Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Schwartz space

From Wikipedia, the free encyclopedia
Function space of all functions whose derivatives are rapidly decreasing
For the Schwartz space of a semisimple Lie group, seeHarish-Chandra's Schwartz space. For the Schwartz space of a locally compact abelian group, seeSchwartz–Bruhat function.

Inmathematics,Schwartz spaceS{\displaystyle {\mathcal {S}}} is thefunction space of allfunctions whosederivatives of all orders arerapidly decreasing. This space has the important property that theFourier transform is anautomorphism on this space. This property enables one, by duality, to define the Fourier transform for elements in the dual spaceS{\displaystyle {\mathcal {S}}^{*}} ofS{\displaystyle {\mathcal {S}}}, that is, fortempered distributions. A function in the Schwartz space is sometimes called aSchwartz function.

A two-dimensionalGaussian function is an example of a rapidly decreasing function.

Schwartz space is named after French mathematicianLaurent Schwartz.

Definition

[edit]

LetN{\displaystyle \mathbb {N} } be theset of non-negativeintegers, and for anynN{\displaystyle n\in \mathbb {N} }, letNn:=N××Nn times{\displaystyle \mathbb {N} ^{n}:=\underbrace {\mathbb {N} \times \dots \times \mathbb {N} } _{n{\text{ times}}}} be then{\displaystyle n}-foldCartesian product.

TheSchwartz space orspace of rapidly decreasing functions onRn{\displaystyle \mathbb {R} ^{n}} is the function spaceS(Rn,C):={fC(Rn,C)α,βNn,fα,β<},{\displaystyle {\mathcal {S}}\left(\mathbb {R} ^{n},\mathbb {C} \right):=\left\{f\in C^{\infty }(\mathbb {R} ^{n},\mathbb {C} )\mid \forall {\boldsymbol {\alpha }},{\boldsymbol {\beta }}\in \mathbb {N} ^{n},\|f\|_{{\boldsymbol {\alpha }},{\boldsymbol {\beta }}}<\infty \right\},} whereC(Rn,C){\displaystyle C^{\infty }(\mathbb {R} ^{n},\mathbb {C} )} is the function space ofsmooth functions fromRn{\displaystyle \mathbb {R} ^{n}} intoC{\displaystyle \mathbb {C} }, andfα,β:=supxRn|xα(Dβf)(x)|.{\displaystyle \|f\|_{{\boldsymbol {\alpha }},{\boldsymbol {\beta }}}:=\sup _{{\boldsymbol {x}}\in \mathbb {R} ^{n}}\left|{\boldsymbol {x}}^{\boldsymbol {\alpha }}({\boldsymbol {D}}^{\boldsymbol {\beta }}f)({\boldsymbol {x}})\right|.} Here,sup{\displaystyle \sup } denotes thesupremum, and we usedmulti-index notation, i.e.xα:=x1α1x2α2xnαn{\displaystyle {\boldsymbol {x}}^{\boldsymbol {\alpha }}:=x_{1}^{\alpha _{1}}x_{2}^{\alpha _{2}}\ldots x_{n}^{\alpha _{n}}} andDβ:=1β12β2nβn{\displaystyle D^{\boldsymbol {\beta }}:=\partial _{1}^{\beta _{1}}\partial _{2}^{\beta _{2}}\ldots \partial _{n}^{\beta _{n}}}.

To put common language to this definition, one could consider a rapidly decreasing function as essentially a functionf{\displaystyle f} such thatf(x){\displaystyle f(x)},f(x){\displaystyle f'(x)},f(x){\displaystyle f^{\prime \prime }(x)}, ... all exist everywhere onR{\displaystyle \mathbb {R} } and go to zero asx±{\displaystyle x\rightarrow \pm \infty } faster than any reciprocal power ofx{\displaystyle x}. In particular,S(Rn,C){\displaystyle {\mathcal {S}}\left(\mathbb {R} ^{n},\mathbb {C} \right)} is asubspace ofC(Rn,C){\displaystyle C^{\infty }(\mathbb {R} ^{n},\mathbb {C} )}.

Examples of functions in the Schwartz space

[edit]

Properties

[edit]

Analytic properties

[edit]
  1. completeHausdorfflocally convex spaces,
  2. nuclearMontel spaces,
  3. ultrabornological spaces,
  4. reflexivebarrelledMackey spaces.

Relation of Schwartz spaces with other topological vector spaces

[edit]

See also

[edit]

References

[edit]

Sources

[edit]
  • Hörmander, L. (1990).The Analysis of Linear Partial Differential Operators I, (Distribution theory and Fourier Analysis) (2nd ed.). Berlin: Springer-Verlag.ISBN 3-540-52343-X.
  • Reed, M.; Simon, B. (1980).Methods of Modern Mathematical Physics: Functional Analysis I (Revised and enlarged ed.). San Diego: Academic Press.ISBN 0-12-585050-6.
  • Stein, Elias M.; Shakarchi, Rami (2003).Fourier Analysis: An Introduction (Princeton Lectures in Analysis I). Princeton: Princeton University Press.ISBN 0-691-11384-X.
  • Trèves, François (2006) [1967].Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications.ISBN 978-0-486-45352-1.OCLC 853623322.

This article incorporates material from Space of rapidly decreasing functions onPlanetMath, which is licensed under theCreative Commons Attribution/Share-Alike License.

Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
Retrieved from "https://en.wikipedia.org/w/index.php?title=Schwartz_space&oldid=1338259556"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp