Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Scoring algorithm

From Wikipedia, the free encyclopedia
Form of Newton's method used in statistics

Scoring algorithm, also known asFisher's scoring,[1] is a form ofNewton's method used instatistics to solvemaximum likelihood equationsnumerically, named afterRonald Fisher.

Sketch of derivation

[edit]

LetY1,,Yn{\displaystyle Y_{1},\ldots ,Y_{n}} berandom variables, independent and identically distributed with twice differentiablep.d.f.f(y;θ){\displaystyle f(y;\theta )}, and we wish to calculate themaximum likelihood estimator (M.L.E.)θ{\displaystyle \theta ^{*}} ofθ{\displaystyle \theta }. First, suppose we have a starting point for our algorithmθ0{\displaystyle \theta _{0}}, and consider aTaylor expansion of thescore function,V(θ){\displaystyle V(\theta )}, aboutθ0{\displaystyle \theta _{0}}:

V(θ)V(θ0)J(θ0)(θθ0),{\displaystyle V(\theta )\approx V(\theta _{0})-{\mathcal {J}}(\theta _{0})(\theta -\theta _{0}),\,}

where

J(θ0)=i=1n|θ=θ0logf(Yi;θ){\displaystyle {\mathcal {J}}(\theta _{0})=-\sum _{i=1}^{n}\left.\nabla \nabla ^{\top }\right|_{\theta =\theta _{0}}\log f(Y_{i};\theta )}

is theobserved information matrix atθ0{\displaystyle \theta _{0}}. Now, settingθ=θ{\displaystyle \theta =\theta ^{*}}, using thatV(θ)=0{\displaystyle V(\theta ^{*})=0} and rearranging gives us:

θθ0+J1(θ0)V(θ0).{\displaystyle \theta ^{*}\approx \theta _{0}+{\mathcal {J}}^{-1}(\theta _{0})V(\theta _{0}).\,}

We therefore use the algorithm

θm+1=θm+J1(θm)V(θm),{\displaystyle \theta _{m+1}=\theta _{m}+{\mathcal {J}}^{-1}(\theta _{m})V(\theta _{m}),\,}

and under certain regularity conditions, it can be shown thatθmθ{\displaystyle \theta _{m}\rightarrow \theta ^{*}}.

Fisher scoring

[edit]

In practice,J(θ){\displaystyle {\mathcal {J}}(\theta )} is usually replaced byI(θ)=E[J(θ)]{\displaystyle {\mathcal {I}}(\theta )=\mathrm {E} [{\mathcal {J}}(\theta )]}, theFisher information, thus giving us theFisher Scoring Algorithm:

θm+1=θm+I1(θm)V(θm){\displaystyle \theta _{m+1}=\theta _{m}+{\mathcal {I}}^{-1}(\theta _{m})V(\theta _{m})}..

Under some regularity conditions, ifθm{\displaystyle \theta _{m}} is aconsistent estimator, thenθm+1{\displaystyle \theta _{m+1}} (the correction after a single step) is 'optimal' in the sense that its error distribution is asymptotically identical to that of the true max-likelihood estimate.[2]

See also

[edit]

References

[edit]
  1. ^Longford, Nicholas T. (1987). "A fast scoring algorithm for maximum likelihood estimation in unbalanced mixed models with nested random effects".Biometrika.74 (4):817–827.doi:10.1093/biomet/74.4.817.
  2. ^Li, Bing; Babu, G. Jogesh (2019),"Bayesian Inference",Springer Texts in Statistics, New York, NY: Springer New York, Theorem 9.4,doi:10.1007/978-1-4939-9761-9_6,ISBN 978-1-4939-9759-6,S2CID 239322258, retrieved2023-01-03{{citation}}: CS1 maint: work parameter with ISBN (link)

Further reading

[edit]
Functions
Gradients
Convergence
Quasi–Newton
Other methods
Hessians
Graph of a strictly concave quadratic function with unique maximum.
Optimization computes maxima and minima.
General
Differentiable
Convex
minimization
Linear and
quadratic
Interior point
Basis-exchange
Paradigms
Graph
algorithms
Minimum
spanning tree
Shortest path
Network flows
Retrieved from "https://en.wikipedia.org/w/index.php?title=Scoring_algorithm&oldid=1328389618"
Category:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp