Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Series multisection

From Wikipedia, the free encyclopedia
In mathematics, series built from equally spaced terms of another series

In mathematics, amultisection of a power series is a newpower series composed of equally spaced terms extracted unaltered from the original series. Formally, if one is given a power series

n=anzn{\displaystyle \sum _{n=-\infty }^{\infty }a_{n}\cdot z^{n}}

then its multisection is a power series of the form

m=aqm+pzqm+p{\displaystyle \sum _{m=-\infty }^{\infty }a_{qm+p}\cdot z^{qm+p}}

wherep,q are integers, with 0 ≤p <q. Series multisection represents one of the commontransformations of generating functions.

Multisection of analytic functions

[edit]

A multisection of the series of ananalytic function

f(z)=n=0anzn{\displaystyle f(z)=\sum _{n=0}^{\infty }a_{n}\cdot z^{n}}

has aclosed-form expression in terms of the functionf(x){\displaystyle f(x)}:

m=0aqm+pzqm+p=1qk=0q1ωkpf(ωkz),{\displaystyle \sum _{m=0}^{\infty }a_{qm+p}\cdot z^{qm+p}={\frac {1}{q}}\cdot \sum _{k=0}^{q-1}\omega ^{-kp}\cdot f(\omega ^{k}\cdot z),}

whereω=e2πiq{\displaystyle \omega =e^{\frac {2\pi i}{q}}} is aprimitiveq-th root of unity. This expression is often called a root of unity filter. This solution was first discovered byThomas Simpson.[1]

Examples

[edit]

Bisection

[edit]

In general, the bisections of a series are theeven and odd parts of the series.

Geometric series

[edit]

Consider thegeometric series

n=0zn=11z for |z|<1.{\displaystyle \sum _{n=0}^{\infty }z^{n}={\frac {1}{1-z}}\quad {\text{ for }}|z|<1.}

By settingzzq{\displaystyle z\rightarrow z^{q}} in the above series, its multisections are easily seen to be

m=0zqm+p=zp1zq for |z|<1.{\displaystyle \sum _{m=0}^{\infty }z^{qm+p}={\frac {z^{p}}{1-z^{q}}}\quad {\text{ for }}|z|<1.}

Remembering that the sum of the multisections must equal the original series, we recover the familiar identity

p=0q1zp=1zq1z.{\displaystyle \sum _{p=0}^{q-1}z^{p}={\frac {1-z^{q}}{1-z}}.}

Exponential function

[edit]

The exponential function

ez=n=0znn!{\displaystyle e^{z}=\sum _{n=0}^{\infty }{z^{n} \over n!}}

by means of the above formula for analytic functions separates into

m=0zqm+p(qm+p)!=1qk=0q1ωkpeωkz.{\displaystyle \sum _{m=0}^{\infty }{z^{qm+p} \over (qm+p)!}={\frac {1}{q}}\cdot \sum _{k=0}^{q-1}\omega ^{-kp}e^{\omega ^{k}z}.}

The bisections are trivially thehyperbolic functions:

m=0z2m(2m)!=12(ez+ez)=coshz{\displaystyle \sum _{m=0}^{\infty }{z^{2m} \over (2m)!}={\frac {1}{2}}\left(e^{z}+e^{-z}\right)=\cosh {z}}
m=0z2m+1(2m+1)!=12(ezez)=sinhz.{\displaystyle \sum _{m=0}^{\infty }{z^{2m+1} \over (2m+1)!}={\frac {1}{2}}\left(e^{z}-e^{-z}\right)=\sinh {z}.}

Higher order multisections are found by noting that all such series must be real-valued along the real line. By taking the real part and using standard trigonometric identities, the formulas may be written in explicitly real form as

m=0zqm+p(qm+p)!=1qk=0q1ezcos(2πk/q)cos(zsin(2πkq)2πkpq).{\displaystyle \sum _{m=0}^{\infty }{z^{qm+p} \over (qm+p)!}={\frac {1}{q}}\cdot \sum _{k=0}^{q-1}e^{z\cos(2\pi k/q)}\cos {\left(z\sin {\left({\frac {2\pi k}{q}}\right)}-{\frac {2\pi kp}{q}}\right)}.}

These can be seen as solutions to thelinear differential equationf(q)(z)=f(z){\displaystyle f^{(q)}(z)=f(z)} withboundary conditionsf(k)(0)=δk,p{\displaystyle f^{(k)}(0)=\delta _{k,p}}, usingKronecker delta notation. In particular, the trisections are

m=0z3m(3m)!=13(ez+2ez/2cos3z2){\displaystyle \sum _{m=0}^{\infty }{z^{3m} \over (3m)!}={\frac {1}{3}}\left(e^{z}+2e^{-z/2}\cos {\frac {{\sqrt {3}}z}{2}}\right)}
m=0z3m+1(3m+1)!=13(ez2ez/2cos(3z2+π3)){\displaystyle \sum _{m=0}^{\infty }{z^{3m+1} \over (3m+1)!}={\frac {1}{3}}\left(e^{z}-2e^{-z/2}\cos {\left({\frac {{\sqrt {3}}z}{2}}+{\frac {\pi }{3}}\right)}\right)}
m=0z3m+2(3m+2)!=13(ez2ez/2cos(3z2π3)),{\displaystyle \sum _{m=0}^{\infty }{z^{3m+2} \over (3m+2)!}={\frac {1}{3}}\left(e^{z}-2e^{-z/2}\cos {\left({\frac {{\sqrt {3}}z}{2}}-{\frac {\pi }{3}}\right)}\right),}

and the quadrisections are

m=0z4m(4m)!=12(coshz+cosz){\displaystyle \sum _{m=0}^{\infty }{z^{4m} \over (4m)!}={\frac {1}{2}}\left(\cosh {z}+\cos {z}\right)}
m=0z4m+1(4m+1)!=12(sinhz+sinz){\displaystyle \sum _{m=0}^{\infty }{z^{4m+1} \over (4m+1)!}={\frac {1}{2}}\left(\sinh {z}+\sin {z}\right)}
m=0z4m+2(4m+2)!=12(coshzcosz){\displaystyle \sum _{m=0}^{\infty }{z^{4m+2} \over (4m+2)!}={\frac {1}{2}}\left(\cosh {z}-\cos {z}\right)}
m=0z4m+3(4m+3)!=12(sinhzsinz).{\displaystyle \sum _{m=0}^{\infty }{z^{4m+3} \over (4m+3)!}={\frac {1}{2}}\left(\sinh {z}-\sin {z}\right).}

Binomial series

[edit]

Multisection of abinomial expansion

(1+x)n=(n0)x0+(n1)x+(n2)x2+{\displaystyle (1+x)^{n}={n \choose 0}x^{0}+{n \choose 1}x+{n \choose 2}x^{2}+\cdots }

atx = 1 gives the following identity for the sum ofbinomial coefficients with stepq:

(np)+(np+q)+(np+2q)+=1qk=0q1(2cosπkq)ncosπ(n2p)kq.{\displaystyle {n \choose p}+{n \choose p+q}+{n \choose p+2q}+\cdots ={\frac {1}{q}}\cdot \sum _{k=0}^{q-1}\left(2\cos {\frac {\pi k}{q}}\right)^{n}\cdot \cos {\frac {\pi (n-2p)k}{q}}.}

Applications

[edit]

Series multisection converts an infinite sum into a finite sum. It is used, for example, in a key step of a standard proof ofGauss's digamma theorem, which gives a closed-form solution to the digamma function evaluated at rational valuesp/q.

References

[edit]
  1. ^Simpson, Thomas (1757)."CIII. The invention of a general method for determining the sum of every 2d, 3d, 4th, or 5th, &c. term of a series, taken in order; the sum of the whole series being known".Philosophical Transactions of the Royal Society of London.51:757–759.doi:10.1098/rstl.1757.0104.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Series_multisection&oldid=1289146189"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp