt]\sigma ^{2}&=2\mu ,\\[4pt]\gamma _{1}&=\Delta /(2\mu )^{3/2},\\[4pt]\gamma _{2}&=1/2.\end{aligned}}}

Thecumulant-generating function is given by:

K(t;μ1,μ2) =def ln(M(t;μ1,μ2))=k=0tkk!κk{\displaystyle K(t;\mu _{1},\mu _{2})\ {\stackrel {\mathrm {def} }{=}}\ \ln(M(t;\mu _{1},\mu _{2}))=\sum _{k=0}^{\infty }{\frac {t^{k}}{k!}}\,\kappa _{k}}

which yields thecumulants:

κ2k=2μ,κ2k+1=Δ.{\displaystyle {\begin{aligned}\kappa _{2k}&=2\mu ,\\\kappa _{2k+1}&=\Delta .\end{aligned}}}

For the special case whenμ1 =μ2, anasymptotic expansion of themodified Bessel function of the first kind yields for largeμ:

p(k;μ,μ)14πμ[1+n=1(1)n{4k212}{4k232}{4k2(2n1)2}n!23n(2μ)n].{\displaystyle p(k;\mu ,\mu )\sim {\frac {1}{\sqrt {4\pi \mu }}}\left[1+\sum _{n=1}^{\infty }\left(-1\right)^{n}{\frac {\left\{4k^{2}-1^{2}\right\}\left\{4k^{2}-3^{2}\right\}\cdots \left\{4k^{2}-(2n-1)^{2}\right\}}{n!\,2^{3n}\,(2\mu )^{n}}}\right].}

(Abramowitz & Stegun 1972, p. 377). Also, for this special case, whenk is also large, and oforder of the square root of 2μ, the distribution tends to anormal distribution:

p(k;μ,μ)ek2/4μ4πμ.{\displaystyle p(k;\mu ,\mu )\sim {\frac {e^{-k^{2}/4\mu }}{\sqrt {4\pi \mu }}}.}

These special results can easily be extended to the more general case of different means.

Bounds on weight above zero

[edit]

IfXSkellam(μ1,μ2){\displaystyle X\sim \operatorname {Skellam} (\mu _{1},\mu _{2})}, withμ1<μ2{\displaystyle \mu _{1}<\mu _{2}}, then

exp[(μ1μ2)2](μ1+μ2)2e(μ1+μ2)2μ1μ2e(μ1+μ2)4μ1μ2Pr{X0}exp[(μ1μ2)2]{\displaystyle {\frac {\exp \left[-\left({\sqrt {\mu _{1}}}-{\sqrt {\mu _{2}}}\right)^{2}\right]}{\left(\mu _{1}+\mu _{2}\right)^{2}}}-{\frac {e^{-(\mu _{1}+\mu _{2})}}{2{\sqrt {\mu _{1}\mu _{2}}}}}-{\frac {e^{-(\mu _{1}+\mu _{2})}}{4\mu _{1}\mu _{2}}}\leq \Pr\{X\geq 0\}\leq \exp \left[-\left({\sqrt {\mu _{1}}}-{\sqrt {\mu _{2}}}\right)^{2}\right]}

Details can be found inPoisson distribution § Poisson races

See also

[edit]

References

[edit]
  • Abramowitz, Milton; Stegun, Irene A., eds. (June 1965).Handbook of mathematical functions with formulas, graphs, and mathematical tables (Unabridged and unaltered republ. [der Ausg.] 1964, 5. Dover printing ed.). Dover Publications. pp. 374–378.ISBN 0486612724. Retrieved27 September 2012.
  • Irwin, J. O. (1937) "The frequency distribution of the difference between two independent variates following the same Poisson distribution."Journal of the Royal Statistical Society: Series A, 100 (3), 415–416.JSTOR 2980526
  • Karlis, D. and Ntzoufras, I. (2003) "Analysis of sports data using bivariate Poisson models".Journal of the Royal Statistical Society, Series D, 52 (3), 381–393.doi:10.1111/1467-9884.00366
  • Karlis D. and Ntzoufras I. (2006). Bayesian analysis of the differences of count data.Statistics in Medicine, 25, 1885–1905.[1]
  • Skellam, J. G. (1946) "The frequency distribution of the difference between two Poisson variates belonging to different populations".Journal of the Royal Statistical Society, Series A, 109 (3), 296.JSTOR 2981372
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
andsingular
Degenerate
Dirac delta function
Singular
Cantor
Families
Retrieved from "https://en.wikipedia.org/w/index.php?title=Skellam_distribution&oldid=1305614924"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp