Sarcosine, also known asN-methylglycine, ormonomethylglycine, is anamino acid with the formula CH3N(H)CH2CO2H. It exists at neutral pH as thezwitterion CH3N+(H)2CH2CO2−, which can be obtained as a white, water-soluble powder. Like some amino acids, sarcosine converts to a cation at low pH and an anion at high pH, with the respective formulas CH3N+(H)2CH2CO2H and CH3N(H)CH2CO2−. Sarcosine is a close relative of glycine, with a secondary amine in place of the primary amine.
Sarcosine is ubiquitous in biological materials. It is used in manufacturingbiodegradablesurfactants and toothpastes as well as in other applications. It is also a reagent inorganic synthesis.[1]
Sarcosine is an intermediate and byproduct inglycine synthesis and degradation. Sarcosine is metabolized to glycine by the enzymesarcosine dehydrogenase, whileglycine-N-methyltransferase generates sarcosine from glycine. Sarcosine is anamino acid derivative that is naturally found in muscles and other body tissues. In the laboratory, it may be synthesized fromchloroacetic acid andmethylamine. Sarcosine is an intermediate in the metabolism ofcholine toglycine.[2]
Sarcosine, like the related compoundsdimethylglycine (DMG) andtrimethylglycine (betaine, TMG), is formed via the metabolism of nutrients such ascholine andmethionine, which both containmethyl groups used in a wide range of biochemical reactions. Sarcosine is rapidly degraded to glycine, which, in addition to its importance as a constituent of protein, plays a significant role in various physiological processes as a prime metabolic source of components of living cells such asglutathione,creatine,purines andserine. The concentration of sarcosine in blood serum of normal human subjects is 1.4 ± 0.6 micromolar.[3]
Early evidence suggests sarcosine is an effective and well-toleratedadjuvant to manyantipsychotics except clozapine for the treatment ofschizophrenia, showing significant reductions in both positive and negative symptoms.[6][7]
Sarcosine has also been debated as a biomarker for prostate cancer cells.[8][9] Other research has suggested that sarcosine plays an active role in the progression of prostate cancer, as addition of sarcosine to prostate epithelial cells caused the emergence of a new invasive phenotype.[10]
Sarcosine was first isolated and named by the German chemistJustus von Liebig in 1847.
Jacob Volhard first synthesized it in 1862 while working in the lab ofHermann Kolbe. Prior to the synthesis of sarcosine, it had long been known to be a hydrolysis product ofcreatine, a compound found in meat extract. Under this assumption, by preparing the compound withmethylamine andmonochloroacetic acid, Volhard proved that sarcosine wasN-methylglycine.[11]
^Allen RH, Stabler SP, Lindenbaum J (November 1993). "Serum betaine, N,N-dimethylglycine and N-methylglycine levels in patients with cobalamin and folate deficiency and related inborn errors of metabolism".Metabolism.42 (11):1448–60.doi:10.1016/0026-0495(93)90198-W.PMID7694037.
^Lane HY, Huang CL, Wu PL, Liu YC, Chang YC, Lin PY, Chen PW, Tsai G (September 2006). "Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to clozapine for the treatment of schizophrenia".Biological Psychiatry.60 (6):645–9.doi:10.1016/j.biopsych.2006.04.005.PMID16780811.S2CID42741531.
^Tsai G, Lane HY, Yang P, Chong MY, Lange N (March 2004). "Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to antipsychotics for the treatment of schizophrenia".Biological Psychiatry.55 (5):452–6.doi:10.1016/j.biopsych.2003.09.012.PMID15023571.S2CID35723786.