Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Schwinger–Dyson equation

From Wikipedia, the free encyclopedia
Equations for correlation functions in QFT
Freeman Dyson in 2005
This articlemay be too technical for most readers to understand. Pleasehelp improve it tomake it understandable to non-experts, without removing the technical details.(May 2025) (Learn how and when to remove this message)

TheSchwinger–Dyson equations (SDEs) orDyson–Schwinger equations, named afterJulian Schwinger andFreeman Dyson, are general relations betweencorrelation functions inquantum field theories (QFTs). They are also referred to as theEuler–Lagrange equations of quantum field theories, since they are theequations of motion corresponding to the Green's function. They form a set of infinitely many functional differential equations, all coupled to each other, sometimes referred to as the infinite tower of SDEs.

In his paper "TheS-Matrix in Quantum electrodynamics",[1] Dyson derived relations between differentS-matrix elements, or more specific "one-particle Green's functions", inquantum electrodynamics, by summing up infinitely manyFeynman diagrams, thus working in a perturbative approach. Starting from hisvariational principle, Schwinger derived a set of equations for Green's functions non-perturbatively,[2] which generalize Dyson's equations to the Schwinger–Dyson equations for the Green functions ofquantum field theories. Today they provide a non-perturbative approach to quantum field theories and applications can be found in many fields oftheoretical physics, such assolid-state physics andelementary particle physics.

Schwinger also derived an equation for the two-particle irreducible Green functions,[2] which is nowadays referred to as the inhomogeneousBethe–Salpeter equation.

Derivation

[edit]

Given a polynomially boundedfunctionalF{\displaystyle F} over the field configurations, then, for anystate vector (which is a solution of the QFT),|ψ{\displaystyle |\psi \rangle }, we have

ψ|T{δδφF[φ]}|ψ=iψ|T{F[φ]δδφS[φ]}|ψ{\displaystyle \left\langle \psi \left|{\mathcal {T}}\left\{{\frac {\delta }{\delta \varphi }}F[\varphi ]\right\}\right|\psi \right\rangle =-i\left\langle \psi \left|{\mathcal {T}}\left\{F[\varphi ]{\frac {\delta }{\delta \varphi }}S[\varphi ]\right\}\right|\psi \right\rangle }

whereδδφ{\textstyle {\frac {\delta }{\delta \varphi }}} is thefunctional derivative with respect toφ{\displaystyle \varphi },S{\displaystyle S} is theaction functional andT{\displaystyle {\mathcal {T}}} is thetime ordering operation.

Equivalently, in thedensity state formulation, for any (valid) density stateρ{\displaystyle \rho }, we have

ρ(T{δδφF[φ]})=iρ(T{F[φ]δδφS[φ]}).{\displaystyle \rho \left({\mathcal {T}}\left\{{\frac {\delta }{\delta \varphi }}F[\varphi ]\right\}\right)=-i\rho \left({\mathcal {T}}\left\{F[\varphi ]{\frac {\delta }{\delta \varphi }}S[\varphi ]\right\}\right).}

Thisinfinite set of equations can be used to solve for the correlation functionsnonperturbatively.

To make the connection to diagrammatic techniques (likeFeynman diagrams) clearer, it is often convenient to split the actionS{\displaystyle S} as

S[φ]=12φiDij1φj+Sint[φ],{\displaystyle S[\varphi ]={\tfrac {1}{2}}\varphi ^{i}D_{ij}^{-1}\varphi ^{j}+S_{\text{int}}[\varphi ],}

where the first term is the quadratic part andD1{\displaystyle D^{-1}} is an invertible symmetric (antisymmetric for fermions) covariant tensor of rank two in thedeWitt notation whose inverse,D{\displaystyle D} is called the bare propagator andSint[φ]{\displaystyle S_{\text{int}}[\varphi ]} is the "interaction action". Then, we can rewrite the SD equations as

ψ|T{Fφj}|ψ=ψ|T{iF,iDijFSint,iDij}|ψ.{\displaystyle \left\langle \psi \left\vert {\mathcal {T}}\left\{F\varphi ^{j}\right\}\right\vert \psi \right\rangle =\left\langle \psi \left\vert {\mathcal {T}}\left\{iF_{,i}D^{ij}-FS_{{\text{int}},i}D^{ij}\right\}\right\vert \psi \right\rangle .}

IfF{\displaystyle F} is a functional ofφ{\displaystyle \varphi }, then for anoperatorK{\displaystyle K},F[K]{\displaystyle F[K]} is defined to be the operator which substitutesK{\displaystyle K} forφ{\displaystyle \varphi }. For example, if

F[φ]=k1x1k1φ(x1)knxnknφ(xn){\displaystyle F[\varphi ]={\frac {\partial ^{k_{1}}}{\partial x_{1}^{k_{1}}}}\varphi (x_{1})\cdots {\frac {\partial ^{k_{n}}}{\partial x_{n}^{k_{n}}}}\varphi (x_{n})}

andG{\displaystyle G} is a functional ofJ{\displaystyle J}, then

F[iδδJ]G[J]=(i)nk1x1k1δδJ(x1)knxnknδδJ(xn)G[J].{\displaystyle F\left[-i{\frac {\delta }{\delta J}}\right]G[J]=(-i)^{n}{\frac {\partial ^{k_{1}}}{\partial x_{1}^{k_{1}}}}{\frac {\delta }{\delta J(x_{1})}}\cdots {\frac {\partial ^{k_{n}}}{\partial x_{n}^{k_{n}}}}{\frac {\delta }{\delta J(x_{n})}}G[J].}

If we have an "analytic" (a function that is locally given by a convergent power series)functionalZ{\displaystyle Z} (called thegenerating functional) ofJ{\displaystyle J} (called thesource field) satisfying

δnZδJ(x1)δJ(xn)[0]=inZ[0]φ(x1)φ(xn),{\displaystyle {\frac {\delta ^{n}Z}{\delta J(x_{1})\cdots \delta J(x_{n})}}[0]=i^{n}Z[0]\langle \varphi (x_{1})\cdots \varphi (x_{n})\rangle ,}

then, from the properties of the functional integrals

δSδφ(x)[φ]+J(x)J=0,{\displaystyle {\left\langle {\frac {\delta {\mathcal {S}}}{\delta \varphi (x)}}\left[\varphi \right]+J(x)\right\rangle }_{J}=0,}

the Schwinger–Dyson equation for the generating functional is

δSδφ(x)[iδδJ]Z[J]+J(x)Z[J]=0.{\displaystyle {\frac {\delta S}{\delta \varphi (x)}}\left[-i{\frac {\delta }{\delta J}}\right]Z[J]+J(x)Z[J]=0.}

If we expand this equation as aTaylor series aboutJ=0{\displaystyle J=0}, we get the entire set of Schwinger–Dyson equations.

An example:φ4

[edit]

To give an example, suppose

S[φ]=ddx(12μφ(x)μφ(x)12m2φ(x)2λ4!φ(x)4){\displaystyle S[\varphi ]=\int d^{d}x\left({\tfrac {1}{2}}\partial ^{\mu }\varphi (x)\partial _{\mu }\varphi (x)-{\tfrac {1}{2}}m^{2}\varphi (x)^{2}-{\frac {\lambda }{4!}}\varphi (x)^{4}\right)}

for a real field φ{\displaystyle \varphi }.

Then,

δSδφ(x)=μμφ(x)m2φ(x)λ3!φ3(x).{\displaystyle {\frac {\delta S}{\delta \varphi (x)}}=-\partial _{\mu }\partial ^{\mu }\varphi (x)-m^{2}\varphi (x)-{\frac {\lambda }{3!}}\varphi ^{3}(x).}

The Schwinger–Dyson equation for this particular example is:

iμμδδJ(x)Z[J]+im2δδJ(x)Z[J]iλ3!δ3δJ(x)3Z[J]+J(x)Z[J]=0{\displaystyle i\partial _{\mu }\partial ^{\mu }{\frac {\delta }{\delta J(x)}}Z[J]+im^{2}{\frac {\delta }{\delta J(x)}}Z[J]-{\frac {i\lambda }{3!}}{\frac {\delta ^{3}}{\delta J(x)^{3}}}Z[J]+J(x)Z[J]=0}

Note that since

δ3δJ(x)3{\displaystyle {\frac {\delta ^{3}}{\delta J(x)^{3}}}}

is not well-defined because

δ3δJ(x1)δJ(x2)δJ(x3)Z[J]{\displaystyle {\frac {\delta ^{3}}{\delta J(x_{1})\delta J(x_{2})\delta J(x_{3})}}Z[J]}

is adistribution in

x1{\displaystyle x_{1}},x2{\displaystyle x_{2}} andx3{\displaystyle x_{3}},

this equation needs to beregularized.

In this example, the bare propagator D is theGreen's function forμμm2{\displaystyle -\partial ^{\mu }\partial _{\mu }-m^{2}} and so, the Schwinger–Dyson set of equations goes as

ψT{φ(x0)φ(x1)}ψ=iD(x0,x1)+λ3!ddx2D(x0,x2)ψT{φ(x1)φ(x2)φ(x2)φ(x2)}ψ{\displaystyle {\begin{aligned}&\langle \psi \mid {\mathcal {T}}\{\varphi (x_{0})\varphi (x_{1})\}\mid \psi \rangle \\[4pt]={}&iD(x_{0},x_{1})+{\frac {\lambda }{3!}}\int d^{d}x_{2}\,D(x_{0},x_{2})\langle \psi \mid {\mathcal {T}}\{\varphi (x_{1})\varphi (x_{2})\varphi (x_{2})\varphi (x_{2})\}\mid \psi \rangle \end{aligned}}}

and

ψT{φ(x0)φ(x1)φ(x2)φ(x3)}ψ=iD(x0,x1)ψT{φ(x2)φ(x3)}ψ+iD(x0,x2)ψT{φ(x1)φ(x3)}ψ+iD(x0,x3)ψT{φ(x1)φ(x2)}ψ+λ3!ddx4D(x0,x4)ψT{φ(x1)φ(x2)φ(x3)φ(x4)φ(x4)φ(x4)}ψ{\displaystyle {\begin{aligned}&\langle \psi \mid {\mathcal {T}}\{\varphi (x_{0})\varphi (x_{1})\varphi (x_{2})\varphi (x_{3})\}\mid \psi \rangle \\[6pt]={}&iD(x_{0},x_{1})\langle \psi \mid {\mathcal {T}}\{\varphi (x_{2})\varphi (x_{3})\}\mid \psi \rangle +iD(x_{0},x_{2})\langle \psi \mid {\mathcal {T}}\{\varphi (x_{1})\varphi (x_{3})\}\mid \psi \rangle \\[4pt]&{}+iD(x_{0},x_{3})\langle \psi \mid {\mathcal {T}}\{\varphi (x_{1})\varphi (x_{2})\}\mid \psi \rangle \\[4pt]&{}+{\frac {\lambda }{3!}}\int d^{d}x_{4}\,D(x_{0},x_{4})\langle \psi \mid {\mathcal {T}}\{\varphi (x_{1})\varphi (x_{2})\varphi (x_{3})\varphi (x_{4})\varphi (x_{4})\varphi (x_{4})\}\mid \psi \rangle \end{aligned}}}

etc.

(Unless there isspontaneous symmetry breaking, the odd correlation functions vanish.)

See also

[edit]

References

[edit]
  1. ^F. Dyson (1949). "TheS Matrix in Quantum Electrodynamics".Phys. Rev.75 (11): 1736.Bibcode:1949PhRv...75.1736D.doi:10.1103/PhysRev.75.1736.
  2. ^abJ. Schwinger (1951)."On Green's functions of quantized fields I + II".PNAS.37 (7):452–459.Bibcode:1951PNAS...37..452S.doi:10.1073/pnas.37.7.452.PMC 1063400.PMID 16578383.

Further reading

[edit]

There are not many books that treat the Schwinger–Dyson equations. Here are three standard references:

  • Claude Itzykson, Jean-Bernard Zuber (1980).Quantum Field Theory.McGraw-Hill.ISBN 9780070320710.
  • R.J. Rivers (1990).Path Integral Methods in Quantum Field Theories. Cambridge University Press.
  • V.P. Nair (2005).Quantum Field Theory A Modern Perspective. Springer.

There are some review article about applications of the Schwinger–Dyson equations with applications to special field of physics. For applications toQuantum Chromodynamics there are

Authority control databasesEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Schwinger–Dyson_equation&oldid=1333424120"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp