Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Schwarzschild radius

From Wikipedia, the free encyclopedia
Radius of the event horizon of a Schwarzschild black hole

In this mass–radius plot, the Schwarzschild radius is shown as a lower limit on radii of isolated objects, and below theCompton limit quantum effects become significant. TheHubble radius gives a very rough sense of the scale of the observable Universe.

TheSchwarzschild radius is a parameter in theSchwarzschild solution toEinstein's field equations that corresponds to theradius of a sphere in flat space that has the same surface area as that of theevent horizon of a Schwarzschildblack hole of a given mass. It is a characteristic quantity that may be associated with any quantity of mass. The Schwarzschild radius was named after the German astronomerKarl Schwarzschild, who calculated this solution for the theory ofgeneral relativity in 1916.

The Schwarzschild radius is given asrs=2GMc2,{\displaystyle r_{\text{s}}={\frac {2GM}{c^{2}}},}whereG is theNewtonian constant of gravitation,M is the mass of the object, andc is thespeed of light.[1][2]

History

[edit]

In 1916,Karl Schwarzschild obtained an exact solution[3][4] to theEinstein field equations for the gravitational field outside a non-rotating, spherically symmetric body with massM{\displaystyle M} (seeSchwarzschild metric). The solution contained terms of the form1rs/r{\displaystyle 1-r_{\text{s}}/r} and11rs/r{\displaystyle \textstyle {\frac {1}{1-r_{\text{s}}/r}}}, which havesingularities atr=0{\displaystyle r=0} andr=rs{\displaystyle r=r_{\text{s}}} respectively. Thers{\displaystyle r_{\text{s}}} has come to be known as theSchwarzschild radius. The physical significance of these singularities was debated for decades. It was found that the one atr=rs{\displaystyle r=r_{\text{s}}} is acoordinate singularity, meaning that it is an artifact of the particular system of coordinates that was used; while the one atr=0{\displaystyle r=0} is aspacetime singularity and cannot be removed.[5] The Schwarzschild radius is nonetheless a physically relevant quantity, as noted above and below.

This expression had previously been calculated, using Newtonian mechanics, as the radius of a spherically symmetric body at which theescape velocity was equal to the speed of light. It had been identified in the 18th century byJohn Michell[6] andPierre-Simon Laplace.[7]

Parameters

[edit]

The Schwarzschild radius of an object is proportional to its mass. Accordingly, theSun has a Schwarzschild radius of approximately 3.0 km (1.9 mi),[8] whereasEarth's is approximately 9 mm (0.35 in)[8] and theMoon's is approximately 0.1 mm (0.004 in).

Schwarzschild radii
ObjectMassM{\textstyle M}Schwarzschild radius
2GMc2{\textstyle {\frac {2GM}{c^{2}}}}
Actual radiusr{\textstyle r}Schwarzschild density
3c632πG3M2{\textstyle {\frac {3c^{6}}{32\pi G^{3}M^{2}}}} or3c28πGr2{\textstyle {\frac {3c^{2}}{8\pi Gr^{2}}}}
Milky Way1.6×1042 kg2.4×1015 m (0.25 ly)5×1020 m (52900 ly)0.000029 kg/m3
SMBH inPhoenix A (one of the largestknown black holes)2×1041 kg3×1014 m (~2000 AU)0.0018 kg/m3
Ton 6181.3×1041 kg1.9×1014 m (~1300 AU)0.0045 kg/m3
SMBH inNGC 48894.2×1040 kg6.2×1013 m (~410 AU)0.042 kg/m3
SMBH inMessier 87[9]1.3×1040 kg1.9×1013 m (~130 AU)0.44 kg/m3
SMBH inAndromeda Galaxy[10]3.4×1038 kg5.0×1011 m (3.3 AU)640 kg/m3
Sagittarius A* (SMBH in Milky Way)[11]8.26×1036 kg1.23×1010 m (0.08 AU)1.068×106 kg/m3
SMBH inNGC 4395[12]7.1568×1035 kg1.062×109 m (1.53 R)1.4230×108 kg/m3
Potentialintermediate black hole inHCN-0.009-0.044[13][14]6.3616×1034 kg9.44×108 m (14.8 R)1.8011×1010 kg/m3
Resultingintermediate black hole fromGW190521 merger[15]2.823×1032 kg4.189×105 m (0.066 R)9.125×1014 kg/m3
Sun1.99×1030 kg2.95×103 m7.0×108 m1.84×1019 kg/m3
Jupiter1.90×1027 kg2.82 m7.0×107 m2.02×1025 kg/m3
Saturn5.683×1026 kg8.42×10−1 m6.03×107 m2.27×1026 kg/m3
Neptune1.024×1026 kg1.52×10−1 m2.47×107 m6.97×1027 kg/m3
Uranus8.681×1025 kg1.29×10−1 m2.56×107 m9.68×1027 kg/m3
Earth5.97×1024 kg8.87×10−3 m6.37×106 m2.04×1030 kg/m3
Venus4.867×1024 kg7.21×10−3 m6.05×106 m3.10×1030 kg/m3
Mars6.39×1023 kg9.47×10−4 m3.39×106 m1.80×1032 kg/m3
Mercury3.285×1023 kg4.87×10−4 m2.44×106 m6.79×1032 kg/m3
Moon7.35×1022 kg1.09×10−4 m1.74×106 m1.35×1034 kg/m3
Human70 kg1.04×10−25 m~5×10−1 m1.49×1076 kg/m3
Planck mass2.18×10−8 kg3.23×10−35 m (2 lP)1.54×1095 kg/m3

Derivation

[edit]
Main article:Derivation of the Schwarzschild solution

Black hole classification by Schwarzschild radius

[edit]
Black hole classifications
ClassApprox.
mass
Approx.
radius
Supermassive black hole105–1011MSun0.002–2000AU
Intermediate-mass black hole103 MSun3000 kmRMars
Stellar black hole10MSun30 km
Micro black holeup toMMoonup to 0.1 mm

Any object whose radius is smaller than its Schwarzschild radius is called ablack hole.[16]: 410  The surface at the Schwarzschild radius acts as anevent horizon in a non-rotating body (arotating black hole operates slightly differently). Neither light nor particles can escape through this surface from the region inside, hence the name "black hole".

Black holes can be classified based on their Schwarzschild radius, or equivalently, by their density, where density is defined as mass of a black hole divided by the volume of its Schwarzschild sphere. As the Schwarzschild radius is linearly related to mass, while the enclosed volume corresponds to the third power of the radius, small black holes are therefore much more dense than large ones. The volume enclosed in the event horizon of the most massive black holes has an average density lower than main sequence stars.

Supermassive black hole

[edit]
Main article:Supermassive black hole

Asupermassive black hole (SMBH) is the largest type of black hole, though there are few official criteria on how such an object is considered so, on the order of hundreds of thousands to billions of solar masses. (Supermassive black holes up to 21 billion (2.1 × 1010M have been detected, such asNGC 4889.)[17] Unlikestellar mass black holes, supermassive black holes have comparatively low average densities. (Note that a (non-rotating) black hole is a spherical region in space that surrounds the singularity at its center; it is not the singularity itself.) With that in mind, the average density of a supermassive black hole can be less than the density of water.[citation needed]

The Schwarzschild radius of a body is proportional to its mass and therefore to its volume, assuming that the body has a constant mass-density.[18] In contrast, the physical radius of the body is proportional to the cube root of its volume. Therefore, as the body accumulates matter at a given fixed density (in this example,997 kg/m3, the density of water), its Schwarzschild radius will increase more quickly than its physical radius. When a body of this density has grown to around 136 million solar masses (1.36 × 108 M), its physical radius would be overtaken by its Schwarzschild radius, and thus it would form a supermassive black hole.

It is thought that supermassive black holes like these do not form immediately from the singular collapse of a cluster of stars. Instead they may begin life as smaller, stellar-sized black holes and grow larger by the accretion of matter, or even of other black holes.[19]

The Schwarzschild radius of thesupermassive black hole at theGalactic Center of theMilky Way is approximately 12 million kilometres.[11] Its mass is about 4.1 million M.

Stellar black hole

[edit]
Main article:Stellar black hole

Stellar black holes have much greater average densities than supermassive black holes. If one accumulates matter atnuclear density (the density of the nucleus of an atom, about 1018kg/m3;neutron stars also reach this density), such an accumulation would fall within its own Schwarzschild radius at about 3 M and thus would be astellar black hole.[citation needed]

Micro black hole

[edit]
Main article:Micro black hole

A small mass has an extremely small Schwarzschild radius. A black hole of mass similar to that ofMount Everest,[20]6.3715×1014 kg, would have a Schwarzschild radius much smaller than ananometre. The Schwarzschild radius would be 2 ×6.6738×10−11 m3⋅kg−1⋅s−2 ×6.3715×1014 kg / (299792458 m⋅s−1)2 =9.46×10−13 m =9.46×10−4 nm. Its average density at that size would be so high that no known mechanism could form such extremely compact objects. Such black holes might possibly have been formed in an early stage of the evolution of the universe, just after theBig Bang, when densities of matter were extremely high. Therefore, these hypothetical miniature black holes are calledprimordial black holes.[citation needed]

Other uses

[edit]

In gravitational time dilation

[edit]

Gravitational time dilation near a large, slowly rotating, nearly spherical body, such as the Earth or Sun can be reasonably approximated as follows:[21]trt=1rsr{\displaystyle {\frac {t_{r}}{t}}={\sqrt {1-{\frac {r_{\mathrm {s} }}{r}}}}}where:

  • tr is the elapsed time for an observer at radial coordinater within the gravitational field;
  • t is the elapsed time for an observer distant from the massive object (and therefore outside of the gravitational field);
  • r is the radial coordinate of the observer (which is analogous to the classical distance from the center of the object);
  • rs is the Schwarzschild radius.

Compton wavelength intersection

[edit]

The Schwarzschild radius (2GM/c2{\displaystyle 2GM/c^{2}}) of a given massM{\displaystyle M} equals twice itsreduced Compton wavelength (/Mc{\displaystyle \hbar /Mc}) whenM{\displaystyle M} equals onePlanck mass (M=c/G{\displaystyle \textstyle M={\sqrt {\hbar c/G}}}); both are then equal to thePlanck length (G/c3{\textstyle {\sqrt {\hbar G/c^{3}}}}).

Calculating the maximum volume and radius possible given a density before a black hole forms

[edit]

The Schwarzschild radius equation can be manipulated to yield an expression that gives the largest possible radius from an input density that doesn't form a black hole. Taking the input density asρ,

rs=3c28πGρ.{\displaystyle r_{\text{s}}={\sqrt {\frac {3c^{2}}{8\pi G\rho }}}.}

For example, the density of water is1000 kg/m3. This means the largest amount of water you can have without forming a black hole would have a radius of400920754 km (about 2.67 AU).

See also

[edit]

Classification of black holes by type:

A classification of black holes by mass:

References

[edit]
  1. ^Kutner, Marc Leslie (2003).Astronomy: a physical perspective (2nd ed.). Cambridge, U.K.; New York:Cambridge University Press. p. 148.ISBN 978-0-521-82196-4.
  2. ^Guidry, M. W. (2019).Modern general relativity: black holes, gravitational waves, and cosmology. Cambridge; New York, NY: Cambridge University Press. p. 92.ISBN 978-1-107-19789-3.
  3. ^Schwarzschild, Karl (1916)."Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie".Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften: 189.Bibcode:1916SPAW.......189S.
  4. ^Schwarzschild, Karl (1916)."Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit nach der Einsteinschen Theorie".Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin: 424.Bibcode:1916skpa.conf..424S.
  5. ^Wald, Robert (1984).General Relativity. The University of Chicago Press. pp. 152–153.ISBN 978-0-226-87033-5.
  6. ^Schaffer, Simon (1979)."John Michell and Black Holes".Journal for the History of Astronomy.10:42–43.Bibcode:1979JHA....10...42S.doi:10.1177/002182867901000104.S2CID 123958527. Retrieved4 June 2018.
  7. ^Montgomery, Colin; Orchiston, Wayne; Whittingham, Ian (2009)."Michell, Laplace and the origin of the black hole concept"(PDF).Journal of Astronomical History and Heritage.12 (2): 90.Bibcode:2009JAHH...12...90M.doi:10.3724/SP.J.1440-2807.2009.02.01.S2CID 55890996. Archived fromthe original(PDF) on 2 May 2014.
  8. ^abAnderson, James L. (2001)."V.C The Schwarzschild Field, Event Horizons, and Black Holes". In Meyer, Robert A. (ed.).Encyclopedia of Physical Science and Technology (Third Edition). Cambridge, Massachusetts:Academic Press.ISBN 978-0-12-227410-7. Retrieved23 October 2023.
  9. ^Event Horizon Telescope Collaboration (2019)."First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole".Astrophysical Journal Letters.875 (1): L1.arXiv:1906.11238.Bibcode:2019ApJ...875L...1E.doi:10.3847/2041-8213/AB0EC7.6.5(7)×109 M =1.29(14)×1040 kg.
  10. ^Bender, Ralf; Kormendy, John; Bower, Gary; et al. (2005). "HST STIS Spectroscopy of the Triple Nucleus of M31: Two Nested Disks in Keplerian Rotation around a Supermassive Black Hole".Astrophysical Journal.631 (1):280–300.arXiv:astro-ph/0509839.Bibcode:2005ApJ...631..280B.doi:10.1086/432434.S2CID 53415285.1.7(6)×108 M =0.34(12)×1039 kg.
  11. ^abGhez, A. M.; et al. (December 2008). "Measuring Distance and Properties of the Milky Way's Central Supermassive Black Hole with Stellar Orbits".Astrophysical Journal.689 (2):1044–1062.arXiv:0808.2870.Bibcode:2008ApJ...689.1044G.doi:10.1086/592738.S2CID 18335611.
  12. ^Peterson, Bradley M.; Bentz, Misty C.; Desroches, Louis-Benoit; Filippenko, Alexei V.; Ho, Luis C.; Kaspi, Shai; Laor, Ari; Maoz, Dan; Moran, Edward C.; Pogge, Richard W.; Quillen, Alice C. (20 October 2005). "Multiwavelength Monitoring of the Dwarf Seyfert 1 Galaxy NGC 4395. I. A Reverberation-Based Measurement of the Black Hole Mass".The Astrophysical Journal.632 (2):799–808.arXiv:astro-ph/0506665.Bibcode:2005ApJ...632..799P.doi:10.1086/444494.hdl:1811/48314.ISSN 0004-637X.S2CID 13886279.
  13. ^"Hiding black hole found".phys.org. 1 March 2019. Retrieved15 June 2022.
  14. ^Takekawa, Shunya; Oka, Tomoharu; Iwata, Yuhei; Tsujimoto, Shiho; Nomura, Mariko (2019)."Indication of Another Intermediate-mass Black Hole in the Galactic Center".The Astrophysical Journal.871 (1): L1.arXiv:1812.10733.Bibcode:2019ApJ...871L...1T.doi:10.3847/2041-8213/aafb07.
  15. ^Abbott, R.; Abbott, T. D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K. (2 September 2020)."Properties and Astrophysical Implications of the 150 M Binary Black Hole Merger GW190521".The Astrophysical Journal.900 (1): L13.arXiv:2009.01190.Bibcode:2020ApJ...900L..13A.doi:10.3847/2041-8213/aba493.ISSN 2041-8213.S2CID 221447444.
  16. ^Zee, Anthony (2013).Einstein Gravity in a Nutshell. In a Nutshell Series (1 ed.). Princeton: Princeton University Press.ISBN 978-0-691-14558-7.
  17. ^McConnell, Nicholas J. (8 December 2011). "Two ten-billion-solar-mass black holes at the centres of giant elliptical galaxies".Nature.480 (7376):215–218.arXiv:1112.1078.Bibcode:2011Natur.480..215M.doi:10.1038/nature10636.PMID 22158244.S2CID 4408896.
  18. ^Robert H. Sanders (2013).Revealing the Heart of the Galaxy: The Milky Way and its Black Hole. Cambridge University Press. p. 36.ISBN 978-1-107-51274-0.
  19. ^Pacucci, Fabio; Loeb, Abraham (1 June 2020)."Separating Accretion and Mergers in the Cosmic Growth of Black Holes with X-Ray and Gravitational-wave Observations".The Astrophysical Journal.895 (2): 95.arXiv:2004.07246.Bibcode:2020ApJ...895...95P.doi:10.3847/1538-4357/ab886e.S2CID 215786268.
  20. ^"How does the mass of one mole of M&M's compare to the mass of Mount Everest?"(PDF). School of Science and Technology, Singapore. March 2003. Archived fromthe original(PDF) on 10 December 2014. Retrieved8 December 2014.If Mount Everest is assumed* to be a cone of height 8850 m and radius 5000 m, then its volume can be calculated using the following equation:
    volume =πr2h/3 [...] Mount Everest is composed of granite, which has a density of2750 kg⋅m−3.
  21. ^Keeton, Charles (2014).Principles of astrophysics: using gravity and stellar physics to explore the cosmos. Undergraduate Lecture Notes in Physics. New York: Springer. p. 208.ISBN 978-1-4614-9236-8.
Types
Size
Formation
Properties
Issues
Metrics
Alternatives
Analogs
Lists
Related
Notable
Retrieved from "https://en.wikipedia.org/w/index.php?title=Schwarzschild_radius&oldid=1319746500"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp