Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Silver ratio

From Wikipedia, the free encyclopedia
Number, approximately 2.41421
Not to be confused withSilver constant.
Silver ratio
Rationalityirrational algebraic
Symbolσ
Representations
Decimal2.41421356237309504880...
Algebraic form1+2{\displaystyle 1+{\sqrt {2}}}
Continued fraction2+12+12+1{\displaystyle 2+{\cfrac {1}{2+{\cfrac {1}{2+{\cfrac {1}{\ddots }}}}}}}
purely periodic
infinite

In mathematics, thesilver ratio is a geometricalproportion with exact value1 + √2, the positivesolution of the equationx2 = 2x + 1.

The namesilver ratio is by analogy with thegolden ratio, the positive solution of the equationx2 =x + 1.

Although its name is recent, the silver ratio (or silver mean) has been studied since ancient times because of its connections to thesquare root of 2, almost-isoscelesPythagorean triples,square triangular numbers,Pell numbers, theoctagon, and sixpolyhedra withoctahedral symmetry.

Silver rectangle in a regular octagon.

Definition

[edit]

If the ratio of two quantitiesa > b > 0 is proportionate to the sum of two and their reciprocal ratio, they are in the silver ratio:ab=2a+ba{\displaystyle {\frac {a}{b}}={\frac {2a+b}{a}}}The ratioab{\displaystyle {\frac {a}{b}}} is here denotedσ.{\displaystyle \sigma .}[a]

Substitutinga=σb{\displaystyle a=\sigma b\,} in the second fraction,σ=b(2σ+1)σb.{\displaystyle \sigma ={\frac {b(2\sigma +1)}{\sigma b}}.} It follows that the silver ratio is the positive solution ofquadratic equationσ22σ1=0.{\displaystyle \sigma ^{2}-2\sigma -1=0.} Thequadratic formula gives the two solutions1±2,{\displaystyle 1\pm {\sqrt {2}},} the decimal expansion of the positiveroot begins with2.414213562373095... (sequenceA014176 in theOEIS).

Using thetangent function [4]σ=tan(3π8)=cot(π8),{\displaystyle \sigma =\tan \left({\frac {3\pi }{8}}\right)=\cot \left({\frac {\pi }{8}}\right),}or thehyperbolic sineσ=exp(arsinh(1)).{\displaystyle \sigma =\exp(\operatorname {arsinh} (1)).}

σ{\displaystyle \sigma } and itsalgebraic conjugate can be written as sums of eighthroots of unity:with ω= exp(2πi/8)=i,σ=ωω4+ω1σ1=ω3ω4+ω3,{\displaystyle {\begin{aligned}{\text{with }}\omega =&\ \exp(2\pi i/8)={\sqrt {i}},\\\sigma &=\omega -\omega ^{4}+\omega ^{-1}\\-\sigma ^{-1}&=\omega ^{3}-\omega ^{4}+\omega ^{-3},\end{aligned}}}which is guaranteed by theKronecker–Weber theorem.

σ{\displaystyle \sigma } is the superstablefixed point of theNewton iterationx12(x2+1)/(x1), with x0[2,3]{\displaystyle x\gets {\tfrac {1}{2}}(x^{2}+1)/(x-1),{\text{ with }}x_{0}\in [2,3]}

The iterationx1+2x/{\displaystyle x\gets {\sqrt {1+2x{\vphantom {/}}}}} results in thecontinued radicalσ=1+21+21+{\displaystyle \sigma ={\sqrt {1+2{\sqrt {1+2{\sqrt {1+\cdots }}}}}}}

Properties

[edit]
Rectangles with aspect ratios related toσ tile the square.

The defining equation can be written1=1σ1+1σ+1=2σ+1+1σ.{\displaystyle {\begin{aligned}1&={\frac {1}{\sigma -1}}+{\frac {1}{\sigma +1}}\\&={\frac {2}{\sigma +1}}+{\frac {1}{\sigma }}.\end{aligned}}}

The silver ratio can be expressed in terms of itself as fractionsσ=1σ2σ2=σ1σ2+σ+1σ1.{\displaystyle {\begin{aligned}\sigma &={\frac {1}{\sigma -2}}\\\sigma ^{2}&={\frac {\sigma -1}{\sigma -2}}+{\frac {\sigma +1}{\sigma -1}}.\end{aligned}}}

Similarly as the infinitegeometric seriesσ=2n=0σ2nσ2=1+2n=0(σ1)n.{\displaystyle {\begin{aligned}\sigma &=2\sum _{n=0}^{\infty }\sigma ^{-2n}\\\sigma ^{2}&=-1+2\sum _{n=0}^{\infty }(\sigma -1)^{-n}.\end{aligned}}}

For every integern{\displaystyle n} one hasσn=2σn1+σn2=σn1+3σn2+σn3=2σn1+2σn3+σn4{\displaystyle {\begin{aligned}\sigma ^{n}&=2\sigma ^{n-1}+\sigma ^{n-2}\\&=\sigma ^{n-1}+3\sigma ^{n-2}+\sigma ^{n-3}\\&=2\sigma ^{n-1}+2\sigma ^{n-3}+\sigma ^{n-4}\end{aligned}}}from this an infinite number of further relations can be found.

Continued fraction pattern of a few low powersσ1=[0;2,2,2,2,...]0.4142(17/41)σ0=[1]σ1=[2;2,2,2,2,...]2.4142(70/29)σ2=[5;1,4,1,4,...]5.8284(5+29/35)σ3=[14;14,14,14,...]14.0711(14+1/14)σ4=[33;1,32,1,32,...]33.9706(33+33/34)σ5=[82;82,82,82,...]82.0122(82+1/82){\displaystyle {\begin{aligned}\sigma ^{-1}&=[0;2,2,2,2,...]\approx 0.4142\;(17/41)\\\sigma ^{0}&=[1]\\\sigma ^{1}&=[2;2,2,2,2,...]\approx 2.4142\;(70/29)\\\sigma ^{2}&=[5;1,4,1,4,...]\approx 5.8284\;(5+29/35)\\\sigma ^{3}&=[14;14,14,14,...]\approx 14.0711\;(14+1/14)\\\sigma ^{4}&=[33;1,32,1,32,...]\approx 33.9706\;(33+33/34)\\\sigma ^{5}&=[82;82,82,82,...]\approx 82.0122\;(82+1/82)\end{aligned}}}

σn(1)n1σnmod1.{\displaystyle \sigma ^{-n}\equiv (-1)^{n-1}\sigma ^{n}{\bmod {1}}.}

The silver ratio is aPisot number, the next quadratic Pisot number after the golden ratio.[5] By definition of these numbers, theabsolute value21{\displaystyle {\sqrt {2}}-1} of thealgebraic conjugate is smaller than1, thus powers ofσ{\displaystyle \sigma } generatealmost integers and the sequenceσnmod1{\displaystyle \sigma ^{n}{\bmod {1}}} is dense at the borders of theunit interval.[6]

Quadratic field ℚ(√2)

[edit]
The mappingι (ξ) = (ξ, ξ) embeds both con­jugates of integerξ = a + bσ into apoint-latticeΛ spanned by unit vectorsι (1) andι (σ). Thefundamental parallelogram with areaδ(Λ) = √8 in silver; theMinkowski diamond has area4δ(Λ).

σ{\displaystyle \sigma } is thefundamental unit of realquadratic fieldK=Q(2){\displaystyle K=\mathbb {Q} \left({\sqrt {2}}\right)} with discriminantΔk=8.{\displaystyle \Delta _{k}=8.} TheintegersZ[σ] of K{\displaystyle \mathbb {Z} [\sigma ]{\text{ of }}K} are the numbersξ=a+bσ (a,bZ),{\displaystyle \xi =a+b\sigma {\text{ }}(a,b\in \mathbb {Z} ),} with conjugateξ¯=(a+2b)bσ,{\displaystyle {\overline {\xi }}=(a+2b)-b\sigma ,} normξξ¯=(a+b)22b2{\displaystyle \xi {\overline {\xi }}=(a+b)^{2}-2b^{2}} and traceξ+ξ¯=2(a+b).{\displaystyle \xi +{\overline {\xi }}=2(a+b).}[7]The first few positive numbers occurring as norm are 1, 2, 4, 7, 8, 9, 14, 16, 17, 18, 23, 25.[8] Arithmetic in theringOk=Z[σ]{\displaystyle O_{k}=\mathbb {Z} [\sigma ]} resembles that of the rational integers,i.e. the elements ofZ.{\displaystyle \mathbb {Z} .} Prime factorization isunique up to order and unit factors±σ±n(n=0,1,2,),{\displaystyle \pm \sigma ^{\pm n}(n=0,1,2,\ldots ),} and there is aEuclidean function on the absolute value of the norm.[9] The primes ofOk{\displaystyle O_{k}} are of three types:

and any one of these numbers multiplied by a unit.[12]

The silver ratio can be used asbase of anumeral system, here called thesigmary scale.[b] Everyreal numberx in[0,1] can be represented as aconvergent seriesx=n=1anσn,{\displaystyle x=\sum _{n=1}^{\infty }{\frac {a_{n}}{\sigma ^{n}}},} withweightsan[0,1,2].{\displaystyle a_{n}\in [0,1,2].}

The steps in the sigmary scale resemble the intervals of themixolydian mode in log scale. Progression to the next octave is paralleled by the carry in 21 and 22.

Sigmary expansions are not unique. Due to the identitiesσn+1=2σn+σn1σn+1+σn1=2σn+2σn1,{\displaystyle {\begin{aligned}\sigma ^{n+1}&=2\sigma ^{n}+\sigma ^{n-1}\\\sigma ^{n+1}+\sigma ^{n-1}&=2\sigma ^{n}+2\sigma ^{n-1},\end{aligned}}}digit blocks21σ and 22σ{\displaystyle 21_{\sigma }{\text{ and }}22_{\sigma }}carry to the next power ofσ,{\displaystyle \sigma ,} resulting in100σ and 101σ.{\displaystyle 100_{\sigma }{\text{ and }}101_{\sigma }.} The number one has finite and infinite representations1.0σ,0.21σ{\displaystyle 1.0_{\sigma },0.21_{\sigma }} and0.20¯σ,0.12¯σ,{\displaystyle 0.{\overline {20}}_{\sigma },0.1{\overline {2}}_{\sigma },} where the first of each pair is incanonical form. Thealgebraic number2(3σ7){\displaystyle 2(3\sigma -7)} can be written0.101σ,{\displaystyle 0.101_{\sigma },} or non-canonically as0.022σ.{\displaystyle 0.022_{\sigma }.} Thedecimal number10=111.12σ,{\displaystyle 10=111.12_{\sigma },}7σ+3=1100σ{\displaystyle 7\sigma +3=1100_{\sigma }\,} and1σ1=0.1¯σ.{\displaystyle {\tfrac {1}{\sigma -1}}=0.{\overline {1}}_{\sigma }.}

Properties of canonical sigmary expansions, with coefficientsa,b,cZ:{\displaystyle a,b,c\in \mathbb {Z} :}


Remarkably, the same holdsmutatis mutandis for all quadratic Pisot numbers that satisfy the general equationx2=nx+1,{\displaystyle x^{2}=nx+1,} with integern > 0.[15] It follows by repeated substitution ofx=n+1x{\displaystyle x=n+{\frac {1}{x}}} that all positive solutions12(n+n2+4/){\displaystyle {\tfrac {1}{2}}\left(n+{\sqrt {n^{2}+4{\vphantom {/}}}}\right)} have a purely periodic continued fraction expansionσn=n+1n+1n+1{\displaystyle \sigma _{n}=n+{\cfrac {1}{n+{\cfrac {1}{n+{\cfrac {1}{\ddots }}}}}}}Vera de Spinadel described the properties of these irrationals and introduced the monikermetallic means.[16]

The silver ratio is related to thecentral Delannoy numbersDn{\displaystyle D_{n}} = 1, 3, 13, 63, 321, 1683, 8989,... that count the number of "king walks" between one pair of opposite corners of a squaren × n lattice. The sequence hasgenerating function [17]116x+x2=n=0Dnxn for |x|<1σ2,{\displaystyle {\frac {1}{\sqrt {1-6x+x^{2}}}}=\sum _{n=0}^{\infty }D_{n}x^{n}{\text{ for }}\vert x\vert <{\tfrac {1}{\sigma ^{2}}},}from which are obtained theintegral representation [18]Dn=1πσ2σ2dt(tσ2)(σ2t)tn+1{\displaystyle D_{n}={\frac {1}{\pi }}\int _{\sigma ^{-2}}^{\sigma ^{2}}{\frac {\mathrm {d} t}{{\sqrt {(t-\sigma ^{-2})(\sigma ^{2}-t)}}\;t^{n+1}}}}andasymptotic formula [19]Dnσ2n+12π(σ1)n(1113σ32n+22136σ2(32n)2+O(n3)).{\displaystyle D_{n}\sim {\frac {\sigma ^{2n+1}}{2{\sqrt {\pi (\sigma -1)\,n}}}}\left(1-{\frac {11-3\sigma }{32\,n}}+{\frac {221-36\sigma ^{2}}{(32\,n)^{2}}}+{\mathcal {O}}{\bigl (}n^{-3}{\bigr )}\right).}

For an application of the sigmary scale, consider the problem of writing a possible third-order coefficientc in terms of the silver ratio. The decimal value ofc is approximately0.006865233, which can be found with themethod of dominant balance using therecurrence relation for the central Delannoy numbers,nDn=(6n3)Dn1(n1)Dn2,{\displaystyle n\,D_{n}=(6n-3)D_{n-1}-(n-1)D_{n-2},}[20] withD1=D0=1,nmax=105.{\displaystyle D_{-1}=D_{0}=1,n_{max}=10^{5}.} "The coefficients all lie inQ(2){\displaystyle \mathbb {Q} \left({\sqrt {2}}\right)} and have denominators equal to some power of the prime2Z[σ].{\displaystyle {\sqrt {2}}\,\mathbb {Z} [\sigma ].}"[21]Choosing denominatord = 32768, the approximate numeratordc has sigmary expansion1001201.010201012000000110...σ{\displaystyle 1001201.010201012000000110..._{\sigma }} and is truncated to aquadratic integer by dropping all digits of orderk<9.{\displaystyle k<-9.} Write the remaining powersσk{\displaystyle \sigma ^{k}} in linear form withPell numbers as coefficients (see the following section), take the weighted sum and simplify, giving term4123309σ3(32n)3.{\displaystyle -{\frac {4123-309\sigma ^{3}}{(32\,n)^{3}}}.} A certified value forc is however as yet unknown.

Pell sequences

[edit]
Silver harmonics: the rectangle and its coloured subzones have areas in ratios7σ + 3 : σ3 : σ2 : σ : 1.
Main article:Pell number

These numbers are related to the silver ratio as theFibonacci numbers andLucas numbers are to thegolden ratio.

The fundamental sequence is defined by therecurrence relationPn=2Pn1+Pn2 for n>1,{\displaystyle P_{n}=2P_{n-1}+P_{n-2}{\text{ for }}n>1,}with initial valuesP0=0,P1=1.{\displaystyle P_{0}=0,P_{1}=1.}

The first few terms are 0, 1, 2, 5, 12, 29, 70, 169,...OEISA000129.
The limit ratio of consecutive terms is the silver mean.

Fractions of Pell numbers providerational approximations ofσ{\displaystyle \sigma } with error|σPn+1Pn|<18Pn2{\displaystyle \left\vert \sigma -{\frac {P_{n+1}}{P_{n}}}\right\vert <{\frac {1}{{\sqrt {8}}P_{n}^{2}}}}

The sequence is extended to negative indices usingPn=(1)n1Pn.{\displaystyle P_{-n}=(-1)^{n-1}P_{n}.}

Powers ofσ{\displaystyle \sigma } can be written with Pell numbers as linear coefficientsσn=σPn+Pn1,{\displaystyle \sigma ^{n}=\sigma P_{n}+P_{n-1},} which is proved bymathematical induction onn. The relation also holds forn < 0.

Thegenerating function of the sequence is given by [22]x12xx2=n=0Pnxn for |x|<1σ.{\displaystyle {\frac {x}{1-2x-x^{2}}}=\sum _{n=0}^{\infty }P_{n}x^{n}{\text{ for }}\vert x\vert <{\tfrac {1}{\sigma }}.}

Newton's method forp(z) =(z2 − 2z − 1)(z2 − 2z + σ) / σ: the silver ratio (right) and its conjugate withperturbing complex roots1 ± i√σ − 1 at the nuclei of theirbasins of attraction.Julia set of the Newton map in orange, with unit circle and real curve for reference.

Thecharacteristic equation of the recurrence isx22x1=0{\displaystyle x^{2}-2x-1=0} withdiscriminantD=8.{\displaystyle D=8.} If the two solutions are silver ratioσ{\displaystyle \sigma } and conjugateσ¯,{\displaystyle {\bar {\sigma }},} so thatσ+σ¯=2 and σσ¯=1,{\displaystyle \sigma +{\bar {\sigma }}=2\;{\text{ and }}\;\sigma \cdot {\bar {\sigma }}=-1,} the Pell numbers are computed with theBinet formulaPn=a(σnσ¯n),{\displaystyle P_{n}=a(\sigma ^{n}-{\bar {\sigma }}^{n}),}witha{\displaystyle a} the positive root of8x21=0.{\displaystyle 8x^{2}-1=0.}

Since|aσ¯n|<1/σ2n,{\displaystyle \left\vert a\,{\bar {\sigma }}^{n}\right\vert <1/\sigma ^{2n},} the numberPn{\displaystyle P_{n}} is the nearest integer toaσn,{\displaystyle a\,\sigma ^{n},} witha=1/8{\displaystyle a=1/{\sqrt {8}}} andn ≥ 0.

The Binet formulaσn+σ¯n{\displaystyle \sigma ^{n}+{\bar {\sigma }}^{n}} defines the companion sequenceQn=Pn+1+Pn1.{\displaystyle Q_{n}=P_{n+1}+P_{n-1}.}

The first few terms are 2, 2, 6, 14, 34, 82, 198,...OEISA002203.

ThisPell-Lucas sequence has theFermat property: if p is prime,QpQ1modp.{\displaystyle Q_{p}\equiv Q_{1}{\bmod {p}}.} The converse does not hold, the least oddpseudoprimesn(Qn2){\displaystyle \,n\mid (Q_{n}-2)} are 132, 385, 312, 1105, 1121, 3827, 4901.[23][c]

Pell numbers are obtained as integral powersn > 2 of amatrix with positiveeigenvalueσ{\displaystyle \sigma }M=(2110),{\displaystyle M={\begin{pmatrix}2&1\\1&0\end{pmatrix}},}

Mn=(Pn+1PnPnPn1){\displaystyle M^{n}={\begin{pmatrix}P_{n+1}&P_{n}\\P_{n}&P_{n-1}\end{pmatrix}}}

Thetrace ofMn{\displaystyle M^{n}} gives the aboveQn.{\displaystyle Q_{n}.}

Geometry

[edit]

Silver rectangle and regular octagon

[edit]
Origami construction of a silver rectangle, with creases in green.

A rectangle with edges in ratio√2 ∶ 1 can be created from a square piece of paper with anorigami folding sequence. Considered a proportion of great harmony inJapanese aestheticsYamato-hi (大和比) —the ratio is retained if the√2 rectangle is folded in half, parallel to the short edges.Rabatment produces a rectangle with edges in the silver ratio (according to1/σ = √2 − 1).[d]

  • Fold a square sheet of paper in half, creating a falling diagonal crease (bisect 90° angle), then unfold.
  • Fold the right hand edge onto the diagonal crease (bisect 45° angle).
  • Fold the top edge in half, to the back side (reduce width by1/σ + 1), and open out the triangle. The result is a√2 rectangle.
  • Fold the bottom edge onto the left hand edge (reduce height by1/σ − 1). The horizontal part on top is a silver rectangle.

If the folding paper is opened out, the creases coincide with diagonal sections of a regularoctagon. The first two creases divide the square into asilver gnomon with angles in the ratios5 ∶ 2 ∶ 1, between two right triangles with angles in ratios4 ∶ 2 ∶ 2 (left) and4 ∶ 3 ∶ 1 (right). The unit angle is equal to⁠22+1/2 degrees.

If the octagon has edge length1,{\displaystyle 1,} its area is2σ{\displaystyle 2\sigma } and the diagonals have lengthsσ+1/,σ{\displaystyle {\sqrt {\sigma +1{\vphantom {/}}}},\;\sigma } and2(σ+1)/.{\displaystyle {\sqrt {2(\sigma +1){\vphantom {/}}}}.} The coordinates of the vertices are given by the8permutations of(±12,±σ2).{\displaystyle \left(\pm {\tfrac {1}{2}},\pm {\tfrac {\sigma }{2}}\right).}[26] The paper square has edge lengthσ1{\displaystyle \sigma -1} and area2.{\displaystyle 2.} The triangles have areas1,σ1σ{\displaystyle 1,{\frac {\sigma -1}{\sigma }}} and1σ;{\displaystyle {\frac {1}{\sigma }};} the rectangles have areasσ1 and 1σ.{\displaystyle \sigma -1{\text{ and }}{\frac {1}{\sigma }}.}

Silver whirl

[edit]
A whirl of silver rectangles.

Divide a rectangle with sides in ratio1 ∶ 2 into four congruentright triangles with legs of equal length and arrange these in the shape of a silver rectangle, enclosing asimilar rectangle that is scaled by factor1σ{\displaystyle {\tfrac {1}{\sigma }}} and rotated about the centre byπ4.{\displaystyle {\tfrac {\pi }{4}}.} Repeating the construction at successively smaller scales results in four infinite sequences of adjoining right triangles, tracing awhirl of converging silver rectangles.[27]

The logarithmic spiral through the vertices of adjacent triangles haspolar slopek=4πln(σ).{\displaystyle k={\frac {4}{\pi }}\ln(\sigma ).}Theparallelogram between the pair of grey triangles on the sides has perpendicular diagonals in ratioσ{\displaystyle \sigma }, hence is asilverrhombus.

If the triangles have legs of length1{\displaystyle 1} then each discrete spiral has lengthσσ1=n=0σn.{\displaystyle {\frac {\sigma }{\sigma -1}}=\sum _{n=0}^{\infty }\sigma ^{-n}.} The areas of the triangles in each spiral region sum toσ4=12n=0σ2n;{\displaystyle {\frac {\sigma }{4}}={\tfrac {1}{2}}\sum _{n=0}^{\infty }\sigma ^{-2n};} the perimeters are equal toσ+2{\displaystyle \sigma +2} (light grey) and2σ1{\displaystyle 2\sigma -1} (silver regions).

Arranging the tiles with the fourhypotenuses facing inward results in the diamond-in-a-square shape.Ancient Roman tile work. Roman architectVitruvius recommended the impliedad quadratura ratio as one of three for proportioning a town houseatrium. The scaling factor is1σ1,{\displaystyle {\tfrac {1}{\sigma -1}},} and iteration on edge length2 gives an angular spiral of lengthσ+1.{\displaystyle \sigma +1.}

Polyhedra

[edit]
Dimensions of the rhombi­cuboctahedron are linked toσ.

The silver mean has connections to the followingArchimedean solids withoctahedral symmetry; all values are based on edge length= 2.

The coordinates of the vertices are given by 24 distinct permutations of(±σ,±1,±1),{\displaystyle (\pm \sigma ,\pm 1,\pm 1),} thus three mutually-perpendicular silver rectangles touch six of its square faces.
Themidradius is2(σ+1)/,{\displaystyle {\sqrt {2(\sigma +1){\vphantom {/}}}},} the centre radius for the square faces isσ.{\displaystyle \sigma .}[28]

Coordinates: 24 permutations of(±σ,±σ,±1).{\displaystyle (\pm \sigma ,\pm \sigma ,\pm 1).}
Midradius:σ+1,{\displaystyle \sigma +1,} centre radius for the octagon faces:σ.{\displaystyle \sigma .}[29]

Coordinates: 48 permutations of(±(2σ1),±σ,±1).{\displaystyle (\pm (2\sigma -1),\pm \sigma ,\pm 1).}
Midradius:6(σ+1)/,{\displaystyle {\sqrt {6(\sigma +1){\vphantom {/}}}},} centre radius for the square faces:σ+2,{\displaystyle \sigma +2,} for the octagon faces:2σ1.{\displaystyle 2\sigma -1.}[30]

See also the dualCatalan solids

Silver triangle

[edit]
Silver triangle and whirling gnomons.

Theacuteisosceles triangle formed by connecting two adjacent vertices of aregular octagon to its centre point, is here called thesilver triangle. It is uniquely identified by its angles in ratios2:3:3.{\displaystyle 2:3:3.} Theapex angle measures360/8=45,{\displaystyle 360/8=45,} eachbase angle6712{\displaystyle 67{\tfrac {1}{2}}} degrees. It follows that theheight to base ratio is12tan(6712)=σ2.{\displaystyle {\tfrac {1}{2}}\tan(67{\tfrac {1}{2}})={\tfrac {\sigma }{2}}.}

Bytrisecting one of its base angles, the silver triangle is partitioned into a similar triangle andanobtusesilvergnomon. The trisector is collinear with amedium diagonal of the octagon. Sharing the apex of the parent triangle, the gnomon has angles of6712/3=2212,45 and 11212{\displaystyle 67{\tfrac {1}{2}}/3=22{\tfrac {1}{2}},45{\text{ and }}112{\tfrac {1}{2}}} degrees in the ratios1:2:5.{\displaystyle 1:2:5.} From thelaw of sines, its edges are in ratios1:σ+1:σ.{\displaystyle 1:{\sqrt {\sigma +1}}:\sigma .}

The similar silver triangle is likewise obtained by scaling the parent triangle in base to leg ratio2cos(6712){\displaystyle 2\cos(67{\tfrac {1}{2}})}, accompanied with an11212{\displaystyle 112{\tfrac {1}{2}}} degree rotation. Repeating the process at decreasing scales results in an infinite sequence of silver triangles, which converges at thecentre of rotation. It is assumed without proof that the centre of rotation is the intersection point of sequentialmedian lines that join corresponding legs and base vertices.[31]The assumption is verified by construction, as demonstrated in the vector image.

The centre of rotation hasbarycentric coordinates(σ+1σ+5:2σ+5:2σ+5)(σ+12:1:1),{\displaystyle \left({\tfrac {\sigma +1}{\sigma +5}}:{\tfrac {2}{\sigma +5}}:{\tfrac {2}{\sigma +5}}\right)\sim \left({\tfrac {\sigma +1}{2}}:1:1\right),}the three whorls of stacked gnomons have areas in ratios(σ+12)2:σ+12:1.{\displaystyle \left({\tfrac {\sigma +1}{2}}\right)^{2}:{\tfrac {\sigma +1}{2}}:1.}

Thelogarithmic spiral through the vertices of all nested triangles haspolar slopek=45πln(σσ1),{\displaystyle k={\frac {4}{5\pi }}\ln \left({\tfrac {\sigma }{\sigma -1}}\right),}or an expansion rate ofσ+12{\displaystyle {\tfrac {\sigma +1}{2}}} for every225{\displaystyle 225} degrees of rotation.

Silvertriangle centers:affine coordinates on the axis of symmetry
circumcenter(2σ+1:1σ)(σ1:1){\displaystyle \left({\tfrac {2}{\sigma +1}}:{\tfrac {1}{\sigma }}\right)\sim (\sigma -1:1)}
centroid(23:13)(2:1){\displaystyle \left({\tfrac {2}{3}}:{\tfrac {1}{3}}\right)\sim (2:1)}
nine-point center(1σ1:1σ+1)(σ:1){\displaystyle \left({\tfrac {1}{\sigma -1}}:{\tfrac {1}{\sigma +1}}\right)\sim (\sigma :1)}
incenter,α =/8([1+cos(α)]1:[1+sec(α)]1)(sec(α):1){\displaystyle \left([1+\cos(\alpha )]^{-1}:[1+\sec(\alpha )]^{-1}\right)\sim (\sec(\alpha ):1)}
symmedian point(σ+1σ+2:1σ+2)(σ+1:1){\displaystyle \left({\tfrac {\sigma +1}{\sigma +2}}:{\tfrac {1}{\sigma +2}}\right)\sim (\sigma +1:1)}
orthocenter(2σ:1σ2)(2σ:1){\displaystyle \left({\tfrac {2}{\sigma }}:{\tfrac {1}{\sigma ^{2}}}\right)\sim (2\sigma :1)}

The long, medium and short diagonals of the regular octagon concur respectively at the apex, the circumcenter and the orthocenter of a silver triangle.

Silver rectangle and silver triangle

[edit]
Powers ofσ within a silver rectangle.

Assume a silver rectangle has been constructed as indicated above, with height1, lengthσ{\displaystyle \sigma } anddiagonal lengthσ2+1{\displaystyle {\sqrt {\sigma ^{2}+1}}}. The triangles on the diagonal havealtitudes1/1+σ2;{\displaystyle 1/{\sqrt {1+\sigma ^{-2}}}\,;} each perpendicular foot divides the diagonal in ratioσ2.{\displaystyle \sigma ^{2}.}

If an horizontal line is drawn through the intersection point of the diagonal and the internaledge of arabatment square, the parent silver rectangle and the two scaled copies along the diagonal have areas in the ratiosσ2:2:1,{\displaystyle \sigma ^{2}:2:1\,,} the rectangles opposite the diagonal both have areas equal to2σ+1.{\displaystyle {\tfrac {2}{\sigma +1}}.}[32]

Relative tovertexA, the coordinates of feet of altitudesU andV are(σσ2+1,1σ2+1) and (σ1+σ2,11+σ2).{\displaystyle \left({\tfrac {\sigma }{\sigma ^{2}+1}},{\tfrac {1}{\sigma ^{2}+1}}\right){\text{ and }}\left({\tfrac {\sigma }{1+\sigma ^{-2}}},{\tfrac {1}{1+\sigma ^{-2}}}\right).}

If the diagram is further subdivided by perpendicular lines throughU andV, the lengths of the diagonal and its subsections can be expressed astrigonometric functions of argumentα=6712{\displaystyle \alpha =67{\tfrac {1}{2}}} degrees, the base angle of the silver triangle:

Diagonal segments of the silver rectangle measure the silver triangle. The ratioAB:AS isσ.

AB¯=σ2+1=sec(α)AV¯=σ2/AB¯=σsin(α)UV¯=2/AS¯=2sin(α)SB¯=4/AB¯=4cos(α)SV¯=3/AB¯=3cos(α)AS¯=1+σ2=csc(α)h¯=1/AS¯=sin(α)US¯=AV¯SB¯=(2σ3)cos(α)AU¯=1/AB¯=cos(α),{\displaystyle {\begin{aligned}{\overline {AB}}={\sqrt {\sigma ^{2}+1}}&=\sec(\alpha )\\{\overline {AV}}=\sigma ^{2}/{\overline {AB}}&=\sigma \sin(\alpha )\\{\overline {UV}}=2/{\overline {AS}}&=2\sin(\alpha )\\{\overline {SB}}=4/{\overline {AB}}&=4\cos(\alpha )\\{\overline {SV}}=3/{\overline {AB}}&=3\cos(\alpha )\\{\overline {AS}}={\sqrt {1+\sigma ^{-2}}}&=\csc(\alpha )\\{\overline {h}}=1/{\overline {AS}}&=\sin(\alpha )\\{\overline {US}}={\overline {AV}}-{\overline {SB}}&=(2\sigma -3)\cos(\alpha )\\{\overline {AU}}=1/{\overline {AB}}&=\cos(\alpha ),\end{aligned}}}

withσ=tan(α).{\displaystyle \sigma =\tan(\alpha ).}

Both the lengths of the diagonal sections and the trigonometric values are elements ofbiquadraticnumber fieldK=Q(2+2).{\displaystyle K=\mathbb {Q} \left({\sqrt {2+{\sqrt {2}}}}\right).}

Thesilver rhombus with edge1{\displaystyle 1} has diagonal lengths equal toUV¯{\displaystyle {\overline {UV}}} and2AU¯.{\displaystyle 2{\overline {AU}}.} The regularoctagon with edge2{\displaystyle 2} has long diagonals of length2AB¯{\displaystyle 2{\overline {AB}}} that divide it into eight silver triangles. Since the regular octagon is defined by its side length and the angles of the silver triangle, it follows that all measures can be expressed in powers ofσ and the diagonal segments of the silver rectangle, as illustrated above,pars pro toto on a single triangle.

The leg to base ratioAB¯/21.306563{\displaystyle {\overline {AB}}/2\approx 1.306563} has been dubbed theCordovan proportion by Spanish architect Rafael de la Hoz Arderius. According to his observations, it is a notable measure in thearchitecture andintricate decorations of themediævalMosque of Córdoba,Andalusia.[33]

Silver spiral

[edit]
Silver spirals with different initial angles on aσ− rectangle.

A silver spiral is alogarithmic spiral that gets wider by a factor ofσ{\displaystyle \sigma } for every quarter turn. It is described by thepolar equationr(θ)=aexp(kθ),{\displaystyle r(\theta )=a\exp(k\theta ),} with initial radiusa{\displaystyle a} and parameterk=2πln(σ).{\displaystyle k={\frac {2}{\pi }}\ln(\sigma ).} If drawn on a silver rectangle, the spiral has its pole at the foot of altitude of a triangle on the diagonal and passes through vertices of paired squares which are perpendicularly aligned and successively scaled by a factorσ1.{\displaystyle \sigma ^{-1}.}


Ammann–Beenker tiling

[edit]
Patch inflation of Ammann A5-tiles with factorσ2.

The silver ratio appears prominently in theAmmann–Beenker tiling, anon-periodic tiling of the plane with octagonal symmetry, build from a square andsilver rhombus with equal side lengths. Discovered byRobert Ammann in 1977, its algebraic properties were described by Frans Beenker five years later.[34]If the squares are cut into two triangles, the inflation factor forAmmann A5-tiles isσ2,{\displaystyle \sigma ^{2},} the dominanteigenvalue of substitutionmatrixM=(3243).{\displaystyle M={\begin{pmatrix}3&2\\4&3\end{pmatrix}}.}

See also

[edit]

Notes

[edit]
  1. ^VariouslyT(2),[1]S2,δS,[2]σAg.[3] The last notation is adopted without the subscript, which is relevant only to the context ofmetallic means.
  2. ^In what follows, it is assumed that0 ≤x ≤ 1. Negative numbers are multiplied by−1 first, and numbers> 1 divided by the least power ofσ ≥x. The sigmary digits are then obtained by successive multiplications withσ, clearing the integer part at each step. Lastly, the 'sigmary point' is restored.
  3. ^There are 3360 odd composite numbers below109 that pass the Pell-Lucas test. This compares favourably to the number of oddFibonacci,Pell,Lucas-Selfridge or base-2Fermat pseudoprimes.[24]
  4. ^In 1979 theBritish Origami Society proposed the aliassilver rectangle for the√2 rectangle, which is commonly used now.[25] In this article the name is reserved for theσ rectangle.

References

[edit]
  1. ^Knott, Ron (2015)."An introduction to Continued Fractions".Dr Ron Knott's web pages on Mathematics. University of Surrey. RetrievedDecember 11, 2024.
  2. ^Weisstein, Eric W."Silver ratio".MathWorld.
  3. ^Spinadel, Vera W. de (1997).New Smarandache sequences: the family of metallic means. Proceedings of the first international conference on Smarandache type notions in number theory (Craiova, Romania). Rehoboth, NM: American Research Press. pp. 79–114.doi:10.5281/ZENODO.9055.
  4. ^Sloane, N. J. A. (ed.)."Sequence A014176 (Decimal expansion of the silver mean)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  5. ^Panju, Maysum (2011)."A systematic construction of almost integers"(PDF).The Waterloo Mathematics Review.1 (2):35–43.
  6. ^Weisstein, Eric W."Power Fractional Parts".MathWorld.
  7. ^Hardy, G. H.;Wright, E. M. (1979).An Introduction to the Theory of Numbers (5th ed.). Oxford, New York: Oxford University Press. p. 208-210.ISBN 0-19-853171-0.
  8. ^Sloane, N. J. A. (ed.)."Sequence A035251 (Positive integers of the form x2 − 2y2)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  9. ^Hardy & Wright (1979, p. 212, 214): Theorems 245 & 248
  10. ^Sloane, N. J. A. (ed.)."Sequence A001132 (Primes p ≡ ±1 (mod 8))".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  11. ^Sloane, N. J. A. (ed.)."Sequence A003629 (Primes p ≡ ±3 (mod 8))".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  12. ^Hardy & Wright (1979, p. 221): Theorem 256
  13. ^Frougny, Christiane; Solomyak, Boris (1992)."Finite beta-expansions".Ergodic Theory and Dynamical Systems.12 (4): 713–723 [721: Proposition 1].doi:10.1017/S0143385700007057. RetrievedJanuary 19, 2025.
  14. ^Schmidt, Klaus (1980). "On periodic expansions of Pisot numbers and Salem numbers".Bulletin of the London Mathematical Society.12 (4): 269–278 [274: Theorem 3.1].doi:10.1112/blms/12.4.269.hdl:10338.dmlcz/141479.
  15. ^Schmidt (1980, p. 275): Theorem 3.4
  16. ^Spinadel (1997)
  17. ^Sloane, N. J. A. (ed.)."Sequence A001850 (Central Delannoy numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  18. ^Qi, Feng; Čerňanová, Viera; Shi, Xiao-Ting; Guo, Bai-Ni (2018)."Some properties of central Delannoy numbers".Journal of Computational and Applied Mathematics.328: 101-115 [103: Theorem 1.3].doi:10.1016/j.cam.2017.07.013.
  19. ^Noble, Rob (2012)."Asymptotics of the weighted Delannoy numbers"(PDF).International Journal of Number Theory.8 (1): 175-188 [177].doi:10.1142/S1793042112500108.
  20. ^Sloane, N. J. A. (ed.)."Sequence A001850 (Formula)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  21. ^Noble (2012, p. 175); Proposition 1
  22. ^Horadam, A. F. (1971). "Pell identities".The Fibonacci Quarterly.9 (3):245–252, 263 [248].doi:10.1080/00150517.1971.12431004.
  23. ^Sloane, N. J. A. (ed.)."Sequence A330276 (Newman-Shanks-Williams pseudoprimes)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  24. ^Jacobsen, Dana (2020)."Pseudoprime statistics and tables".ntheory.org. Retrieved18 December 2024.
  25. ^Lister, David (2021)."A4 (Silver) Rectangles".The Lister List. British Origami Society. RetrievedDecember 15, 2024.
  26. ^Kapusta, Janos (2004),"The square, the circle, and the golden proportion: a new class of geometrical constructions"(PDF),Forma,19:293–313
  27. ^Walser, Hans (2022).Spiralen, Schraubenlinien und spiralartige Figuren (in German). Berlin, Heidelberg:Springer Spektrum. pp. 77–78.doi:10.1007/978-3-662-65132-2.ISBN 978-3-662-65131-5.
  28. ^McCooey, David."Rhombicuboctahedron".Visual Polyhedra. Retrieved11 December 2024.
  29. ^McCooey, David."Truncated Cube".Visual Polyhedra. Retrieved11 December 2024.
  30. ^McCooey, David."Truncated Cuboctahedron".Visual Polyhedra. Retrieved11 December 2024.
  31. ^Proved for thegolden triangle in:Loeb, Arthur L.; Varney, William (1992)."Does the golden spiral exist, and if not, where is its center?". In Hargittai, István; Pickover, Clifford A. (eds.).Spiral Symmetry. Singapore: World Scientific. pp. 47–61.doi:10.1142/9789814343084_0002.ISBN 981-02-0615-1. RetrievedJanuary 14, 2025.
  32. ^Analogue to the construction in:Crilly, Tony (1994). "A supergolden rectangle".The Mathematical Gazette.78 (483):320–325.doi:10.2307/3620208.JSTOR 3620208.
  33. ^Redondo Buitrago, Antonia; Reyes Iglesias, Encarnación (2008)."The Geometry of the Cordovan Polygons"(PDF).Visual Mathematics.10 (4). Belgrade: Mathematical Institute.ISSN 1821-1437. RetrievedDecember 11, 2024.
  34. ^Harriss, Edmund (2007).Images of the Ammann-Beenker Tiling(PDF). Bridges Donostia: Mathematics, music, art, architecture, culture. San Sebastián: The Bridges Organization. pp. 377–378.

External links

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Silver_ratio&oldid=1318720865"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp