Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Self-adjoint

From Wikipedia, the free encyclopedia
Element of algebra where x* equals x

Inmathematics, anelement of a*-algebra is calledself-adjoint if it is the same as itsadjoint (i.e.a=a{\displaystyle a=a^{*}}).

Definition

[edit]

LetA{\displaystyle {\mathcal {A}}} be a *-algebra. An elementaA{\displaystyle a\in {\mathcal {A}}} is called self-adjoint ifa=a{\displaystyle a=a^{*}}.[1]

Theset of self-adjoint elements is referred to asAsa{\displaystyle {\mathcal {A}}_{sa}}.

AsubsetBA{\displaystyle {\mathcal {B}}\subseteq {\mathcal {A}}} that isclosed under theinvolution *, i.e.B=B{\displaystyle {\mathcal {B}}={\mathcal {B}}^{*}}, is calledself-adjoint.[2]

A special case of particular importance is the case whereA{\displaystyle {\mathcal {A}}} is acomplete normed *-algebra, that satisfies the C*-identity (aa=a2 aA{\displaystyle \left\|a^{*}a\right\|=\left\|a\right\|^{2}\ \forall a\in {\mathcal {A}}}), which is called aC*-algebra.

Especially in the older literature on *-algebras and C*-algebras, such elements are often calledhermitian.[1] Because of that the notationsAh{\displaystyle {\mathcal {A}}_{h}},AH{\displaystyle {\mathcal {A}}_{H}} orH(A){\displaystyle H({\mathcal {A}})} for the set of self-adjoint elements are also sometimes used, even in the more recent literature.

Examples

[edit]

Criteria

[edit]

LetA{\displaystyle {\mathcal {A}}} be a *-algebra. Then:

Properties

[edit]

In *-algebras

[edit]

LetA{\displaystyle {\mathcal {A}}} be a *-algebra. Then:

In C*-algebras

[edit]

LetA{\displaystyle {\mathcal {A}}} be a C*-algebra andaAsa{\displaystyle a\in {\mathcal {A}}_{sa}}. Then:

See also

[edit]

Notes

[edit]
  1. ^abcdefDixmier 1977, p. 4.
  2. ^Dixmier 1977, p. 3.
  3. ^Palmer 2001, p. 800.
  4. ^Dixmier 1977, pp. 3–4.
  5. ^abKadison & Ringrose 1983, p. 271.
  6. ^Palmer 2001, pp. 798–800.
  7. ^Palmer 2001, p. 798.
  8. ^Palmer 2001, p. 1008.
  9. ^Kadison & Ringrose 1983, p. 238.
  10. ^Kadison & Ringrose 1983, p. 246.
  11. ^Dixmier 1977, p. 15.
  12. ^Blackadar 2006, p. 63.

References

[edit]
  • Blackadar, Bruce (2006).Operator Algebras. Theory of C*-Algebras and von Neumann Algebras. Berlin/Heidelberg: Springer. p. 63.ISBN 3-540-28486-9.
  • Dixmier, Jacques (1977).C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland.ISBN 0-7204-0762-1. English translation ofLes C*-algèbres et leurs représentations (in French). Gauthier-Villars. 1969.
  • Kadison, Richard V.; Ringrose, John R. (1983).Fundamentals of the Theory of Operator Algebras. Volume 1 Elementary Theory. New York/London: Academic Press.ISBN 0-12-393301-3.
  • Palmer, Theodore W. (2001).Banach algebras and the general theory of*-algebras: Volume 2,*-algebras. Cambridge university press.ISBN 0-521-36638-0.
Basic concepts
Main results
Special Elements/Operators
Spectrum
Decomposition
Spectral Theorem
Special algebras
Finite-Dimensional
Generalizations
Miscellaneous
Examples
Applications
Retrieved from "https://en.wikipedia.org/w/index.php?title=Self-adjoint&oldid=1286706432"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp