Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Schwarz lemma

From Wikipedia, the free encyclopedia
Statement in complex analysis
Mathematical analysisComplex analysis
Complex analysis
Complex numbers
Basic theory
Complex functions
Theorems
Geometric function theory
People

Inmathematics, theSchwarz lemma, named afterHermann Amandus Schwarz, is a result in complex differential geometry that estimates the (squared) pointwise norm|f|2{\displaystyle |\partial f|^{2}} of a holomorphic mapf:(X,gX)(Y,gY){\displaystyle f:(X,g_{X})\to (Y,g_{Y})} between Hermitian manifolds under curvature assumptions ongX{\displaystyle g_{X}} andgY{\displaystyle g_{Y}}.

Theclassical Schwarz lemma is a result incomplex analysis typically viewed to be aboutholomorphic functions from theopenunit diskD:={zC:|z|<1}{\displaystyle \mathbb {D} :=\{z\in \mathbb {C} :|z|<1\}} to itself.

The Schwarz lemma has opened several branches of complex geometry, and become an essential tool in the use of geometric PDE methods in complex geometry.

Statement of the classical Schwarz Lemma

[edit]

LetD={z:|z|<1}{\displaystyle \mathbf {D} =\{z:|z|<1\}} be the openunit disk in thecomplex planeC{\displaystyle \mathbb {C} } centered at theorigin, and letf:DC{\displaystyle f:\mathbf {D} \rightarrow \mathbb {C} } be aholomorphic map such thatf(0)=0{\displaystyle f(0)=0} and|f(z)|1{\displaystyle |f(z)|\leq 1} onD{\displaystyle \mathbf {D} }.

Then|f(z)||z|{\displaystyle |f(z)|\leq |z|} for allzD{\displaystyle z\in \mathbf {D} }, and|f(0)|1{\displaystyle |f'(0)|\leq 1}.

Moreover, if|f(z)|=|z|{\displaystyle |f(z)|=|z|} for some non-zeroz{\displaystyle z} or|f(0)|=1{\displaystyle |f'(0)|=1}, thenf(z)=az{\displaystyle f(z)=az} for someaC{\displaystyle a\in \mathbb {C} } with|a|=1{\displaystyle |a|=1}.[1]

Proof of the classical Schwarz Lemma

[edit]

The proof, which first appears in a paper byCarathéodory,[2] where it is attributed to Erhard Schmidt, is a straightforward application of themaximum modulus principle on the function

g(z)={f(z)zif z0f(0)if z=0,{\displaystyle g(z)={\begin{cases}{\frac {f(z)}{z}}\,&{\mbox{if }}z\neq 0\\f'(0)&{\mbox{if }}z=0,\end{cases}}}

which is holomorphic on the whole ofD{\displaystyle \mathbb {D} }, including at the origin (becausef{\displaystyle f} is differentiable at the origin and fixes zero). Now ifDr={z:|z|r}{\displaystyle \mathbb {D} _{r}=\{z:|z|\leq r\}} denotes the closed disk of radiusr{\displaystyle r} centered at the origin, then the maximum modulus principle implies that, forr<1{\displaystyle r<1}, given anyzDr{\displaystyle z\in \mathbb {D} _{r}}, there existszr{\displaystyle z_{r}} on the boundary ofDr{\displaystyle \mathbb {D} _{r}} such that

|g(z)||g(zr)|=|f(zr)||zr|1r.{\displaystyle |g(z)|\leq |g(z_{r})|={\frac {|f(z_{r})|}{|z_{r}|}}\leq {\frac {1}{r}}.}

Asr1{\displaystyle r\rightarrow 1} we get|g(z)|1{\displaystyle |g(z)|\leq 1}.

Moreover, suppose that|f(z)|=|z|{\displaystyle |f(z)|=|z|} for some non-zerozD{\displaystyle z\in \mathbb {D} }, or|f(0)|=1{\displaystyle |f'(0)|=1}. Then,|g(z)|=1{\displaystyle |g(z)|=1} at some point ofD{\displaystyle \mathbb {D} }. So by the maximum modulus principle,g(z){\displaystyle g(z)} is equal to a constanta{\displaystyle a} such that|a|=1{\displaystyle |a|=1}. Therefore,f(z)=az{\displaystyle f(z)=az}, as desired.

Schwarz–Pick theorem

[edit]

A variant of the Schwarz lemma, known as theSchwarz–Pick theorem (afterGeorg Pick), characterizes the analytic automorphisms of the unit disc, i.e.bijectiveholomorphic mappings of the unit disc to itself:

Letf:DD{\displaystyle f:\mathbf {D} \to \mathbf {D} } be holomorphic. Then, for allz1,z2D{\displaystyle z_{1},z_{2}\in \mathbf {D} },

|f(z1)f(z2)1f(z1)¯f(z2)||z1z21z1¯z2|{\displaystyle \left|{\frac {f(z_{1})-f(z_{2})}{1-{\overline {f(z_{1})}}f(z_{2})}}\right|\leq \left|{\frac {z_{1}-z_{2}}{1-{\overline {z_{1}}}z_{2}}}\right|}

and, for allzD{\displaystyle z\in \mathbf {D} },

|f(z)|1|f(z)|211|z|2.{\displaystyle {\frac {\left|f'(z)\right|}{1-\left|f(z)\right|^{2}}}\leq {\frac {1}{1-\left|z\right|^{2}}}.}

The expression

d(z1,z2)=tanh1|z1z21z1¯z2|{\displaystyle d(z_{1},z_{2})=\tanh ^{-1}\left|{\frac {z_{1}-z_{2}}{1-{\overline {z_{1}}}z_{2}}}\right|}

is the distance of the pointsz1{\displaystyle z_{1}},z2{\displaystyle z_{2}} in thePoincaré metric, i.e. the metric in thePoincaré disk model forhyperbolic geometry in dimension two. The Schwarz–Pick theorem then essentially states that a holomorphic map of the unit disk into itselfdecreases the distance of points in the Poincaré metric. If equality holds throughout in one of the two inequalities above (which is equivalent to saying that the holomorphic map preserves the distance in the Poincaré metric), thenf{\displaystyle f} must be an analyticautomorphism of the unit disc, given by aMöbius transformation mapping the unit disc to itself.

An analogous statement on theupper half-planeH{\displaystyle \mathbf {H} } can be made as follows:

Letf:HH{\displaystyle f:\mathbf {H} \to \mathbf {H} } be holomorphic. Then, for allz1,z2H{\displaystyle z_{1},z_{2}\in \mathbf {H} },

|f(z1)f(z2)f(z1)¯f(z2)||z1z2||z1¯z2|.{\displaystyle \left|{\frac {f(z_{1})-f(z_{2})}{{\overline {f(z_{1})}}-f(z_{2})}}\right|\leq {\frac {\left|z_{1}-z_{2}\right|}{\left|{\overline {z_{1}}}-z_{2}\right|}}.}

This is an easy consequence of the Schwarz–Pick theorem mentioned above: One just needs to remember that theCayley transformW(z)=(zi)/(z+i){\displaystyle W(z)=(z-i)/(z+i)} maps the upper half-planeH{\displaystyle \mathbf {H} } conformally onto the unit discD{\displaystyle \mathbf {D} }. Then, the mapWfW1{\displaystyle W\circ f\circ W^{-1}} is a holomorphic map fromD{\displaystyle \mathbf {D} } ontoD{\displaystyle \mathbf {D} }. Using the Schwarz–Pick theorem on this map, and finally simplifying the results by using the formula forW{\displaystyle W}, we get the desired result. Also, for allzH{\displaystyle z\in \mathbf {H} },

|f(z)|Im(f(z))1Im(z).{\displaystyle {\frac {\left|f'(z)\right|}{{\text{Im}}(f(z))}}\leq {\frac {1}{{\text{Im}}(z)}}.}

If equality holds for either the one or the other expressions, thenf{\displaystyle f} must be aMöbius transformation with real coefficients. That is, if equality holds, then

f(z)=az+bcz+d{\displaystyle f(z)={\frac {az+b}{cz+d}}}

witha,b,c,dR{\displaystyle a,b,c,d\in \mathbb {R} } andadbc>0{\displaystyle ad-bc>0}.

Proof of Schwarz–Pick theorem

[edit]

The proof of the Schwarz–Pick theorem follows from Schwarz's lemma and the fact that aMöbius transformation of the form

zz0z0¯z1,|z0|<1,{\displaystyle {\frac {z-z_{0}}{{\overline {z_{0}}}z-1}},\qquad |z_{0}|<1,}

maps theunit circle to itself. Fixz1{\displaystyle z_{1}} and define the Möbius transformations

M(z)=z1z1z1¯z,φ(z)=f(z1)z1f(z1)¯z.{\displaystyle M(z)={\frac {z_{1}-z}{1-{\overline {z_{1}}}z}},\qquad \varphi (z)={\frac {f(z_{1})-z}{1-{\overline {f(z_{1})}}z}}.}

SinceM(z1)=0{\displaystyle M(z_{1})=0} and the Möbius transformation is invertible, the compositionφ(f(M1(z))){\displaystyle \varphi (f(M^{-1}(z)))} maps0{\displaystyle 0} to0{\displaystyle 0} and the unit disk is mapped into itself. Thus we can apply Schwarz's lemma, which is to say

|φ(f(M1(z)))|=|f(z1)f(M1(z))1f(z1)¯f(M1(z))||z|.{\displaystyle \left|\varphi \left(f(M^{-1}(z))\right)\right|=\left|{\frac {f(z_{1})-f(M^{-1}(z))}{1-{\overline {f(z_{1})}}f(M^{-1}(z))}}\right|\leq |z|.}

Now callingz2=M1(z){\displaystyle z_{2}=M^{-1}(z)} (which will still be in the unit disk) yields the desired conclusion

|f(z1)f(z2)1f(z1)¯f(z2)||z1z21z1¯z2|.{\displaystyle \left|{\frac {f(z_{1})-f(z_{2})}{1-{\overline {f(z_{1})}}f(z_{2})}}\right|\leq \left|{\frac {z_{1}-z_{2}}{1-{\overline {z_{1}}}z_{2}}}\right|.}

To prove the second part of the theorem, we rearrange the left-hand side into thedifference quotient and letz2{\displaystyle z_{2}} tend toz1{\displaystyle z_{1}}.

Further generalizations and related results

[edit]

TheSchwarz–Ahlfors–Pick theorem provides an analogous theorem for hyperbolic manifolds.

De Branges' theorem, formerly known as the Bieberbach Conjecture, is an important extension of the lemma, giving restrictions on the higher derivatives off{\displaystyle f} at0{\displaystyle 0} in casef{\displaystyle f} isinjective; that is,univalent.

TheKoebe 1/4 theorem provides a related estimate in the case thatf{\displaystyle f} is univalent.

See also

[edit]

References

[edit]
  1. ^Theorem 5.34 inRodriguez, Jane P. Gilman, Irwin Kra, Rubi E. (2007).Complex analysis : in the spirit of Lipman Bers ([Online] ed.). New York: Springer. p. 95.ISBN 978-0-387-74714-9.{{cite book}}: CS1 maint: multiple names: authors list (link)
  2. ^Carathéodory, Constantin. "Sur quelques applications du théorème de Landau–Picard".C. R. Acad. Sci. Paris.144: 1203–1206.

General References

[edit]
  • K. Broder (2022), The Schwarz Lemma: An Odyssey, Rocky Mountain Journal of Mathematics, 52, 4, pp. 1141--1155.
  • S. Dineen (1989).The Schwarz Lemma. Oxford.ISBN 0-19-853571-6.
  • J. Jost,Compact Riemann Surfaces (2002), Springer-Verlag, New York.ISBN 3-540-43299-X(See Section 2.3)
  • S.-T. Yau (1978), A general Schwarz lemma for Kähler manifolds, American Journal of Mathematics, 100:1,197--203.

This article incorporates material from Schwarz lemma onPlanetMath, which is licensed under theCreative Commons Attribution/Share-Alike License.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Schwarz_lemma&oldid=1309720039"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp