Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Single-photon emission computed tomography

From Wikipedia, the free encyclopedia
(Redirected fromSPECT)
Nuclear medicine tomographic imaging technique
Medical intervention
Single-photon emission computed tomography
A SPECT slice of the distribution oftechnetium exametazime within a patient's brain
SpecialtyNuclear medicine
ICD-9-CM92.0-92.1
MeSHD01589
OPS-301 code3-72
SPECT image (bone tracer) of a mouseMIP
Collimator used to collimate gamma rays (red arrows) in a gamma camera

Single-photon emission computed tomography (SPECT, or less commonly,SPET) is anuclear medicinetomographic imaging technique usinggamma rays.[1] It is very similar to conventional nuclear medicine planar imaging using agamma camera (that is,scintigraphy),[2] but is able to provide true3D information. This information is typically presented as cross-sectional slices through the patient, but can be freely reformatted or manipulated as required.

The technique needs delivery of a gamma-emittingradioisotope (aradionuclide) into the patient, normally through injection into the bloodstream. On occasion, the radioisotope is a simple soluble dissolved ion, such as anisotope of gallium(III). Usually, however, a marker radioisotope is attached to a specific ligand to create aradioligand, whose properties bind it to certain types of tissues. This marriage allows the combination of ligand andradiopharmaceutical to be carried and bound to a place of interest in the body, where the ligand concentration is seen by a gamma camera.

Principles

[edit]
icon
This sectiondoes notcite anysources. Please helpimprove this section byadding citations to reliable sources. Unsourced material may be challenged andremoved.(January 2014) (Learn how and when to remove this message)
A Siemens brand SPECT scanner, consisting of two gamma cameras

Instead of just "taking a picture of anatomical structures", a SPECT scan monitors level of biological activity at each place in the 3-D region analyzed. Emissions from the radionuclide indicate amounts of blood flow in the capillaries of the imaged regions. In the same way that a plainX-ray is a 2-dimensional (2-D) view of a 3-dimensional structure, the image obtained by agamma camera is a 2-D view of 3-D distribution of aradionuclide.

SPECT imaging is performed by using a gamma camera to acquire multiple 2-D images (also calledprojections), from multiple angles. A computer is then used to apply atomographic reconstruction algorithm to the multiple projections, yielding a 3-D data set. This data set may then be manipulated to show thin slices along any chosen axis of the body, similar to those obtained from other tomographic techniques, such asmagnetic resonance imaging (MRI),X-ray computed tomography (X-ray CT), andpositron emission tomography (PET).

SPECT is similar to PET in its use of radioactive tracer material and detection of gamma rays. In contrast with PET, the tracers used in SPECT emit gamma radiation that is measured directly, whereas PET tracers emit positrons that annihilate with electrons up to a few millimeters away, causing two gamma photons to be emitted in opposite directions. A PET scanner detects these emissions "coincident" in time, which provides more radiation event localization information and, thus, higher spatial resolution images than SPECT (which has about 1 cm resolution). SPECT scans are significantly less expensive than PET scans, in part because they are able to use longer-lived and more easily obtained radioisotopes than PET.

Because SPECT acquisition is very similar to planar gamma camera imaging, the sameradiopharmaceuticals may be used. If a patient is examined in another type of nuclear medicine scan, but the images are non-diagnostic, it may be possible to proceed straight to SPECT by moving the patient to a SPECT instrument, or even by simply reconfiguring the camera for SPECT image acquisition while the patient remains on the table.

SPECT machine performing a total body bone scan. The patient lies on a table that slides through the machine, while a pair of gamma cameras rotate around her.

To acquire SPECT images, the gamma camera is rotated around the patient. Projections are acquired at defined points during the rotation, typically every 3–6 degrees. In most cases, a full 360-degree rotation is used to obtain an optimal reconstruction. The time taken to obtain each projection is also variable, but 15–20 seconds is typical. This gives a total scan time of 15–20 minutes.

Multi-headed gamma cameras can accelerate acquisition. For example, a dual-headed camera can be used with heads spaced 180 degrees apart, allowing two projections to be acquired simultaneously, with each head requiring 180 degrees of rotation. Triple-head cameras with 120-degree spacing are also used.

Cardiacgated acquisitions are possible with SPECT, just as with planar imaging techniques such asmulti gated acquisition scan (MUGA). Triggered byelectrocardiogram (EKG) to obtain differential information about the heart in various parts of its cycle, gated myocardial SPECT can be used to obtain quantitative information about myocardial perfusion, thickness, and contractility of the myocardium during various parts of the cardiac cycle, and also to allow calculation ofleft ventricular ejection fraction, stroke volume, and cardiac output.

Application

[edit]

SPECT can be used to complement any gamma imaging study, where a true 3D representation can be helpful, such as tumor imaging, infection (leukocyte) imaging, thyroid imaging orbone scintigraphy.

Because SPECT permits accurate localisation in 3D space, it can be used to provide information about localised function in internal organs, such as functional cardiac or brain imaging.

Myocardial perfusion imaging

[edit]
icon
This sectionneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources in this section. Unsourced material may be challenged and removed.(January 2014) (Learn how and when to remove this message)
Main article:Myocardial perfusion imaging

Myocardial perfusion imaging (MPI) is a form of functional cardiac imaging, used for the diagnosis ofischemic heart disease. The underlying principle is that under conditions of stress, diseasedmyocardium receives less blood flow than normal myocardium. MPI is one of several types ofcardiac stress test.

A cardiac specific radiopharmaceutical is administered, e.g.,99mTc-tetrofosmin (Myoview, GE healthcare),99mTc-sestamibi (Cardiolite, Bristol-Myers Squibb) orThallium-201 chloride. Following this, the heart rate is raised to induce myocardial stress, either by exercise on atreadmill or pharmacologically withadenosine,dobutamine, ordipyridamole (aminophylline can be used to reverse the effects of dipyridamole).

SPECT imaging performed after stress reveals the distribution of the radiopharmaceutical, and therefore the relative blood flow to the different regions of the myocardium. Diagnosis is made by comparing stress images to a further set of images obtained at rest which are normally acquired prior to the stress images.

MPI has been demonstrated to have an overall accuracy of about 83% (sensitivity: 85%;specificity: 72%) (in a review, not exclusively of SPECT MPI),[3] and is comparable with (or better than) other non-invasive tests for ischemic heart disease.

Functional brain imaging

[edit]
icon
This sectionneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources in this section. Unsourced material may be challenged and removed.(January 2014) (Learn how and when to remove this message)
Main article:Neuroimaging

Usually, the gamma-emitting tracer used in functional brain imaging istechnetium (99mTc) exametazime.99mTc, which has a six-hour half-life, is a metastablenuclear isomer that emits gamma rays detectable by a gamma camera. Attaching it to exametazime allows it to be taken up by brain tissue in a manner proportional to brain blood flow, in turn allowingcerebral blood flow to be assessed with the nuclear gamma camera.

Because blood flow in the brain is tightly coupled to local brain metabolism and energy use, the99mTc-exametazime tracer (as well as the similar99mTc-EC tracer) is used to assess brain metabolism regionally, in an attempt to diagnose and differentiate potential causal pathologies ofdementia. Meta-analysis of many reported studies suggests that SPECT with this tracer is about 74% sensitive at diagnosing Alzheimer's disease versus 81% sensitivity for clinical examination (such ascognitive testing). More recent studies have shown the accuracy of SPECT in Alzheimer's diagnosis may be as high as 88%.[4] In meta-analysis, SPECT was superior to clinical examination and clinical criteria (91% vs. 70%) in its ability to differentiate Alzheimer's disease from vascular dementias.[5] This latter ability relates to SPECT's imaging of local metabolism of the brain, in which the patchy loss of cortical metabolism seen in multiple strokes differs clearly from the more even or "smooth" loss of non-occipital cortical brain function typical of Alzheimer's disease. Another review article, published in 2012, showed that multi-headed SPECT cameras with quantitative analysis result in an overall sensitivity of 84-89% and an overall specificity of 83-89% in cross-sectional studies and sensitivity of 82-96% and specificity of 83-89% for longitudinal studies of dementia.[6]

99mTc-exametazime SPECT scanning competes withfludeoxyglucose (FDG)PET scanning of the brain, which works to assess regional brain glucose metabolism, to provide very similar information about local brain damage from many processes. SPECT is more widely available, because the radioisotope used is longer-lasting and far less expensive in SPECT, and the gamma-scanning equipment is less expensive as well. While99mTc is extracted from relatively simpletechnetium-99m generators, which are delivered to hospitals and scanning centers weekly to supply fresh radioisotope, FDG PET relies on FDG, which is made in an expensive medicalcyclotron and "hot lab" (automated chemistry lab for radiopharmaceutical manufacture), and then delivered immediately to scanning sites because of the natural short 110-minute half-life offluorine-18.

Applications in nuclear technology

[edit]

In the nuclear power sector, the SPECT technique can be applied to image radioisotope distributions in irradiated nuclear fuels.[7] Due to the irradiation of nuclear fuel (e.g. uranium) with neutrons in a nuclear reactor, a wide array of gamma-emitting radionuclides are naturally produced in the fuel, such as fission products (cesium-137,barium-140 andeuropium-154) and activation products (chromium-51 andcobalt-58). These may be imaged using SPECT in order to verify the presence of fuel rods in a stored fuel assembly forIAEA safeguards purposes,[8] to validate predictions of core simulation codes,[9] or to study the behavior of the nuclear fuel in normal operation,[10] or in accident scenarios.[11]

Reconstruction

[edit]
icon
This sectiondoes notcite anysources. Please helpimprove this section byadding citations to reliable sources. Unsourced material may be challenged andremoved.(January 2014) (Learn how and when to remove this message)
SPECTSinogram

Reconstructed images typically have resolutions of 64×64 or 128×128 pixels, with the pixel sizes ranging from 3–6 mm. The number of projections acquired is chosen to be approximately equal to the width of the resulting images. In general, the resulting reconstructed images will be of lower resolution, have increased noise than planar images, and be susceptible toartifacts.

Scanning is time-consuming, and it is essential that there is no patient movement during the scan time. Movement can cause significant degradation of the reconstructed images, although movement compensation reconstruction techniques can help with this. A highly uneven distribution of radiopharmaceutical also has the potential to cause artifacts. A very intense area of activity (e.g., the bladder) can cause extensive streaking of the images and obscure neighboring areas of activity. This is a limitation of thefiltered back projection reconstruction algorithm.Iterative reconstruction is an alternative algorithm that is growing in importance, as it is less sensitive to artifacts and can also correct for attenuation and depth dependent blurring. Furthermore, iterative algorithms can be made more efficacious using theSuperiorization methodology.[12]

Attenuation of the gamma rays within the patient can lead to significant underestimation of activity in deep tissues, compared to superficial tissues. Approximate correction is possible, based on relative position of the activity, and optimal correction is obtained with measured attenuation values. Modern SPECT equipment is available with an integrated X-ray CT scanner. As X-ray CT images are an attenuation map of the tissues, this data can be incorporated into the SPECT reconstruction to correct for attenuation. It also provides a preciselyregistered CT image, which can provide additional anatomical information.

Scatter of the gamma rays as well as the random nature of gamma rays can also lead to the degradation of quality of SPECT images and cause loss of resolution. Scatter correction and resolution recovery are also applied to improve resolution of SPECT images.[13]

Typical SPECT acquisition protocols

[edit]
icon
This sectiondoes notcite anysources. Please helpimprove this section byadding citations to reliable sources. Unsourced material may be challenged andremoved.(January 2014) (Learn how and when to remove this message)
StudyRadioisotopeEmission energy (keV)Half-lifeRadiopharmaceuticalActivity (MBq)Rotation (degrees)ProjectionsImage resolutionTime per projection (s)
Bone scantechnetium-99m1406 hoursPhosphonates / Bisphosphonates800360120128 x 12830
Myocardial perfusion scantechnetium-99m1406 hourstetrofosmin;Sestamibi7001806064 x 6425
Sestamibi parathyroid scantechnetium-99m1406 hoursSestamibi
Brain scantechnetium-99m1406 hoursTc exametazime; ECD555-111036064128 x 12830
Neuroendocrine or neurological tumor scaniodine-123 oriodine-13115913 hours or 8 daysMIBG4003606064 x 6430
White cell scanindium-111 & technetium-99m171 & 24567 hoursin vitro labelled leucocytes183606064 x 6430

SPECT/CT

[edit]

In some cases a SPECT gamma scanner may be built to operate with aconventional CT scanner, with coregistration of images. As inPET/CT, this allows location of tumors or tissues which may be seen on SPECT scintigraphy, but are difficult to locate precisely with regard to other anatomical structures. Such scans are most useful for tissues outside the brain, where location of tissues may be far more variable. For example, SPECT/CT may be used insestamibi parathyroid scan applications, where the technique is useful in locating ectopic parathyroid adenomas which may not be in their usual locations in the thyroid gland.[14]

Quality control

[edit]

The overall performance of SPECT systems can be performed by quality control tools such as theJaszczak phantom.[15]

See also

[edit]

References

[edit]
  1. ^SPECT at the U.S. National Library of MedicineMedical Subject Headings (MeSH)
  2. ^Scuffham J W (2012). "A CdTe detector for hyperspectral SPECT imaging".Journal of Instrumentation.7 (8) P08027. IOP Journal of Instrumentation.doi:10.1088/1748-0221/7/08/P08027.S2CID 250665467.
  3. ^Elhendy, A; Bax, JJ; Poldermans, D (2002)."Dobutamine stress myocardial perfusion imaging in coronary artery disease".Journal of Nuclear Medicine.43 (12):1634–46.PMID 12468513.
  4. ^Bonte FJ, Harris TS, Hynan LS, Bigio EH, White CL (2006). "Tc-99m exametazime SPECT in the differential diagnosis of the dementias with histopathologic confirmation".Clin Nucl Med.31 (7):376–8.doi:10.1097/01.rlu.0000222736.81365.63.PMID 16785801.S2CID 39518497.
  5. ^Dougall NJ, Bruggink S, Ebmeier KP (2004). "Systematic review of the diagnostic accuracy of 99mTc-HMPAO-SPECT in dementia".Am J Geriatr Psychiatry.12 (6):554–70.doi:10.1176/appi.ajgp.12.6.554.PMID 15545324.
  6. ^Henderson, Theodore (December 2012). "The diagnosis and evaluation of dementia and mild cognitive impairment with emphasis on SPECT perfusion neuroimaging".CNS Spectrums.17 (4):188–89.doi:10.1017/S1092852912000636.PMID 22929226.S2CID 36441907.
  7. ^Jacobsson Svärd, Staffan (2004).A tomographic measurement technique for irradiated nuclear fuel assemblies. Uppsala: Acta Universitatis Upsaliensis.ISBN 91-554-5944-7.
  8. ^Levai, F; Dési, S; Tarvainen, M; Artt, R (1993).Use of high energy gamma emission tomography for partial defect verification of spent fuel assemblies. Helsinki: Finnish Centre for Radiation and Nuclear Safety.ISBN 951-47-7975-4.
  9. ^Jacobsson Svärd Staffan, Håkansson Ane, Bäcklin Anders, Osifo Otasowie, Willman Christopher, Jansson Peter (2005). "Nondestructive Experimental Determination of the Pin-Power Distribution in Nuclear Fuel Assemblies".Nuclear Technology.151 (1):70–76.Bibcode:2005NucTe.151...70S.doi:10.13182/NT05-A3632.S2CID 98426662.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  10. ^Andersson P (2017)."A computerized method (UPPREC) for quantitative analysis of irradiated nuclear fuel assemblies with gamma emission tomography at the Halden reactor".Annals of Nuclear Energy.110:88–97.Bibcode:2017AnNuE.110...88A.doi:10.1016/j.anucene.2017.06.025.
  11. ^Biard B (2013). "Quantitative analysis of the fission product distribution in a damaged fuel assembly using gamma-spectrometry and computed tomography for the Phébus FPT3 test".Nuclear Engineering and Design.262:469–483.Bibcode:2013NuEnD.262..469B.doi:10.1016/j.nucengdes.2013.05.019.
  12. ^Luo, S, Zhou, T (2014). "Superiorization of EM algorithm and its application in single-photon emission computed tomography (SPECT)".Inverse Problems and Imaging.8:88–97.arXiv:1209.6116.doi:10.3934/ipi.2014.8.223.S2CID 119657086.
  13. ^"D. Boulfelfel, R.M. Rangayyan, L.J. Hahn, R. Kloiber, Restoration of Single Photon Emission Computed Tomography Images". Retrieved10 January 2016.
  14. ^Neumann DR,Obuchowski NA, Difilippo FP (2008)."Preoperative 123I/99mTc-sestamibi subtraction SPECT and SPECT/CT in primary hyperparathyroidism".J Nucl Med.49 (12):2012–7.doi:10.2967/jnumed.108.054858.PMID 18997051.
  15. ^Jennifer Prekeges.Nuclear Medicine Instrumentation. Jones & Bartlett Publishers. 2012.ISBN 1449645372 p.189
  • Cerqueira M. D., Jacobson A. F. (1989). "Assessment of myocardial viability with SPECT and PET imaging".American Journal of Roentgenology.153 (3):477–483.doi:10.2214/ajr.153.3.477.PMID 2669461.

Further reading

[edit]

External links

[edit]
Wikimedia Commons has media related toSingle-photon emission computed tomography.
Library resources about
SPECT
Science
Fuel
Neutron
Power
Medicine
Imaging
Therapy
Processing
Weapons
Topics
Lists
Waste
Products
Disposal
Debate
Light water
Heavy water
bycoolant
D2O
H2O
Organic
CO2
Water (LWGR)
H2O
Gas
CO2
He
Molten-salt
Fluorides
Generation IV
Others
Magnetic
Inertial
Other
X-ray/
radiography
2D
CT scan
Techniques
Targets
Other
MRI
Ultrasound
Radionuclide
2D/scintigraphy
Full body
3D/ECT
SPECT (gamma ray)
PET (positron)
Optical/Laser
Thermography
Target conditions
Authority control databases: NationalEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Single-photon_emission_computed_tomography&oldid=1338221500"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp