Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

List of largest stars

Page semi-protected
From Wikipedia, the free encyclopedia
(Redirected fromSMC 018136)

Not to be confused withList of most massive stars.

Below arelists of the largest stars currently known, ordered byradius and separated into categories by galaxy. The unit of measurement used is theradius of the Sun (approximately 695,700 km; 432,300 mi).[1]

TheSun, the orbit ofEarth,Jupiter, andNeptune, compared to four stars (Pistol Star,Rho Cassiopeiae,Betelgeuse, andVY Canis Majoris)

Overview

Although red supergiants are often considered the largest stars, some other star types have been found to temporarily increase significantly in radius, such as duringLBV eruptions orluminous red novae. Luminous red novae appear to expand extremely rapidly, reaching thousands to tens of thousands of solar radii within only a few months, significantly larger than the largest red supergiants.[2]

Some studies use models that predict high-accretingPopulation III orPopulation I supermassive stars (SMSs) in thevery early universe could have evolved "red supergiant protostars". These protostars are thought to have accretion rates larger than the rate of contraction, resulting in lower temperatures but with radii reaching up to many tens of thousands ofR, comparable to some of thelargest known black holes.[3][4][5]

Angular diameters

The angular diameters of stars can be measured directly usingstellar interferometry. Other methods can use lunaroccultations or fromeclipsing binaries, which can be used to test indirect methods of finding stellar radii. Only a fewsupergiants can be occulted by the Moon, includingAntares and119 Tauri. Examples of eclipsing binaries areEpsilon Aurigae (Almaaz),VV Cephei, andV766 Centauri (HR 5171). Angular diameter measurements can be inconsistent because the boundary of the very tenuous atmosphere (opacity) differs depending on the wavelength of light in which thestar is observed.[citation needed]

Uncertainties remain with the membership and order of the lists, especially when deriving various parameters used in calculations, such as stellarluminosity andeffective temperature. Often stellar radii can only be expressed as an average or be within a large range of values. Values for stellar radii vary significantly in different sources and for different observation methods.[6]

All the sizes stated in these lists have inaccuracies and may be disputed. The lists are still a work in progress and parameters are prone to change.

Caveats

Various issues exist in determining accurate radii of the largest stars, which in many cases do display significant errors. The following lists are generally based on various considerations or assumptions; these include:

  • Stellar radii or diameters are usually derived only approximately using theStefan–Boltzmann law for the deduced stellarluminosity andeffective surface temperature.
  • Stellar distances, and their errors, for most stars, remain uncertain or poorly determined.
  • Many extended supergiant atmospheres also significantly change in size over time, regularly or irregularly pulsating over several months or years asvariable stars. This makes adoptedluminosities poorly known and may significantly change the quoted radii.
  • Other direct methods for determining stellar radii rely on lunaroccultations or from eclipses in binary systems. This is only possible for a very small number of stars.[7]
  • Many distance estimates for red supergiants come from stellar cluster or association membership, because it is difficult to calculate accurate distances for red supergiants that are not part of any cluster or association.
  • In these lists are some examples of extremely distant extragalactic stars, which may have slightly different properties and natures than the currently largest known stars in theMilky Way. For example, some redsupergiants in theMagellanic Clouds are suspected to have slightly different limitingtemperatures andluminosities. Such stars may exceed accepted limits by undergoing large eruptions or changing theirspectral types over just a few months (or potentially years).[8][9]

Lists

This is adynamic list and may never be able to satisfy particular standards for completeness. You can help byadding missing items withreliable sources.

The following lists show the largest known stars based on the host galaxy.

Milky Way

This list isincomplete; you can help byadding missing items.(January 2016)
List of the largest known stars in the Milky Way
Star nameSolar radius (R)Method[a]Notes
Orbit of Saturn2,0472,049.9[10][b]Reported for reference
Theoretical limit of star size (Milky Way)≳1,700[11]L/TeffEstimated by measuring the fraction of red supergiants at higher luminosities in a large sample of supernova progenitor candidates. Assumes an effective temperature of3,605 K.
Reported for reference
RSGC1-F011,530 ± 370[12]L/Teff
VY Canis Majoris1,420±120[13][14][15]ADAn extreme oxygen-rich red hypergiant that has experienced two dimming periods in the 20th century where the star became dimmer by up to 2.5 magnitudes.[16] Potentially the largest known star.[14] There is a possilbility that this size might be a bit overestimated (on the order of 1 sigma). Hence, the quoted radius might be just an upper limit.[13]
AH Scorpii1,411±124[17][18]AD
RSGC1-F061,380 ± 330[12]L/Teff
S Persei1,364±6[19]AD
VX Sagittarii1,360+250
−230
[20] – 1,480+180
−160
[18]
ADThe most luminous knownasymptotic giant branch star.[20] Widely recognised as being among the largest known stars.[21]
NML Cygni<1,350+195
−229
[c]
ADSurrounding dusty region is very complex making the radius hard to determine.[22]
Stephenson 2 DFK 21,300 ± 300[12]L/TeffAnother red supergiant,Stephenson 2 DFK 1 has an estimated radius of 2,150 R. However, it is potentially not a member of theStephenson 2 cluster and also has a distance with an uncertainty of ≳50% due to it only being measured with radial velocities.[12][24]
Stephenson 2 DFK 491,300 ± 300[12]L/TeffA K-type star similar to the yellow hypergiantIRC +10420 that has left its red supergiant stage.[12]
HD 143183(V558 Normae)1,261[25]L/Teff
PZ Cassiopeiae1,259 – 1,336,[26]1,585+160
−120
[27]
L/Teff & AD
μ Cephei(Herschel's Garnet Star)1,259[28] – 1,426+282
−119
[d] or ~RBetelgeuse
L/Teff & ADWidely recognised as being among the largest known stars.[21] Might be the largest star visible to the naked eye.[30] The higher radii estimate assume Mu Cephei is in the Cepheus OB2OB association.[28][31] Other sources suggest Mu Cephei andBetelgeuse are likely similar in properties.[32][29] If so, Mu Cephei's radius would be comparable to that of Betelgeuse, which is between 650 and 800 R.
RSGC1-F101,250 ± 290[12]L/Teff
V354 Cephei1,245[25]L/Teff
Westerlund 1 W237(Westerlund 1 BKS B)1,241±70[33]L/Teff
ST Cephei1,218[25]L/Teff
IRC -10414~1,200[34]L/Teff
RSGC1-F051,200 ± 300[12]L/Teff
V517 Monocerotis1,196+80
−159
[35]
L/Teff
GCIRS 71,170±60,[36] 1,359,[37]1,368[38]AD & L/Teff
Westerlund 1 W26(Westerlund 1 BKS AS)1,165±581,221±120[33]L/Teff
EV Carinae1,165[39]L/Teff
[A72c] 161,157[25]L/Teff
WY Velorum A1,157[25]L/TeffA symbiotic binary.[40]
RSGC1-F021,130 ± 260[12]L/Teff
Orbit of Jupiter1,114.51,115.8[10][b]Reported for reference
V582 Cassiopeiae1,111[25]L/Teff
RW Cygni1,103+251
−177
[41]
AD
RW Cephei1,100±40[42]ADA K-type hypergiant star that experienced a "great dimming" event in 2022, similar to Betelgeuse.
RSGC1-F081,100 ± 300[12]L/Teff
RT Carinae1,090[43]L/Teff
RSGC1-F041,082,[44] 1,100,[45]1,400+300
−400
[12]
L/Teff
UU Persei1,079+9
−8
[35]
L/Teff
LL Pegasi1,070[46]L/Teff
HD 1265771,066+9
−32
[35]
L/Teff
V766 Centauri Aa1,060–1,160[47]?V766 Centauri Aa is a rare variableyellow hypergiant.
HaroChavira 11,058[48]L/Teff
CM Velorum1,048[25] – 1,416.24+0.40
−0.96
[35]
L/Teff
AG Camelopardalis1,048[25]L/Teff
SU Persei [pt]1,044+31
−21
 – 1,139+34
−23
,[19]
AD
SW Cephei1,035+75
−120
[27]
AD
KY Cygni1,032[48]L/Teff
BC Cygni1,031[48] – 1,187+34
−37
[35]
L/TeffA more detailed but older study gives values of1,081R (8561,375) for the year 2000, and1,303R (1,0211,553) for the year 1900.[49]
MY Cephei1,028 ± 169 – 1,138 ± 387[50][e]L/Teff
V346 Puppis1,025[51]L/Teff
V530 Cassiopeiae1,017[25]L/Teff
V602 Carinae1,015[52]AD
VV Cephei A1,015[53]ADA red supergiant star orbited by a smallerB-type main-sequence star with a radius estimated between 13[54] and 25 R.[55] Widely recognised as being among the largest known stars.[21] Another estimate give a radius of 660 R[25] based on the Gaia DR3 distance of 1 kpc.[35]
U Lacertae A1,013[25]L/Teff
KW Sagittarii1,009±142[17][18]AD
Ve 4-641,007[25]L/Teff
V349 Carinae1,002+12
−74
[35]
L/Teff
RSGC1-F071,000 ± 200[12]L/Teff
RSGC1-F091,000 ± 200[12]L/Teff
RSGC1-F111,000 ± 200[12]L/Teff
RSGC1-F131,000 ± 200[12]L/Teff
V674 Cephei999[25]L/Teff
CZ Hydrae990[56]L/Teff
IRAS 18111-2257~990 – 1,200[57]L/TeffEstimated based on the bolometric luminosity (14,000–20,000 L) and assumed effective temperature of 2,000 K. Another period-luminosity-derived luminosity for this star results in a radius of 1,730 R.[57]
CIT 11982[25]L/Teff
V381 Cephei Aa977[25]L/Teff
MSX6C G086.5890–00.7718(975+175
−183
 – 1,035+186
−158
)[58] – 1,196.91+6.31
−6.35
[35]
L/TeffLower values based on the Gaia DR3 effective temperature and the luminosity of Levesque et al. (2005) and that of Messineo & Brown (2019). Higher value based on the GSP Phot-Aeneas library using BR/RP spectra in Gaia DR3.
Stephenson 2 DFK 3970 ± 210[12]L/Teff
V3953 Sagittarii(IRC −30398)970[59]L/Teff
V396 Centauri965[25]L/Teff
UW Aquilae964[25]L/Teff
RSGC1-F12950 ± 230[12]L/Teff
RSGC1-F03940 ± 200[12]L/Teff
V398 Cassiopeiae(HD 240275)941[25]L/Teff
IRC +60342940[25]L/Teff
ψ1 Aurigae934[25]L/Teff
GX Monocerotis931[59]L/Teff
V645 Cephei920[25]L/Teff
S Cassiopeiae920[59]L/TeffOne of thecoolest known stars, at aneffective temperature of1800 K (1500 °C).
NV Aurigae(IRC +50137)918[59]L/Teff
Stephenson 2 DFK 5910 ± 180[12]L/Teff
UY Scuti909[25]L/Teff
NR Vulpeculae908[25] – 923+62
−50
[27]
L/Teff
KU Andromedae(IRC +40004)900[60] – 1,040[59]L/Teff
V774 Sagittarii889[25]L/Teff
V923 Centauri881[25]L/Teff
IRAS 20341+4047880[25]L/Teff
IRAS 17418−2713880[61]L/Teff
V540 Sagittarii880[25]L/Teff
V386 Cephei879[25]L/Teff
Trumpler 27-1(CD-33 12241)876+5
−12
[35]
?
T Lyrae880[59]L/Teff
TYC 3996-552-2870[25]L/Teff
V1417 Aquilae900[62]L/Teff
V1300 Aquilae(IRC −10529)860[60] – 1,100[59]L/Teff
Westerlund 1 W20(Westerlund 1 BKS D)858±48[33]L/Teff
FX Serpentis857[51]L/Teff
AZ Cygni856+20
−14
 – 927+21
−15
[19]
ADEstimated based on data from theCHARA array. Another radii of890+21
−15
 R (2014),895+21
−15
 R (2015) and890+21
−15
 R (2016) are calculated based on the same data.[19]
V348 Velorum855[25]L/Teff
BI Cygni852+12
−9
 – 908+12
−10
[19]
AD
TW Carinae835[25]L/Teff
V358 Cassiopeiae835[25]L/Teff
VLH96 A833[63]L/Teff
DO 26226826[25]L/Teff
HD 155737823[25]L/Teff
6 Geminorum821[19]L/Teff
RW Leonis Minoris820[64] – 1,000[59]L/Teff
HaroChavira 2813[48]L/Teff
HD 300933806[25]L/Teff
[W61c] R 53801[25]L/Teff
RT Ophiuchi801±217[65]AD
HD 95687797[25]L/Teff
BO Carinae790±158[43]L/Teff
HD 62745790[25]L/Teff
WX Piscium790[66] – 1,000[59]L/Teff
VR5–7775 ± 65[67]L/Teff
T Cancri770[51]L/Teff
V Cygni770[62]L/Teff
BD+63 3770[25]L/Teff
CL Carinae770[25]L/Teff
RS Persei770±30,[68]775+110
−85
[27]
AD
V355 Cephei770±154[43] – 790[25]L/Teff
BD+63 270769[25]L/Teff
V644 Cephei765[25]L/Teff
BM VIII 11754[25]L/Teff
[SLN74] 2130752[25]L/Teff
IRAS 10176-5802751.2+0.4
−0.6
[35] – (793+281
−152
849+172
−133
)[58]
L/TeffLower value based on the GSP Phot-Aeneas library using BR/RP spectra in Gaia DR3. Higher values based on the Gaia DR3 effective temperature and the luminosity of Levesque et al. (2005) and that of Messineo & Brown (2019).
HD 303250750±150[43]L/Teff
V384 Persei750[60] – 940[59]L/Teff
V466 Persei750[64]L/Teff
V Coronae Borealis750[60]L/Teff
GY Aquilae748[18] – 920[69]AD
UU Pegasi742±193[65]AD
IM Cassiopeiae740[25]L/Teff
GY Camelopardalis740[60]L/Teff
R Andromedae730[60]L/Teff
RSGC3-S3730 ± 150[12]L/Teff
TT Centauri740[59]L/Teff
Stephenson 2 DFK 10730[12]L/Teff
V1259 Orionis730[56]L/Teff
RSGC3-S15730 ± 140[12]L/Teff
HD 105563 A723[25]L/Teff
Westerlund 1 W75(Westerlund 1 BKS E)722±36[33]L/Teff
AI Volantis720[60]L/Teff
V1111 Ophiuchi(IRC +10365)720[60] – 900[59]L/Teff
XX Persei718+80
−56
[27]
AD
RX Telescopii716[25]L/Teff
V Camelopardalis716±185[65]AD
CD-61 3575716[25]L/Teff
S Cephei715[51]L/Teff
AS Cephei713[25]L/Teff
V770 Cassiopeiae(BD+60 299)713[25]L/Teff
AZ Cephei712[25]L/Teff
R Leporis(Hind's Crimson Star)710 – 910[70]AD
MZ Puppis708[25]L/Teff
GP Cassiopeiae707[25] – 771.74+0.23
−0.86
[35]
L/Teff
GCIRS 12N703 ± 107[67]L/Teff
V528 Carinae700±140[43]L/Teff
The following well-known stars are listed for the purpose of comparison.
Antares(α Scorpii A)680[71]ADFourteenth brightest star in the night sky.[72] Widely recognised as being among the largest known stars.[21]
Betelgeuse(α Orionis)640,[73]764+116
−62
,[74] 782 ± 55[75]
AD & SEISTenth brightest star in the night sky.[72] Widely recognised as being among the largest known stars,[21] radius decreased to ~500 R during the 2020 great dimming event.[76]
R Horologii630[60]L/TeffA red giant star with one of the largest ranges in brightness known of stars in the night sky visible to the unaided eye. Despite its large radius, it is less massive than the Sun.
119 Tauri(CE Tauri, Ruby Star)587 – 593[77]AD
ρ Cassiopeiae564±67 or700±112[78]ADAyellow hypergiant star, similar to V382 Carinae, that is also visible to thenaked eye.
CW Leonis560[79]L/TeffThe nearestcarbon star.
V509 Cassiopeiae511±112[42]ADA variable yellow hypergiant whose size varied from around 680 R in 1950–1970 to 910 R in 1977, and later decreased to 390 R in the 1990s.[80]
V382 Carinae
(x Carinae)
485 ± 56[81]L/TeffAyellow hypergiant, one of the rarest types of stars.
V838 Monocerotis464[82]L/TeffDuring the 2002 Red Nova, the star's radius may have increased up to 3,190 R.[83]
Pistol Star(V4647 Sagittarii)420[84]L/TeffOne of the most luminous stars known.
La Superba(Y Canum Venaticorum)344[85]L/Teff
Mira(ο Ceti A)332–402[86]ADPrototype of theMira variables.
Orbit of Mars322323.1[10][b]Reported for reference
R Doradus298±21[87]ADThe extrasolar star with the largest apparent size.
Rasalgethi(α Herculis A)284±60 (264303)[88]L/Teff
Cygnus OB2#12246[89]?One of the most massive and luminous stars known.
Orbit of Earth (~1AU)214[10][b]Reported for reference
Suhail(λ Velorum)211±6[90]AD
Wezen(δ Canis Majoris)188[91]L/TeffThirty-sixth brightest star in the night sky.[72]
Enif(ε Pegasi)178[91]L/Teff
Orbit of Venus158.6[10][b]Reported for reference
η Carinae A128 – 742[92]ODDuring the 1843 Great Eruption, the star's radius may have increased up to 4,319–6,032R.[93]
Deneb(α Cygni)107[94][f] – 203±17[95]AD & ?Eighteenth brightest star in the night sky.[72]
Orbit of Mercury82.984.6[10][b]Reported for reference
Rigel(β Orionis A)74.1+6.1
−7.3
[96]
ADSeventh brightest star in the night sky.
Canopus(α Carinae)73.3[97]ADSecond brightest star in the night sky.
Gacrux(γ Crucis)73[98]L/TeffTwenty-sixth brightest star in the night sky.
Polaris(α Ursae Minoris)46.27±0.42[99]ADThe current star in the North Pole. It is aClassical Cepheid variable, and the brightest example of its class.
Aldebaran(α Tauri)45.1±0.1[100]ADFourteenth brightest star in the night sky.
Arcturus(α Boötis)25.4 ± 0.2[101]ADThis is the nearestred giant to the Earth, and the fourth brightest star in the night sky.
Pollux(β Geminorum)9.06 ± 0.03[96]ADThe nearest giant star to the Earth.
Spica(α Virginis A)7.47±0.54[102]One of thenearest supernova candidates and the sixteenth-brightest star in the night sky.
Regulus(α Leonis A)4.16 × 3.14[103]The nearestB-type star to the Earth.
Vega(α Lyrae)2.726±0.006 ×2.418±0.012[104]ADFifth brightest star in the night sky.[72]
Altair(α Aquilae)2.01 × 1.57[105]Twelfth brightest star in the night sky.
Sirius(α Canis Majoris A)1.713[106]ADThe brightest star in the night sky.
Rigil Kentaurus(α Centauri A)1.2175[107]ADThird brightest star in the night sky.
Sun1The largest object in theSolar System.

Magellanic Clouds

List of the largest known stars in the Magellanic Clouds
Star nameSolar radii
(Sun = 1)
GalaxyMethod[a]Notes
Theoretical limit of star size (Large Magellanic Cloud)≳1,550[11]L/TeffEstimated by measuring the fraction of red supergiants at higher luminosities in a large sample of stars. Assumes an effective temperature of3,545 K.
Reported for reference
HV 8881,477[108]–1,584[109]Large Magellanic CloudL/Teff
HD 269551 A1,439[110]Large Magellanic CloudL/Teff
HV 124631,420[110]Large Magellanic CloudL/Teff
IRAS 05280–69101,367[111]Large Magellanic CloudL/TeffThe most reddened object in the Large Magellanic Cloud.[109]
MSX LMC 5971,278[112]–1,444[109]Large Magellanic CloudL/Teff
OGLE BRIGHT-LMC-LPV-521,275[110]–1,384[112]Large Magellanic Cloud
HV 28341,253[112]Large Magellanic CloudL/Teff
LMC 1450131,243[110]Large Magellanic CloudL/Teff
IRAS 05346-69491,211[113]Large Magellanic CloudL/TeffIt has an estimated mass-loss rate of 0.0017M (566 Earths) per year, the highest for any star.[113]
HV 56181,163[110]Large Magellanic CloudL/Teff
HV 22421,160[114] – 1,180[110]Large Magellanic CloudL/Teff
LMC 253201,156[110]Large Magellanic CloudL/Teff
SMC 185921,129[110]Small Magellanic CloudL/Teff
MSX SMC 0181,119[113]Small Magellanic CloudL/Teff
LMC2521,117[110]–1,164[112]Large Magellanic Cloud
LMC0451,112[110]Large Magellanic CloudL/Teff
SP77 21-121,103[110]Large Magellanic CloudL/Teff
MSX LMC 8101,104[112]Large Magellanic CloudL/Teff
WOH S3381,100[114]Large Magellanic CloudL/Teff
LMC 1360421,092[110]Large Magellanic CloudL/Teff
LMC 1751881,090[110]–1,317[112]Large Magellanic Cloud
IRAS 04516-69021,085[111]Large Magellanic CloudL/Teff
WOH S2741,071[110]Large Magellanic CloudL/Teff
[W60] D441,063[110]Large Magellanic CloudL/Teff
HV 122331,057[110]Large Magellanic CloudL/Teff
MSX LMC 5891,051[112]Large Magellanic CloudL/Teff
Theoretical limit of star size (Small Magellanic Cloud)≳1,050[11]L/TeffEstimated by measuring the fraction of red supergiants at higher luminosities in a large sample of stars. Assumes an effective temperature of3,850 K.
Reported for reference
MSX LMC 9471,050[112]Large Magellanic CloudL/Teff
LMC 1442171,039[110]Large Magellanic Cloud
SP77 31-181,038[110]Large Magellanic CloudL/Teff
IRAS 05402-69561,032[111]Large Magellanic CloudL/Teff
IRAS 04509-69221,027[111]–1,187[112]Large Magellanic CloudL/Teff
HV 22551,027[110]–1,236[112]Large Magellanic Cloud
TRM 361,019[110]Large Magellanic CloudL/Teff
LMC 1755491,005[110]Large Magellanic CloudL/Teff
TRM 891,004[110]–1,526[112]Large Magellanic Cloud
B90 (WOH S264)1000+70
−80
 – 1,210[115]
Large Magellanic CloudL/TeffHas an unusually high metallicity and velocity.[115] Often referred to as itsSIMBAD designation [W60] B90.
Discrepancy in radius is caused by a potential underestimation of the effective temperature measured from theTitanium(II) oxide bands.
HV 24501,000+2
−1
[116]–1,071[116]
Large Magellanic CloudL/TeffA yellow hypergiant.
LMC 149767994[110]Large Magellanic CloudL/Teff
UCAC2 2674864(HV 2834)990+115
−100
[117]
Large Magellanic CloudL/Teff
HV 996988[110]–1,176[112]Large Magellanic Cloud
W61 8–88986[110]Large Magellanic CloudL/Teff
HV 2362982[110] – 1,030[114]Large Magellanic CloudL/Teff
MG73 59979[118]Large Magellanic CloudL/TeffA yellow supergiant.
HD 268757979[118]Large Magellanic CloudL/TeffA G8 yellow hypergiant.
SMC 56389976[110]Small Magellanic CloudL/Teff
LMC 136404974[110]Large Magellanic CloudL/Teff
SP77 46-32973[110]–1,133[112]Large Magellanic Cloud
HV 2084967[110]–1,083[112]Small Magellanic Cloud
WOH S74965[110]–1,014[112]Large Magellanic CloudL/Teff
SMC 10889963[110]Small Magellanic CloudL/Teff
TRM 67951[110]Large Magellanic CloudL/Teff
LHA 120-S 26951[110]Large Magellanic CloudL/Teff
LMC 139413951[110]Large Magellanic CloudL/Teff
TRM 87947[110]Large Magellanic CloudL/Teff
LMC 148035947[110]Large Magellanic CloudL/Teff
HV 12802946[110]–1,377[112]Large Magellanic Cloud
SMC 018136945[110]Small Magellanic CloudL/Teff
LMC 142202943[110]Large Magellanic CloudL/Teff
LMC 147199939[110] – 990[114]Large Magellanic CloudL/Teff
SP77 37-24936[110]Large Magellanic CloudL/Teff
LMC 148381932[110]Large Magellanic CloudL/Teff
LMC 23095926[112] – 1,280[110]Large Magellanic CloudL/Teff
SP77 31-16923±28[116]Large Magellanic CloudL/TeffA yellow hypergiant.
LMC 170452920[110]Large Magellanic CloudL/Teff
SP77 44-5918[110]Large Magellanic CloudL/Teff
LMC 66778915[110] – 990[114]Large Magellanic CloudL/Teff
NGC371 R20913[119]Small Magellanic CloudL/Teff
LMC 150040911[110]Large Magellanic CloudL/Teff
HV 2236911[110]–971[112]Large Magellanic CloudL/Teff
TRM 108906[110]Large Magellanic CloudL/Teff
LMC 169142902[110]Large Magellanic CloudL/Teff
WOH S457902±45[120]Large Magellanic CloudL/Teff
IRAS 04498-6842(LI-LMC 60)898[111] – 1,137[112] – 1,765,[109] 1,224[110]Large Magellanic CloudL/TeffLower value derived from fitting models that assume the star's effective temperature to be 3,400 K. Higher value based on the measured effective temperature from van Loon et al. (2005). A newer paper estimates parameters that would result in a radius of 1,765 R.[109]
LMC 135720898[110]Large Magellanic CloudL/Teff
SMC 81961892[110]Small Magellanic CloudL/Teff
SP77 44-19891[110]–1,297[112]Large Magellanic CloudL/Teff
SP77 45–49890[110]Large Magellanic CloudL/Teff
LMC 175464892[112]–982[110]Large Magellanic Cloud
SMC 49478888[110]Small Magellanic CloudL/Teff
HV 12185890+55
−65
[117]
Large Magellanic CloudL/Teff
SP77 45–53885[112]–981[110]Large Magellanic Cloud
LMC 170079882[110]Large Magellanic CloudL/Teff
SMC 5092880[110]Small Magellanic CloudL/Teff
HV 12793880+45
−65
[117]
Large Magellanic CloudL/Teff
W61 21–22877[110]Large Magellanic CloudL/Teff
SP77 35-1877[110]Large Magellanic CloudL/Teff
UCAC3 43-23216873[110]Large Magellanic CloudL/Teff
HV 11423872[110]Small Magellanic CloudL/Teff
WOH S57875+70
−60
[117]
Large Magellanic CloudL/Teff
SP77 53-3870[110]Large Magellanic CloudL/Teff
SP77 36-14870[110]Large Magellanic CloudL/Teff
SP77 31-19870[110]Large Magellanic CloudL/Teff
LMC 158646865[110]Large Magellanic CloudL/Teff
SP77 31-20864[110]Large Magellanic CloudL/Teff
LMC 113364864[110]Large Magellanic CloudL/Teff
SMC 83202864[110]Small Magellanic CloudL/Teff
LMC 175746863[110]Large Magellanic CloudL/Teff
LMC207863[110]Large Magellanic CloudL/Teff
SP77 29-8858[110]Large Magellanic CloudL/Teff
SP77 54-38859[112]–911[110]Large Magellanic Cloud
LMC 174714855[110]–965[112]Large Magellanic Cloud
LMC 176135854[110]Large Magellanic CloudL/Teff
LMC178845[110]Large Magellanic CloudL/Teff
SP77 31-26845[110]Large Magellanic CloudL/Teff
LMC 106201844[110]Large Magellanic CloudL/Teff
SP77 48-13838[110]Large Magellanic CloudL/Teff
MSX LMC 1318837[110]Large Magellanic CloudL/Teff
SP77 28-13835[110]Large Magellanic CloudL/Teff
LMC 143898833[110]Large Magellanic CloudL/Teff
TYC 9161-866-1833[110]Large Magellanic CloudL/Teff
SMC 59803829[110]Small Magellanic CloudL/Teff
LMC 157401828[110]Large Magellanic CloudL/Teff
SP77 39-22828[110]Large Magellanic CloudL/Teff
WOH S52828[110]Large Magellanic CloudL/Teff
SP77 30-22826[110]Large Magellanic CloudL/Teff
LMC 145728826[110]Large Magellanic CloudL/Teff
LMC 169049825[110]Large Magellanic CloudL/Teff
SP77 46-34825[110]Large Magellanic CloudL/Teff
LMC 177997825[112]–867[110]Large Magellanic Cloud
SP77 28-2825±60[117]Large Magellanic CloudL/Teff
SP77 22-9823[110] – 850[114]Large Magellanic CloudL/Teff
Z Doradus824±108[120]–956[112]Large Magellanic CloudL/Teff
WOH S421822[110]–840[112]Large Magellanic Cloud
LMC 72727822[110]Large Magellanic CloudL/Teff
SP77 37-28821[110]Large Magellanic CloudL/Teff
MSX LMC 575816[110]–933[112]Large Magellanic Cloud
LMC 143035815[110]Large Magellanic CloudL/Teff
WOH S49815[110]Large Magellanic CloudL/Teff
SP77 52-28812[110]Large Magellanic CloudL/Teff
SHV 0520422-693821808[110]Large Magellanic CloudL/Teff
HD 268850808[112]–898[110]Large Magellanic Cloud
SMC 20133809[112]–835[110]Small Magellanic Cloud
SMC 25888804[110]Small Magellanic CloudL/Teff
SP77 55-20803[110]Large Magellanic CloudL/Teff
WOH G64 A~800[121]Large Magellanic CloudL/TeffIn asymbiotic binary with a smallerB-type star, WOH G64 B.[121] It was previously estimated to be 1,540[122][117][123][109][124] ± 77[122] R when ared supergiant, which would make it a candidate for the largest known star, but transitioned to ayellow hypergiant after a potential 30 year long outburst.[121]
PGMW 1058800[110]Large Magellanic CloudL/Teff
LMC 145112798[110]Large Magellanic CloudL/Teff
SMC 47757795[110]Small Magellanic CloudL/Teff
LMC 175709794[110]Large Magellanic CloudL/Teff
SMC 46497794[110]Small Magellanic CloudL/Teff
WOH S60789[110]Large Magellanic CloudL/Teff
WOH S102789[110]Large Magellanic CloudL/Teff
LMC 164709787[110]Large Magellanic CloudL/Teff
SP77 31-28787[110]Large Magellanic CloudL/Teff
TRM 73787[112]–816[110]Large Magellanic Cloud
SP77 31-21784[110]Large Magellanic CloudL/Teff
SMC 8930784[110]Small Magellanic CloudL/Teff
PMMR 62784[110]Small Magellanic CloudL/Teff
SP77 46-31782[110]Large Magellanic CloudL/Teff
LMC211780[110]Large Magellanic CloudL/Teff
LMC 140403778[110]Large Magellanic CloudL/Teff
LMC 134383778[110]–803[112]Large Magellanic CloudL/Teff
SP77 47-11778[110]Large Magellanic CloudL/Teff
SP77 40-7778[110] – 810[114]Large Magellanic CloudL/Teff
W61 19–24780+50
−70
[117]
Large Magellanic CloudL/Teff
WOH S28780[114]Large Magellanic CloudL/Teff
LMC 141568776[110]Large Magellanic CloudL/Teff
SP77 51-2776[110]Large Magellanic CloudL/Teff
SP77 31–43773[110]Large Magellanic CloudL/Teff
MSX LMC 833773[110]–849[112]Large Magellanic Cloud
SP77 52-32772[110]Large Magellanic CloudL/Teff
SP77 22-10767[110]Large Magellanic CloudL/Teff
SP77 48-6768[125]Large Magellanic CloudL/Teff
SMC 12322765[110]Small Magellanic CloudL/Teff
WOH S517764[110]Large Magellanic CloudL/Teff
WOH S183763[110]Large Magellanic CloudL/Teff
LMC256762[110]Large Magellanic CloudL/Teff
LMC 154311762[110]Large Magellanic CloudL/Teff
LMC 119219762[110]Large Magellanic CloudL/Teff
WOH S452762±275[120]Large Magellanic CloudL/Teff
MSX SMC 024761[112]Large Magellanic CloudL/Teff
WOH S282758[110]Large Magellanic CloudL/Teff
LMC 64048758[110]Large Magellanic CloudL/Teff
PGMW 3160758[110]Large Magellanic CloudL/Teff
WOH S438757±211[120]Large Magellanic CloudL/Teff
LMC 61753755[110]Large Magellanic CloudL/Teff
LMC 140296754[110]Large Magellanic CloudL/Teff
WOH S478753[110]Large Magellanic CloudL/Teff
LMC 139027751[110] – 790[114]Large Magellanic CloudL/Teff
SP77 45-16749[110] – 800[114]Large Magellanic CloudL/Teff
SP77 37-20749[110]Large Magellanic CloudL/Teff
SP77 54-27750[114] – 758[110] – 800[114]Large Magellanic CloudL/Teff
LMC 155529747[110]Large Magellanic CloudL/Teff
LMC 143877746[110]Large Magellanic CloudL/Teff
SMC 64663745[110]Small Magellanic CloudL/Teff
WOH G302745[110]Large Magellanic CloudL/Teff
TRM 65743[110]Large Magellanic CloudL/Teff
HV 12149741[110]–767[112]Small Magellanic Cloud
SMC 50840740[110]Small Magellanic CloudL/Teff
SMC 46662740[110]–874[112]Small Magellanic Cloud
SP77 29-11738[110]Large Magellanic CloudL/Teff
SMC 30616737[110]Small Magellanic CloudL/Teff
LMC 162635736[110]Large Magellanic CloudL/Teff
SP77 39-17736[110] – 760[114]Large Magellanic CloudL/Teff
LMC 163466734[110]Large Magellanic CloudL/Teff
HV 2310734[112]Large Magellanic CloudL/Teff
HD 269723734±17,[116] 814[118]–829[125]Large Magellanic CloudL/TeffAyellow hypergiant.
SP77 44-17732[110]Large Magellanic CloudL/Teff
SP77 38-5a732[110]Large Magellanic CloudL/Teff
LMC 67982730[110]Large Magellanic CloudL/Teff
LHA 120-S 129730[110]Large Magellanic CloudL/Teff
PMMR 64730+75
−65
[117]
Small Magellanic CloudL/Teff
SP77 51-15727[110]Large Magellanic CloudL/Teff
LMC 168757725[110]Large Magellanic CloudL/Teff
LMC 163007725[110]Large Magellanic CloudL/Teff
W61 8–14724[110]Large Magellanic CloudL/Teff
IRAS 05425-6914724[110]Large Magellanic CloudL/Teff
SMC 55188724[110]Small Magellanic CloudL/Teff
SP77 44-13721[110]Large Magellanic CloudL/Teff
MSX LMC 905719[110]Large Magellanic CloudL/Teff
LMC 147928719[110]Large Magellanic CloudL/Teff
LH 43-15719[110] – 740[114]Large Magellanic CloudL/Teff
PMMR 116717[125]Small Magellanic CloudL/Teff
LMC 123778715[110]Large Magellanic CloudL/Teff
WOH S314714[110]Large Magellanic CloudL/Teff
SP77 61-23713[110]Large Magellanic CloudL/Teff
WOH S230713[110]Large Magellanic CloudL/Teff
LMC 150396710[110]Large Magellanic CloudL/Teff
SP77 48-17709[110]Large Magellanic CloudL/Teff
LMC 165242707[110]Large Magellanic CloudL/Teff
SP77 51-19707[110]Large Magellanic CloudL/Teff
LMC 170539707[110]Large Magellanic CloudL/Teff
LMC 154729705[110]Large Magellanic CloudL/Teff
OGLE BRIGHT-LMC-LPV-101703[110]Large Magellanic CloudL/Teff
MSX SMC 055702[119]1,557+215
−130
[112]
Small Magellanic CloudL/TeffA super-AGB candidate.
LMC 168290702[110]Large Magellanic CloudL/Teff
LMC180702[110]Large Magellanic CloudL/Teff
SP77 45-2702[110]Large Magellanic CloudL/Teff
SP77 48-6700+29
−28
[116]
Large Magellanic CloudL/TeffA yellow hypergiant.
The following well-known stars are listed for the purpose of comparison.
HV 2112675 – 1,193[126]Small Magellanic CloudL/TeffIt has been previously considered to be a possibleThorne–Żytkow object.[126]
HV 11417673[112]–798[110]Small Magellanic CloudL/TeffCandidate Thorne-Zytkow object.[126]
HD 269953647[118]–720[125]Large Magellanic CloudL/TeffA yellow hypergiant.
HD 271182621[127]Large Magellanic CloudL/TeffA yellow hypergiant.
HD 33579471[125]Large Magellanic CloudL/TeffThe brightest star in the Large Magellanic Cloud.
S Doradus100[128]Large Magellanic CloudL/TeffAluminous blue variable in the S Doradus instability strip.
HD 3797499[129]Large Magellanic CloudL/TeffAn unusual bluehypergiant with a large dusty disk.[129]
R136a142.7+1.6
−0.9
[130]
Large Magellanic CloudL/TeffOne of themost luminous andmost massive stars.
BAT 99-9837.5[131]Large Magellanic CloudL/TeffOne of the most luminous and most massive stars.
HD 5980 A24[132]Small Magellanic CloudL/TeffA luminous blue variable and one of the most luminous stars.

Andromeda (M31) and Triangulum (M33) galaxies

List of the largest known stars in Andromeda and Triangulum galaxies
Star nameSolar radii
(Sun = 1)
GalaxyMethod[a]Notes
Theoretical limit of star size (Andromeda Galaxy)≳1,750[11]L/TeffEstimated by measuring the fraction of red supergiants at higher luminosities in a large sample of stars. Assumes an effective temperature of3,625 K.
Reported for reference
Theoretical limit of star size (Triangulum Galaxy)≳1,500[11]L/TeffEstimated by measuring the fraction of red supergiants at higher luminosities in a large sample of stars. Assumes an effective temperature of3,605 K.
Reported for reference
LGGS J004428.48+415130.91,410[133]Andromeda GalaxyL/Teff
LGGS J013418.56+303808.61,363[134]Triangulum GalaxyL/Teff
LGGS J013414.27+303417.71,342[134]–1,479[110]Triangulum GalaxyL/Teff
LGGS J004514.91+413735.01,324[110]Andromeda GalaxyL/Teff
LGGS J004125.23+411208.91,302[110]Andromeda GalaxyL/Teff
LGGS J013350.62+303230.31,283[110]Triangulum GalaxyL/Teff
LGGS J004312.43+413747.11,279[110]Andromeda GalaxyL/Teff
LGGS J003951.33+405303.71,272[110]Andromeda GalaxyL/Teff
LGGS J013416.52+305155.41,227[110]Triangulum GalaxyL/Teff
LGGS J004416.83+411933.21,209[110]Andromeda GalaxyL/Teff
LGGS J004531.13+414825.71,201[110]Andromeda GalaxyL/Teff
2MASS J01343365+30465471,196[110]Triangulum GalaxyL/Teff
LGGS J013409.63+303907.61,182[110]Triangulum GalaxyL/Teff
LGGS J004133.18+411217.21,180[110]Andromeda GalaxyL/Teff
LGGS J004455.90+413035.21,172[110]Andromeda GalaxyL/Teff
LGGS J013352.96+303816.01,163[110]Andromeda GalaxyL/Teff
LGGS J004047.22+404445.51,162[110]Andromeda GalaxyL/Teff
LGGS J004254.18+414033.61,154[110]Andromeda GalaxyL/Teff
LGGS J004428.48+415130.91,130[110]Andromeda GalaxyL/Teff
LGGS J013414.27+303417.71,129[134]Triangulum GalaxyL/Teff
LGGS J004035.08+404522.31,122[110]Andromeda GalaxyL/Teff
LGGS J013341.98+302102.01,119[110]Triangulum GalaxyL/Teff
LGGS J013307.37+304543.21,119[110]Triangulum GalaxyL/Teff
LGGS J004218.33+412633.91,111[110]Andromeda GalaxyL/Teff
LGGS J004102.54+403426.51,108[110]Andromeda GalaxyL/Teff
LGGS J013335.90+303344.51,104[110]Triangulum GalaxyL/Teff
LGGS J013358.54+303419.91,103[110]Triangulum GalaxyL/Teff
LGGS J013414.49+303511.61,102[110]Triangulum GalaxyL/Teff
LGGS J013336.64+303532.31,102[110]–1,408[134]Triangulum GalaxyL/Teff
LGGS J004259.34+413726.01,094[110]Andromeda GalaxyL/Teff
LGGS J004509.98+414627.51,089[110]Andromeda GalaxyL/Teff
LGGS J013241.94+302047.51,083[110]Triangulum GalaxyL/Teff
LGGS J004034.74+404459.61,078[110]Andromeda GalaxyL/Teff
LGGS J004059.50+404542.61,071[110]Andromeda GalaxyL/Teff
LGGS J013430.75+303218.81,067[110]Triangulum GalaxyL/Teff
LGGS J013412.27+305314.11,063[110]–1,066[134]Triangulum GalaxyL/Teff
LGGS J013328.17+304741.51,063[110]Triangulum GalaxyL/Teff
LGGS J004524.97+420727.21,059[110]Andromeda GalaxyL/Teff
LGGS J013233.77+302718.81,058[110]–1,129[134]Triangulum GalaxyL/Teff
LGGS J004125.72+411212.71,058[110]Andromeda GalaxyL/Teff
LGGS J004114.18+403759.81,058[110]Andromeda GalaxyL/Teff
LGGS J013307.60+304259.01,051[110]Triangulum GalaxyL/Teff
LGGS J004103.67+410211.81,047[110]Andromeda GalaxyL/Teff
LGGS J013305.48+303138.51,046[110]Triangulum GalaxyL/Teff
LGGS J004442.41+412649.51,040[110]Andromeda GalaxyL/Teff
LGGS J013403.87+303753.21,040[110]Triangulum GalaxyL/Teff
LGGS J013351.47+303640.31,034[110]Triangulum GalaxyL/Teff
LGGS J004306.62+413806.21,028[110]Andromeda GalaxyL/Teff
LGGS J013303.54+303201.21,027[110]–1,131[134]Triangulum GalaxyL/Teff
LGGS J004234.41+405855.91,023[110]Andromeda GalaxyL/Teff
LGGS J004051.31+404421.71,022[110]Andromeda GalaxyL/Teff
LGGS J004031.00+404311.11,011[110]Andromeda GalaxyL/Teff
LGGS J013406.20+303913.61,009[110]Triangulum GalaxyL/Teff
LGGS J013344.10+304425.11,007[110]Triangulum GalaxyL/Teff
LGGS J004307.36+405852.21,007[110]Andromeda GalaxyL/Teff
LGGS J013407.13+303929.5994[110]Triangulum GalaxyL/Teff
LGGS J013312.35+303033.9993[110]Triangulum GalaxyL/Teff
LGGS J013330.05+303145.9988[110]Triangulum GalaxyL/Teff
LGGS J013350.84+304403.1984[110]Triangulum GalaxyL/Teff
LGGS J013329.47+301848.3981[110]Triangulum GalaxyL/Teff
LGGS J004148.74+410843.0981[110]Andromeda GalaxyL/Teff
LGGS J004415.76+411750.7977[110]Andromeda GalaxyL/Teff
LGGS J004127.44+411240.7977[110]Andromeda GalaxyL/Teff
LGGS J013312.75+303946.1975[110]Triangulum GalaxyL/Teff
LGGS J004027.36+410444.9973[110]Andromeda GalaxyL/Teff
LGGS J013434.35+302627.3973[110]Triangulum GalaxyL/Teff
LGGS J013423.29+305655.0993[110]–972[134]Triangulum GalaxyL/Teff
LGGS J013319.13+303642.5970[110]Triangulum GalaxyL/Teff
LGGS J004305.77+410742.5969[110]Andromeda GalaxyL/Teff
LGGS J013403.73+304202.4965[110]–1,032[134]Triangulum GalaxyL/Teff
LGGS J004346.10+411138.8962[110]Andromeda GalaxyL/Teff
LGGS J004419.20+412343.7959[110]Andromeda GalaxyL/Teff
LGGS J013353.91+302641.8959[110]–1,008[134]Triangulum GalaxyL/Teff
LGGS J013315.23+305329.0958[110]Triangulum GalaxyL/Teff
LGGS J013315.23+305329.0956[134]Triangulum GalaxyL/Teff
LGGS J004138.35+412320.7954[110]Andromeda GalaxyL/Teff
LGGS J004419.45+411749.5950[110]Andromeda GalaxyL/Teff
LGGS J013413.95+303339.6948[110]Triangulum GalaxyL/Teff
LGGS J013336.42+303530.9947[110]Triangulum GalaxyL/Teff
LGGS J004047.82+410936.4943[110]Andromeda GalaxyL/Teff
LGGS J013258.18+303606.3943[110]Triangulum GalaxyL/Teff
LGGS J004447.74+413050.0938[110]Andromeda GalaxyL/Teff
2MASS J01343131+3046088938[110]Triangulum GalaxyL/Teff
LGGS J004346.18+411515.0936[110]Andromeda GalaxyL/Teff
LGGS J004304.62+410348.4936[110]Andromeda GalaxyL/Teff
LGGS J004458.28+413154.3933[110]Andromeda GalaxyL/Teff
LGGS J004102.82+410422.3933[110]Andromeda GalaxyL/Teff
LGGS J013344.33+303636.0932[110]Triangulum GalaxyL/Teff
LGGS J004631.49+421133.1932[110]Andromeda GalaxyL/Teff
LGGS J013321.44+304045.4932[110]–1,015[134]Triangulum GalaxyL/Teff
LGGS J013358.04+304900.1931[110]Triangulum GalaxyL/Teff
LGGS J013314.31+302952.91,067[110]–930[134]Triangulum GalaxyL/Teff
LGGS J013315.97+303153.7929[110]Triangulum GalaxyL/Teff
LGGS J004126.14+403346.5927[110]Andromeda GalaxyL/Teff
LGGS J004347.31+411203.6925[110]Andromeda GalaxyL/Teff
LGGS J004252.78+405627.5923[110]Andromeda GalaxyL/Teff
LGGS J013411.54+303312.6918[110]Triangulum GalaxyL/Teff
LGGS J013357.08+303817.8918[110]Triangulum GalaxyL/Teff
LGGS J003943.89+402104.6917[110]Andromeda GalaxyL/Teff
LGGS J004503.35+413026.3916[110]Andromeda GalaxyL/Teff
LGGS J013338.97+303828.9915[110]Triangulum GalaxyL/Teff
LGGS J013330.27+303510.6915[110]Triangulum GalaxyL/Teff
LGGS J004033.06+404303.1912[110]Andromeda GalaxyL/Teff
LGGS J004357.15+411136.6911[110]Andromeda GalaxyL/Teff
LGGS J004406.60+411536.6911[110]Andromeda GalaxyL/Teff
LGGS J013312.38+302453.2911[110]–952[134]Triangulum GalaxyL/Teff
LGGS J004451.76+420006.0911[110]Andromeda GalaxyL/Teff
LGGS J013322.82+301910.9934[110]–911[134]Triangulum GalaxyL/Teff
LGGS J013355.56+304120.9908[110]Triangulum GalaxyL/Teff
LGGS J004034.40+403627.4907[110]Andromeda GalaxyL/Teff
LGGS J003910.56+402545.6906[110]Andromeda GalaxyL/Teff
LGGS J004142.43+411814.1906[110]Andromeda GalaxyL/Teff
LGGS J013316.57+303051.9902[110]Triangulum GalaxyL/Teff
LGGS J013245.59+303518.7900[110]Triangulum GalaxyL/Teff
LGGS J004034.67+404322.5898[110]Andromeda GalaxyL/Teff
LGGS J004027.65+405126.7898[110]Andromeda GalaxyL/Teff
LGGS J004322.75+411101.8895[110]Andromeda GalaxyL/Teff
LGGS J004116.47+410813.7895[110]Andromeda GalaxyL/Teff
LGGS J013306.33+303208.2894[110]Triangulum GalaxyL/Teff
LGGS J004039.12+404252.3894[110]Andromeda GalaxyL/Teff
LGGS J004433.96+415414.8893[110]Andromeda GalaxyL/Teff
LGGS J013454.31+304109.8891[134]Triangulum GalaxyL/Teff
LGGS J004030.64+404246.2890[110]Andromeda GalaxyL/Teff
LGGS J004252.67+413615.2889[110]Andromeda GalaxyL/Teff
LGGS J013349.94+302928.8888[110]Triangulum GalaxyL/Teff
2MASS J01335010+3039106886[110]Triangulum GalaxyL/Teff
LGGS J013357.37+304558.7886[110]Triangulum GalaxyL/Teff
LGGS J013338.77+303532.9885[110]Triangulum GalaxyL/Teff
LGGS J013359.20+303212.1884[110]Triangulum GalaxyL/Teff
LGGS J013340.42+303131.3880[110]Triangulum GalaxyL/Teff
LGGS J004511.40+413717.8880[110]Andromeda GalaxyL/Teff
LGGS J013352.16+303902.2880[110]Triangulum GalaxyL/Teff
LGGS J004219.25+405116.4880[110]Andromeda GalaxyL/Teff
LGGS J004331.90+411145.0880[110]Andromeda GalaxyL/Teff
2MASS J01333718+3038206879[110]Triangulum GalaxyL/Teff
LGGS J013415.42+302816.4876[110]Triangulum GalaxyL/Teff
LGGS J013345.01+302105.1876[110]Triangulum GalaxyL/Teff
LGGS J004107.23+411636.8870[110]Andromeda GalaxyL/Teff
LGGS J013417.83+303356.0867[110]Triangulum GalaxyL/Teff
LGGS J004120.25+403838.1867[110]Andromeda GalaxyL/Teff
LGGS J004402.38+412114.9866[110]Andromeda GalaxyL/Teff
2MASS J01334194+3038565866[110]Triangulum GalaxyL/Teff
LGGS J013309.10+303017.8865[110]–933[134]Triangulum GalaxyL/Teff
LGGS J004429.36+412307.8862[110]Andromeda GalaxyL/Teff
LGGS J013310.20+303314.4861[110]Triangulum GalaxyL/Teff
LGGS J004404.60+412729.8860[110]Andromeda GalaxyL/Teff
LGGS J003907.69+402859.5860[110]Andromeda GalaxyL/Teff
LGGS J004219.64+412736.1859[110]Andromeda GalaxyL/Teff
LGGS J003949.31+402049.1859[110]Andromeda GalaxyL/Teff
LGGS J013310.16+302726.3855[110]Triangulum GalaxyL/Teff
LGGS J004036.97+403412.4855[110]Andromeda GalaxyL/Teff
LGGS J013343.68+304450.7855[110]Triangulum GalaxyL/Teff
LGGS J013409.10+303351.8854[110]Triangulum GalaxyL/Teff
LGGS J013407.11+303918.7854[110]Triangulum GalaxyL/Teff
LGGS J004107.11+411635.6854[110]Andromeda GalaxyL/Teff
LGGS J013400.01+304622.2852[110]Triangulum GalaxyL/Teff
LGGS J013327.14+303917.4851[110]Andromeda GalaxyL/Teff
LGGS J013339.79+304032.2850[110]Triangulum GalaxyL/Teff
LGGS J004501.30+413922.5850[110]Andromeda GalaxyL/Teff
LGGS J004450.87+412924.3850[110]Andromeda GalaxyL/Teff
LGGS J004040.69+405908.1850[110]Andromeda GalaxyL/Teff
LGGS J003942.92+402051.1850[110]Andromeda GalaxyL/Teff
2MASS J01335092+3040481850[110]Triangulum GalaxyL/Teff
LGGS J013315.19+305319.8847[110]Triangulum GalaxyL/Teff
LGGS J013416.89+305158.3845[110]–920[134]Triangulum GalaxyL/Teff
LGGS J004415.17+415640.6845[110]Andromeda GalaxyL/Teff
LGGS J004424.94+412322.3844[110]Andromeda GalaxyL/Teff
LGGS J013331.93+301952.9838[110]Triangulum GalaxyL/Teff
LGGS J004406.16+414846.4836[110]Andromeda GalaxyL/Teff
LGGS J013445.65+303235.4835[110]Triangulum GalaxyL/Teff
LGGS J004109.39+404901.9834[110]Andromeda GalaxyL/Teff
LGGS J004423.83+414928.6833[110]Andromeda GalaxyL/Teff
LGGS J013242.31+302113.9833[134]Triangulum GalaxyL/Teff
LGGS J004030.48+404051.1833[110]Andromeda GalaxyL/Teff
LGGS J004118.29+404940.3832[110]Andromeda GalaxyL/Teff
LGGS J013414.17+304701.9831[110]Triangulum GalaxyL/Teff
LGGS J013328.89+303058.0831[110]Triangulum GalaxyL/Teff
LGGS J004107.70+403702.3831[110]Andromeda GalaxyL/Teff
LGGS J003925.67+404111.8831[110]Andromeda GalaxyL/Teff
LGGS J004306.95+410038.2826[110]Andromeda GalaxyL/Teff
LGGS J013408.81+304637.8826[110]Triangulum GalaxyL/Teff
LGGS J013345.22+303138.2826[110]Triangulum GalaxyL/Teff
LGGS J003950.65+402531.8825[110]Andromeda GalaxyL/Teff
LGGS J013427.65+305642.4825[134]Triangulum GalaxyL/Teff
LGGS J013500.04+303703.8823[110]Triangulum GalaxyL/Teff
LGGS J004108.42+410655.3822[110]Andromeda GalaxyL/Teff
LGGS J013340.77+302108.7821[110]–820[134]Triangulum GalaxyL/Teff
LGGS J004458.57+412925.1821[110]Andromeda GalaxyL/Teff
LGGS J013309.97+302727.5973[110]Triangulum GalaxyL/Teff
LGGS J004124.81+411206.1819[110]Andromeda GalaxyL/Teff
LGGS J013401.65+303128.7819[110]Triangulum GalaxyL/Teff
LGGS J013455.65+304349.0816[110]Triangulum GalaxyL/Teff
LGGS J013310.60+302301.8816[110]Triangulum GalaxyL/Teff
LGGS J004544.71+414331.9815[110]Andromeda GalaxyL/Teff
LGGS J004119.35+410836.4813[110]Andromeda GalaxyL/Teff
LGGS J013436.65+304517.1814[110]–812[134]Triangulum GalaxyL/Teff
LGGS J013301.79+303954.3812[110]Triangulum GalaxyL/Teff
LGGS J013328.85+310041.7810[110]–909[134]Triangulum GalaxyL/Teff
LGGS J013401.08+303432.2809[110]Triangulum GalaxyL/Teff
LGGS J004036.45+403613.1808[110]Andromeda GalaxyL/Teff
LGGS J004521.53+413758.6807[110]Andromeda GalaxyL/Teff
LGGS J004432.38+415149.9807[110]Andromeda GalaxyL/Teff
LGGS J013306.95+303506.1807[134]Triangulum GalaxyL/TeffContradictory classification in literature, it has been considered a candidate LBV, a RSG or a BSG.
LGGS J013242.26+302114.1807[110]Triangulum GalaxyL/Teff
LGGS J013321.94+304112.0806[110]–829[134]Triangulum GalaxyL/Teff
LGGS J013304.56+303043.2804[110]Triangulum GalaxyL/Teff
LGGS J004331.73+414223.0803[110]Andromeda GalaxyL/Teff
LGGS J004044.17+410729.0803[110]Andromeda GalaxyL/Teff
LGGS J013352.83+305605.2803[110]Triangulum GalaxyL/Teff
LGGS J013343.30+303318.9873[110]–803[134]Triangulum GalaxyL/Teff
LGGS J013342.61+303534.7800[110]Triangulum GalaxyL/Teff
LGGS J013326.90+310054.2800[110]–909[134]Triangulum GalaxyL/Teff
LGGS J013300.94+303404.3798[110]Triangulum GalaxyL/Teff
LGGS J013416.06+303730.0798[110]Triangulum GalaxyL/Teff
LGGS J004503.83+413737.0797[110]Andromeda GalaxyL/Teff
LGGS J004503.83+413737.0797[110]Andromeda GalaxyL/Teff
LGGS J004438.83+415253.0794[110]Andromeda GalaxyL/Teff
LGGS J004235.88+405442.2794[110]Andromeda GalaxyL/Teff
LGGS J004335.28+410959.7794[110]Andromeda GalaxyL/Teff
LGGS J013402.32+303828.4793[110]Triangulum GalaxyL/Teff
LGGS J004125.55+405034.8792[110]Andromeda GalaxyL/Teff
LGGS J013507.43+304132.6791[110]Triangulum GalaxyL/Teff
LGGS J013353.25+303918.7791[110]Triangulum GalaxyL/Teff
LGGS J004308.71+410604.5790[110]Andromeda GalaxyL/Teff
LGGS J013417.17+304826.6789[110]Triangulum GalaxyL/Teff
LGGS J013310.71+302714.9789[110]–884[134]Triangulum GalaxyL/Teff
LGGS J013432.36+304159.0788[110]Triangulum GalaxyL/Teff
LGGS J004356.23+414641.8788[110]Andromeda GalaxyL/Teff
LGGS J013340.77+302108.7788[110]Triangulum GalaxyL/Teff
LGGS J013346.61+304125.4786[110]Triangulum GalaxyL/Teff
LGGS J004447.08+412801.7785[110]Andromeda GalaxyL/Teff
LGGS J004255.95+404857.5785[135]Andromeda GalaxyL/Teff
LGGS J013231.91+302329.1783[110]Triangulum GalaxyL/Teff
LGGS J004110.32+410433.4782[110]Andromeda GalaxyL/Teff
LGGS J004159.06+405718.7780[110]Andromeda GalaxyL/Teff
LGGS J004241.10+413142.3775[110]Andromeda GalaxyL/Teff
LGGS J013401.88+303858.3776[134]Triangulum GalaxyL/Teff
LGGS J013445.12+305858.9773[110]Triangulum GalaxyL/Teff
LGGS J004030.92+404329.3773[110]Andromeda GalaxyL/Teff
LGGS J013359.57+303413.5771[110]Triangulum GalaxyL/Teff
LGGS J004353.97+411255.6771[110]Andromeda GalaxyL/Teff
LGGS J004029.03+403412.6770[110]Andromeda GalaxyL/Teff
LGGS J004526.24+420047.5767[110]Andromeda GalaxyL/Teff
LGGS J013348.44+302029.8767[110]Triangulum GalaxyL/Teff
LGGS J004552.15+421003.5767[110]Andromeda GalaxyL/Teff
LGGS J013320.75+303204.8764[110]Triangulum GalaxyL/Teff
LGGS J013416.28+303353.5763[110]–801[134]Triangulum GalaxyL/Teff
LGGS J013357.91+303338.9763[110]Triangulum GalaxyL/Teff
LGGS J013253.14+303515.3762[110]Triangulum GalaxyL/Teff
LGGS J004051.18+403053.4762[110]Andromeda GalaxyL/Teff
LGGS J013402.57+303746.3762[110]Triangulum GalaxyL/Teff
LGGS J013352.15+304006.4762[110]Triangulum GalaxyL/Teff
LGGS J004427.07+415203.0762[110]Andromeda GalaxyL/Teff
LGGS J004233.23+405917.0762[110]Andromeda GalaxyL/Teff
LGGS J004156.96+405720.8761[110]Andromeda GalaxyL/Teff
LGGS J004117.14+410843.7761[110]Andromeda GalaxyL/Teff
LGGS J004124.80+411634.7760, 1,205, 1,240[135]Andromeda GalaxyL/Teff
LGGS J004109.61+404920.4761[110]Andromeda GalaxyL/Teff
LGGS J003930.09+402313.0759[110]Andromeda GalaxyL/Teff
LGGS J013324.71+303423.7758[110]Triangulum GalaxyL/Teff
LGGS J013317.40+303210.8758[110]Triangulum GalaxyL/Teff
LGGS J013411.83+304631.0756[110]Triangulum GalaxyL/Teff
LGGS J004417.75+420039.1755[110]Andromeda GalaxyL/Teff
LGGS J004454.50+413007.8755[110]Andromeda GalaxyL/Teff
LGGS J013348.77+304526.8754[110]Triangulum GalaxyL/Teff
LGGS J004019.69+404912.2754[110]Andromeda GalaxyL/Teff
LGGS J004340.32+411157.1753[110]Andromeda GalaxyL/Teff
LGGS J013304.02+303215.2753[110]Triangulum GalaxyL/Teff
LGGS J013409.16+303846.9752[110]Triangulum GalaxyL/Teff
LGGS J013459.81+304156.9751[110]–765[134]Triangulum GalaxyL/Teff
LGGS J013334.82+302029.1751[110]–930[134]Triangulum GalaxyL/Teff
LGGS J013400.71+303422.3750[110]Triangulum GalaxyL/Teff
LGGS J004224.65+412623.7749[110]Andromeda GalaxyL/Teff
LGGS J013414.88+303401.2749[110]Triangulum GalaxyL/Teff
LGGS J004343.33+414529.5749[110]Andromeda GalaxyL/Teff
LGGS J004034.76+403648.9749[110]Andromeda GalaxyL/Teff
LGGS J013353.53+303418.7749[110]Triangulum GalaxyL/Teff
LGGS J004501.84+420259.2747[110]Andromeda GalaxyL/Teff
LGGS J013409.70+303916.2744[110]Triangulum GalaxyL/Teff
LGGS J013345.71+303609.8744[110]Triangulum GalaxyL/Teff
LGGS J004342.75+411442.8743[110]Andromeda GalaxyL/Teff
LGGS J013333.32+303147.2741[110]Triangulum GalaxyL/Teff
LGGS J013338.97+303506.1741[110]Triangulum GalaxyL/Teff
LGGS J013303.61+302841.5741[110]Triangulum GalaxyL/Teff
LGGS J004201.12+412516.0737[110]Andromeda GalaxyL/Teff
LGGS J004341.35+411213.8734[110]Andromeda GalaxyL/Teff
LGGS J013438.76+304608.1734[110]Triangulum GalaxyL/Teff
LGGS J013402.33+301749.2734[110]–786[134]Triangulum GalaxyL/Teff
2MASS J01334180+3040207732[110]Triangulum GalaxyL/Teff
LGGS J013354.32+301724.6732[110]–854[134]Triangulum GalaxyL/Teff
LGGS J013334.23+303400.3732[110]Triangulum GalaxyL/Teff
LGGS J013357.60+304113.3730[110]Triangulum GalaxyL/Teff
LGGS J004614.57+421117.4730[110]Andromeda GalaxyL/Teff
LGGS J004120.96+404125.3730[110]Andromeda GalaxyL/Teff
LGGS J004228.46+405519.0728[110]Andromeda GalaxyL/Teff
LGGS J004024.52+404444.8728[110]Andromeda GalaxyL/Teff
LGGS J013349.75+304459.8727[110]Triangulum GalaxyL/Teff
LGGS J013306.88+303004.6727[110]Triangulum GalaxyL/Teff
LGGS J004358.00+412114.1727[110]Andromeda GalaxyL/Teff
LGGS J004147.27+411537.8727[110]Andromeda GalaxyL/Teff
LGGS J013407.23+304158.8725[110]–833[134]Triangulum GalaxyL/Teff
LGGS J004519.82+415531.9725[110]Andromeda GalaxyL/Teff
LGGS J004410.84+411538.8725[110]Andromeda GalaxyL/Teff
LGGS J013407.38+305935.0724[110]Triangulum GalaxyL/Teff
LGGS J004438.75+415553.6724[110]Andromeda GalaxyL/Teff
LGGS J004324.16+411228.3723[110]Andromeda GalaxyL/Teff
LGGS J004059.58+403815.6723[110]Andromeda GalaxyL/Teff
LGGS J013327.40+304126.4721[110]Triangulum GalaxyL/Teff
LGGS J013243.72+301912.5721[110]–783[134]Triangulum GalaxyL/Teff
Gaia DR3 303379932695513216720[110]Triangulum GalaxyL/Teff
LGGS J004558.92+414642.1720[110]Andromeda GalaxyL/Teff
LGGS J004103.46+403633.2717[110]Andromeda GalaxyL/Teff
LGGS J013324.89+301754.3717[110]Triangulum GalaxyL/Teff
LGGS J004015.18+405947.7716[110]Andromeda GalaxyL/Teff
LGGS J013414.53+303557.7715[110]Triangulum GalaxyL/Teff
LGGS J013351.89+303853.5715[110]Triangulum GalaxyL/Teff
LGGS J004458.82+413050.4715[110]Andromeda GalaxyL/Teff
LGGS J013352.51+303942.2715[110]Triangulum GalaxyL/Teff
LGGS J004124.91+411133.1715[110]Andromeda GalaxyL/Teff
LGGS J004604.18+415135.4713[110]Andromeda GalaxyL/Teff
LGGS J013305.17+303119.8711[110]Triangulum GalaxyL/Teff
LGGS J004517.25+413948.2711[110]Andromeda GalaxyL/Teff
LGGS J013349.86+303246.1710[136]–795[134]Triangulum GalaxyL/TeffA yellow supergiant.
2MASS J01335929+3034435709[110]Triangulum GalaxyL/Teff
LGGS J004230.32+405624.1708[110]Andromeda GalaxyL/Teff
LGGS J004101.02+403506.1708[110]Andromeda GalaxyL/Teff
LGGS J004119.21+411237.2707[110]Andromeda GalaxyL/Teff
LGGS J004606.25+415018.9707[110]Andromeda GalaxyL/Teff
LGGS J013442.05+304540.2707[110]–707[134]Triangulum GalaxyL/Teff
LGGS J013431.84+302721.5707[110]–717[134]Triangulum GalaxyL/Teff
LGGS J013304.68+304456.0707[110]–739[134]Triangulum GalaxyL/Teff
LGGS J004432.27+415158.4705[110]Andromeda GalaxyL/Teff
2MASS J01335131+3039149704[110]Triangulum GalaxyL/Teff
LGGS J013339.46+302113.0703[110]–748[134]Triangulum GalaxyL/Teff
LGGS J003935.36+401946.4703[110]Andromeda GalaxyL/Teff
LGGS J013343.03+303433.5702[110]Triangulum GalaxyL/Teff
LGGS J004505.87+413452.3702[110]Andromeda GalaxyL/Teff
LGGS J013414.18+305248.0701[110]–731[134]Triangulum GalaxyL/Teff
LGGS J013402.53+304107.7701[110]–749[134]Triangulum GalaxyL/Teff
LGGS J013340.80+304248.5701[110]–814[134]Triangulum GalaxyL/Teff
LGGS J013312.59+303252.5701[110]Triangulum GalaxyL/Teff
The following well-known stars are listed for the purpose of comparison.
Var 83150[137]Triangulum GalaxyL/TeffA luminous blue variable and one of the most luminous stars in M33.

Other galaxies (within the Local Group)

List of the largest known stars in other galaxies (within the Local Group)
Star nameSolar radii
(Sun = 1)
GalaxyMethod[a]Notes
Sextans A 10995±130[138]Sextans AL/Teff
NGC 6822-RSG 19928[139]NGC 6822L/Teff
WLM 02883+284
−167
[140]
WLML/Teff
Sextans A 5870±145[138]Sextans AL/Teff
NGC 6822-RSG 26866[139]NGC 6822L/Teff
NGC 6822-RSG 12837[139]NGC 6822L/Teff
Leo A 7785[141]Leo AL/Teff
NGC 6822-RSG 9763[139]NGC 6822L/Teff
NGC 6822-RSG 6712[139]NGC 6822L/Teff
Sextans A 7710±100[138]Sextans AL/Teff
The following well-known stars are listed for the purpose of comparison.
NGC 6822-WR 123.79[142]NGC 6822L/TeffAWolf-Rayet star, one of the hottest known stars.

Outside the Local Group (inside the Virgo supercluster)

List of the largest known stars in galaxies outside the Local Group inside the Virgo supercluster
Star nameSolar radii
(Sun = 1)
GalaxyGroupMethod[a]Notes
NGC 300-1251,504+176
−157
[143]
NGC 300NGC 55 GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 247-1541,503+79
−75
[143]
NGC 247Sculptor GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 7793-341,392+157
−160
[143]
NGC 7793Sculptor GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 55-401,286+116
−106
[143]
NGC 55NGC 55 GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 2403 V141,260[144]NGC 2403M81 GroupL/TeffAF-typeluminous blue variable.
NGC 300-1541,200+123
−111
[143]
NGC 300NGC 55 GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 300-1141,181+123
−111
[143]
NGC 300NGC 55 GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 300-1991,181+120
−109
[143]
NGC 300NGC 55 GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 300-1531,173+120
−109
[143]
NGC 300NGC 55 GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 300-1501,167+119
−107
[143]
NGC 300NGC 55 GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 253-20061,167+75
−70
[143]
Sculptor GalaxySculptor GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
SPIRITS 14atl1,134–1,477[145]Messier 83Centaurus A/M83 GroupL/Teff
NGC 300-591,133+146
−129
[143]
NGC 300NGC 55 GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 7793-861,127+94
−109
[143]
NGC 7793Sculptor GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 300-2631,108+113
−102
[143]
NGC 300NGC 55 GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 247-4471,101+58
−56
[143]
NGC 247Sculptor GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
SPIRITS 15ahp1,098[145]NGC 2403M81 GroupL/Teff
NGC 300-2401,088+112
−101
[143]
NGC 300NGC 55 GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 7793-861,078+69
−64
[143]
NGC 7793Sculptor GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 300-1731,063+84
−77
[143]
NGC 300NGC 55 GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 300-3401,036+105
−95
[143]
NGC 300NGC 55 GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 300-3461,023+139
−128
[143]
NGC 300NGC 55 GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 247-5331,004+66
−62
[143]
NGC 247Sculptor GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 300-351992+115
−102
[143]
NGC 300NGC 55 GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 300-524987+77
−72
[143]
NGC 300NGC 55 GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 55-135964+99
−89
[143]
NGC 55NGC 55 GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 55-93955+49
−47
[143]
NGC 55NGC 55 GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 7793-539948[143]NGC 7793Sculptor GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 55-87948+109
−98
[143]
NGC 55NGC 55 GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 55-146921+49
−46
[143]
NGC 55NGC 55 GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 300-273921+94
−85
[143]
NGC 300NGC 55 GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 300-186915+72
−65
[143]
NGC 300NGC 55 GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 55-200905+59
−55
[143]
NGC 55NGC 55 GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 55-152895+58
−54
[143]
NGC 55NGC 55 GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 300-413861+66
−61
[143]
NGC 300NGC 55 GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 55-174856+65
−61
[143]
NGC 55NGC 55 GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
M81 10584-25-2851[144]Messier 81M81 GroupL/Teff
M81 10584-13-3843[144]Messier 81M81 GroupL/Teff
NGC 55-75836+81
−111
[143]
NGC 55NGC 55 GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 300-545824+104
−93
[143]
NGC 300NGC 55 GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 247-2912821+54
−51
[143]
NGC 247Sculptor GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 55-216801+102
−89
[143]
NGC 55NGC 55 GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 247-1471798+52
−48
[143]
NGC 247Sculptor GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 300-499796+89
−108
[143]
NGC 300NGC 55 GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 300-379744+56
−52
[143]
NGC 300NGC 55 GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 300-838744+57
−53
[143]
NGC 300NGC 55 GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 55-149738+47
−55
[143]
NGC 55NGC 55 GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 55-194730+46
−44
[143]
NGC 55NGC 55 GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
[GKE2015] 7729[146]NGC 300NGC 55 GroupL/Teff
NGC 55-270728+38
−36
[143]
NGC 55NGC 55 GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 300-1047724+65
−59
[143]
NGC 300NGC 55 GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 247-3231719+56
−51
[143]
NGC 247Sculptor GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 247-2966719+56
−52
[143]
NGC 247Sculptor GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 55-245717+55
−50
[143]
NGC 55NGC 55 GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 300-1068716+64
−58
[143]
NGC 300NGC 55 GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
NGC 300-1081712+54
−51
[143]
NGC 300NGC 55 GroupL/TeffEffective temperature is based onTitanium(II) oxide lines, which often results in lower values, therefore increasing the radius.[143]
The following well-known stars are listed for the purpose of comparison.
Holmberg IX V1 A337[147]Holmberg IXM81 GroupL/TeffPrimary star of ayellow supergiantcontact binary.
Holmberg IX V1 B292[148]Holmberg IXM81 GroupL/TeffSecondary star of ayellow supergiantcontact binary.
NGC 2363-V1194356[149]NGC 2366M81 GroupL/Teff
[HMR2016]N4038 13068124-885[150]NGC 4038NGC 4038 GroupL/Teff
[HMR2016]N4038 4684288-815[151]NGC 4038NGC 4038 GroupL/Teff

Outside the Virgo supercluster

Note that this list does not include the candidateJWSTdark stars, with estimated radii of up to 61 astronomical units (13,000 R)[152] orQuasi-stars, with theoretical models suggesting that they could reach radii of up to 40,700 solar radii (189 au).[153]

Star nameSolar radii
(Sun = 1)
GalaxyGroupMethod[a]Notes
Quyllur965[154]ACT-CL J0102-4915L/TeffLikely the first red supergiant star at cosmological distances and is also discovered byJames Webb Space Telescope.
The following well-known stars are listed for the purpose of comparison.
Godzilla430–2,365[155]Sunburst galaxyPSZ1 G311.65-18.48L/TeffThe most luminous known star.[156]
Mothra271[157]LS1MACS J0416.1-2403L/TeffA binary star at cosmological distances.

Transient events

During some transient events, such asred novae orLBV eruptions the star's radius can increase by a significant amount.

List of largest stars during transient events
Star or transient event nameSolar radii
(Sun = 1)
YearGalaxyGroupMethodNotes
AT 2017jfs>33,000[158]2017NGC 4470L/Teff
SNhunt15116,700[159]2014UGC 3165LDC 331L/Teff
SN 2015bh16,400±2,600[160]2015NGC 2770LDC 616L/Teff
AT 2018hso10,350[161]2018NGC 3729M109 GroupL/Teff
AT 2023clx6,800[162]2023NGC 3799nest 101314L/Teff
M51 OT2019-15,500[163]2019Whirlpool GalaxyM51 GroupL/Teff
η Carinae4,319 – 6,032[93]1845Milky WayLocal GroupL/TeffDuring the outburst, the star became the second brightest star in sky, reaching an apparent magnitude of between −0.8 and −1.0.[164]
AT 2010dn4,130[165]2010NGC 3180LDC 743L/Teff
SN 2011fh3,980[166]2011NGC 4806Abell 3528L/Teff
AT 2014ej3,600[167]2014NGC 7552Grus QuartetL/Teff
V838 Monocerotis3,190[83]2002Milky WayLocal GroupL/Teff
SN2008S3,020[165]2008NGC 6946NGC 6946 GroupL/Teff
SNhunt1202,900[168][167]2012NGC 5775Virgo ClusterL/Teff
AT 2017be2,000[169]2017NGC 2537L/Teff
PHL 293B star1,348 – 1,463[170]2002PHL 293BL/Teff
SNhunt248~850[171]2014NGC 5806NGC 5846 GroupL/Teff
R71500[172]2012Large Magellanic CloudLocal GroupL/Teff
SN 2000ch500[173]2000NGC 3432LDC 743L/Teff
Godzilla430 – 2,365[155]2015Sunburst galaxy?
AT 2016blu~330[174]2012 – 2022NGC 4559Coma I GroupL/Teff19 outbursts were detected between 2012 and 2022. The star was likely relatively stable the decade before since no outbursts were detected from 1999 – 2009.[174]

SN Progenitors

List of largest supernova progenitors
Star or supernova nameSolar radii
(Sun = 1)
YearGalaxyGroupMethodNotes
SN 2020faa1,000[175]20202MASS J14470904+7244157L/Teff
SN 2023ixf912+227
−222
[176]1,060±30[177]
2023Pinwheel galaxyM101 GroupL/Teff
SN 2020jfo700±10[178]2020Messier 61Virgo ClusterL/Teff
SN 2023axu417±28[179]2023NGC 2283L/Teff
SN 2021agco78.37+25.59
−19.94
[180]
2021UGC 3855LDC 506L/TeffNearest ultrastripped supernova known.

Largest stars by apparent size

The following list include the largest stars by their apparent size (angular diameter) as seen from Earth. The unit of measurement is themilliarcsecond (mas), equivalent to10×10−3 arcseconds. Stars with angular diameters larger than 13 milliarcseconds are included.

List of largest stars by apparent size (angular diameter)
NameAngular diameter
(mas)
Angular diameter type[g]Distance
(light-years)
Spectral type[181]Notes
Sun2,000,0000.000016G2VThe largest star by angular diameter.
R Doradus51.18±1.24[87]LD

179±10[87]

M8III:eThe largest star by angular diameter apart from the Sun.
Betelgeuse
(α Orionis)
42.28±0.43[74]LD

408–540+98
−49
[74]

M1-M2Ia-Iab
Antares
(α Scorpii A)
37.31±0.09[182]LD553.5±93.9[183]M1.5Iab
Mira
(ο Ceti)
28.9±0.3 – 34.9±0.4[184]Ross299±33[183]M5-M9IIIeThe angular diameter vary during Mira's pulsations.
Tiaki
(β Gruis)
28.8±0.6[185]?177±4[183]M4.5III
Gacrux
(γ Crucis)
24.7[98]?88.6±0.4[183]M3.5III
Rasalgethi
(α Herculis)
23.95±5.03[88]Est359±52[183]M5Ib-II
R Hydrae23.7±1[18]?482±33[18]M6-9e
Arcturus
(α Boötis)
21.06±0.17[186]LD36.8[186]K1.5IIIFe-0.5
π1 Gruis21[187]?535[187]S5,7
Aldebaran
(α Tauri)
20.58[188]–21.1[189]LD65.3±1[190]K5+III
GY Aquilae20.46[18]?1108±98[18]M8
θ Apodis18.1[191]?389±17[192]M6.5III
R Lyrae18.016±0.224[189]LD310+10
−7
[193]
M4.5III
Scheat
(β Pegasi)
16.75±0.24[194]Ross196±2[183]M2.5II-III
Gorgonea Tertia
(ρ Persei)
16.555±0.166[189]LD308±7[183]M4+IIIa
SW Virginis16.11±0.13–16.8±0.34[195]UD527±46.9[196]M7III:
R Aquarii15.61±0.8 – 16.59±1.03[195]LD711+39
−36
[197]
M6.5–M8.5e
g Herculis15.2±0.5 – 19.09±0.19[195]LD385±10[193]M6-III
RS Cancri15.1±0.5 – 17.2±0.4[189]LD490±40[198]M6S
Tejat
(μ Geminorum)
15.118±0.151[189]LD230±10[183]M3IIIab
R Leonis Minoris14.4±0.87[195]LD942+33
−47
[193]
M6.5-9e
S Cephei14.29±2.28[195]LD1591+49
−46
[193]
C7,3e
T Cassiopeiae14.22±0.73[195]LD893+49
−46
[193]
M7-9e
μ Cephei(Herschel's Garnet Star)14.11 ± 0.6[29]2,000[32]–3060+460
−130
[31]
M2Ia
Mirach
(β Andromedae)
13.749±0.137[189]LD199±9[199]M0+IIIa
Menkar
(α Ceti)
13.238±0.056[189]LD249±8[183]M1.5IIIaOther measurements include 12.2±0.04 mas.[200]
V Cygni13.1±0.208 – 14.84±2.37[195]LD1747+163
−137
[193]
C7,4eJ

See also

Notes

  1. ^abcdefMethods for calculating the radius:
  2. ^abcdefAt the J2000 epoch
  3. ^Using an angular diameter of7.8±0.64 milliarcseconds[22] and a distance of1610+130
    −110
     parsecs.
    [23]
  4. ^Using an angular diameter of14.11±0.6 milliarcseconds[29] and a distance of940+140
    −40
     parsecs.
  5. ^Luminosities are calculated using theapparent bolometric magnitude and distances in the following equation:
    100.4 • (4.74−(mbol+5−5 • log(dist)))
  6. ^Calculated using a distance of 432parsecs and anangular diameter of 2.31milliarcseconds.
  7. ^Legend:
    UD=Uniform disk diameter
    LD=Limb-darkened diameter
    Ross=Rosseland diameter
    Est = Estimated using distance and physical radius

References

  1. ^Mamajek, E. E.; Prsa, A.; Torres, G.; Harmanec, P.; Asplund, M.; Bennett, P. D.; Capitaine, N.; Christensen-Dalsgaard, J.; Depagne, E.; Folkner, W. M.; Haberreiter, M. (October 2015). "IAU 2015 Resolution B3 on Recommended Nominal Conversion Constants for Selected Solar and Planetary Properties".arXiv:1510.07674 [astro-ph.SR].
  2. ^Rau, A.; Kulkarni, S. R.; Ofek, E. O.; Yan, L. (2007). "Spitzer Observations of the New Luminous Red Nova M85 OT2006-1".The Astrophysical Journal.659 (2):1536–1540.arXiv:astro-ph/0612161.Bibcode:2007ApJ...659.1536R.doi:10.1086/512672.S2CID 8913778.
  3. ^Haemmerlé, Lionel; Woods, T. E.; Klessen, Ralf S.; Heger, Alexander; Whalen, Daniel J. (2018)."The evolution of supermassive Population III stars".Monthly Notices of the Royal Astronomical Society.474 (2):2757–2773.arXiv:1705.09301.doi:10.1093/mnras/stx2919.
  4. ^Herrington, Nicholas P.; Whalen, Daniel J.; Woods, Tyrone E. (2023)."Modelling supermassive primordial stars with <SCP>mesa</SCP>".Monthly Notices of the Royal Astronomical Society.521:463–473.arXiv:2208.00008.doi:10.1093/mnras/stad572.
  5. ^Haemmerlé, L.; Klessen, R. S.; Mayer, L.; Zwick, L. (2021). "Maximum accretion rate of supermassive stars".Astronomy & Astrophysics.652: L7.arXiv:2105.13373.Bibcode:2021A&A...652L...7H.doi:10.1051/0004-6361/202141376.S2CID 235247984.
  6. ^Gray, David F. (1 August 1967)."Photometric Determination of Stellar Radii".The Astrophysical Journal.149: 317.Bibcode:1967ApJ...149..317G.doi:10.1086/149256.ISSN 0004-637X.
  7. ^Meyer, C.; Rabbia, Y.; Froeschle, M.; Helmer, G.; Amieux, G. (1 April 1995)."Observations of lunar occultations at Observatoire de la Cote d'Azur".Astronomy and Astrophysics Supplement Series.110: 107.Bibcode:1995A&AS..110..107M.ISSN 0365-0138.
  8. ^Levesque, Emily M.; Massey, Philip; Olsen, K. A. G.; Plez, Bertrand; Meynet, Georges; Maeder, Andre (July 2006). "The Effective Temperatures and Physical Properties of Magellanic Cloud Red Supergiants: The Effects of Metallicity".The Astrophysical Journal.645 (2):1102–1117.arXiv:astro-ph/0603596.Bibcode:2006ApJ...645.1102L.doi:10.1086/504417.ISSN 0004-637X.S2CID 5150686.
  9. ^Ren, Yi; Jiang, Bi-Wei (July 2020)."On the Granulation and Irregular Variation of Red Supergiants".The Astrophysical Journal.898 (1): 24.arXiv:2006.06605.Bibcode:2020ApJ...898...24R.doi:10.3847/1538-4357/ab9c17.ISSN 0004-637X.S2CID 250739134.
  10. ^abcdef"HORIZONS Web-Interface".ssd.jpl.nasa.gov. Retrieved25 September 2021.
  11. ^abcdeHealy, Sarah; Horiuchi, Shunsaku; Ashall, Chris (5 December 2024). "The Red Supergiant Problem: As Seen from the Local Group's Red Supergiant Populations".arXiv:2412.04386 [astro-ph.SR].
  12. ^abcdefghijklmnopqrstuvHumphreys, Roberta M.; Helmel, Greta; Jones, Terry J.; Gordon, Michael S. (August 2020)."Exploring the Mass Loss Histories of the Red Supergiants".The Astronomical Journal.160 (3): 145.arXiv:2008.01108.Bibcode:2020AJ....160..145H.doi:10.3847/1538-3881/abab15.S2CID 220961677.
  13. ^abWittkowski, M.; Hauschildt, P. H.; Arroyo-Torres, B.; Marcaide, J. M. (April 2012). "Fundamental properties and atmospheric structure of the red supergiant VY Canis Majoris based on VLTI/AMBER spectro-interferometry".Astronomy and Astrophysics.540: L12.arXiv:1203.5194.Bibcode:2012A&A...540L..12W.doi:10.1051/0004-6361/201219126.ISSN 0004-6361.S2CID 54044968.
  14. ^abAlcolea, J.; Bujarrabal, V.; Planesas, P.; Teyssier, D.; Cernicharo, J.; De Beck, E.; Decin, L.; Dominik, C.; Justtanont, K.; de Koter, A.; Marston, A. P.; Melnick, G.; Menten, K. M.; Neufeld, D. A.; Olofsson, H.; Schmidt, M.; Schöier, F. L.; Szczerba, R.; Waters, L. B. F. M. (November 2013)."HIFISTARS Herschel/HIFI observations of VY Canis Majoris. Molecular-line inventory of the envelope around the largest known star".Astronomy & Astrophysics.559: 25.arXiv:1310.2400.Bibcode:2013A&A...559A..93A.doi:10.1051/0004-6361/201321683.ISSN 0004-6361.S2CID 263787323.
  15. ^Gordon, Michael S.; Jones, Terry J.; Humphreys, Roberta M.; Ertel, Steve; Hinz, Philip M.; Hoffman, William F.; Stone, Jordan; Spalding, Eckhart; Vaz, Amali (February 2019)."Thermal Emission in the Southwest Clump of VY CMa".The Astronomical Journal.157 (2): 57.arXiv:1811.05998.Bibcode:2019AJ....157...57G.doi:10.3847/1538-3881/aaf5cb.S2CID 119044678.
  16. ^Nguyen, Thinh H.; Guinan, Edward F. (11 January 2022)."Stars on the Verge: Analyses of the Complex Light Variations of the Hyper-luminous Red Supergiant VY Canis Majoris: On the Nature of the Star's "Great Dimming" Episodes".Research Notes of the AAS.6 (1): 12.Bibcode:2022RNAAS...6...12N.doi:10.3847/2515-5172/ac4991.ISSN 2515-5172.
  17. ^abArroyo-Torres, B.; Wittkowski, M.; Marcaide, J. M.; Hauschildt, P. H. (June 2013). "The atmospheric structure and fundamental parameters of the red supergiants AH Scorpii, UY Scuti, and KW Sagittarii".Astronomy and Astrophysics.554: A76.arXiv:1305.6179.Bibcode:2013A&A...554A..76A.doi:10.1051/0004-6361/201220920.ISSN 0004-6361.S2CID 73575062.
  18. ^abcdefghMontargès, M.; et al. (5 January 2023). "The VLT/SPHERE view of the ATOMIUM cool evolved star sample. I. Overview: Sample characterization through polarization analysis".Astronomy and Astrophysics.671: A96.arXiv:2301.02081.Bibcode:2023A&A...671A..96M.doi:10.1051/0004-6361/202245398.S2CID 255440600.
  19. ^abcdefNorris, Ryan Patrick (13 December 2019).Seeing stars like never before: A long-term interferometric imaging survey of red supergiants.Physics and Astronomy Dissertations (Thesis). Georgia State University.Bibcode:2019PhDT........63N.doi:10.57709/15009706.
  20. ^abTabernero, H. M.; Dorda, R.; Negueruela, I.; Marfil, E. (February 2021)."The nature of VX Sagitarii: Is it a TŻO, a RSG, or a high-mass AGB star?".Astronomy & Astrophysics.646: A98.arXiv:2011.09184.Bibcode:2021A&A...646A..98T.doi:10.1051/0004-6361/202039236.ISSN 0004-6361.S2CID 241206934.
  21. ^abcdeWing, Robert F. (September 2009).The Biggest Stars of All. The Biggest, Baddest, Coolest Stars ASP Conference Series. Vol. 412. p. 113.Bibcode:2009ASPC..412..113W.S2CID 117001990.
  22. ^abRichichi, A.; Percheron, I.; Khristoforova, M. (1 February 2005)."CHARM2: An updated Catalog of High Angular Resolution Measurements".Astronomy & Astrophysics.431 (2):773–777.Bibcode:2005A&A...431..773R.doi:10.1051/0004-6361:20042039.ISSN 0004-6361. Data about NML Cygni (IRC +40448) is foundhere at VizieR.
  23. ^Zhang, B.; Reid, M. J.; Menten, K. M.; Zheng, X. W.; Brunthaler, A. (2012)."The distance and size of the red hypergiant NML Cygni from VLBA and VLA astrometry"(PDF).Astronomy & Astrophysics.544: A42.arXiv:1207.1850.Bibcode:2012A&A...544A..42Z.doi:10.1051/0004-6361/201219587.S2CID 55509287.
  24. ^Fok, Thomas K. T.; Nakashima, Jun-ichi; Yung, Bosco H. K.; Hsia, Chih-Hao; Deguchi, Shuji (November 2012)."Maser Observations of Westerlund 1 and Comprehensive Considerations on Maser Properties of Red Supergiants Associated with Massive Clusters".The Astrophysical Journal.760 (1): 65.arXiv:1209.6427.Bibcode:2012ApJ...760...65F.doi:10.1088/0004-637X/760/1/65.ISSN 0004-637X.S2CID 53393926.
  25. ^abcdefghijklmnopqrstuvwxyzaaabacadaeafagahaiajakalamanaoapaqarasatauavawaxayazbabbHealy, Sarah; Horiuchi, Shunsaku; Molla, Marta Colomer; Milisavljevic, Dan; Tseng, Jeff; Bergin, Faith; Weil, Kathryn; Tanaka, Masaomi (23 March 2024)."Red Supergiant Candidates for Multimessenger Monitoring of the Next Galactic Supernova".Monthly Notices of the Royal Astronomical Society.529 (4):3630–3650.arXiv:2307.08785.Bibcode:2024MNRAS.529.3630H.doi:10.1093/mnras/stae738.ISSN 0035-8711.
  26. ^Kusuno, K.; Asaki, Y.; Imai, H.; Oyama, T. (2013). "Distance and Proper Motion Measurement of the Red Supergiant, Pz Cas, in Very Long Baseline Interferometry H2O Maser Astrometry".The Astrophysical Journal.774 (2): 107.arXiv:1308.3580.Bibcode:2013ApJ...774..107K.doi:10.1088/0004-637X/774/2/107.S2CID 118867155.
  27. ^abcdeRyan Norris."Student Science at NMT: Learning Optical Interferometry Through Projects on Evolved Stars"(PDF).CHARA.
  28. ^abJosselin, E.; Plez, B. (July 2007)."Atmospheric dynamics and the mass loss process in red supergiant stars".Astronomy & Astrophysics.469 (2):671–680.arXiv:0705.0266.Bibcode:2007A&A...469..671J.doi:10.1051/0004-6361:20066353.ISSN 0004-6361.S2CID 17789027.
  29. ^abcPerrin, G.; Ridgway, S. T.; Verhoelst, T.; Schuller, P. A.; Traub, W. A.; Millan-Gabet, R.; Lacasse, M. G. (1 June 2005)."Study of molecular layers in the atmosphere of the supergiant star μ Cep by interferometry in the K band".Astronomy & Astrophysics.436 (1):317–324.arXiv:astro-ph/0502415.Bibcode:2005A&A...436..317P.doi:10.1051/0004-6361:20042313.ISSN 0004-6361.
  30. ^"Mu Cephei | aavso".www.aavso.org. Retrieved6 October 2024.
  31. ^abDavies, Ben; Beasor, Emma R. (2020)."The 'red supergiant problem': The upper luminosity boundary of Type II supernova progenitors".Monthly Notices of the Royal Astronomical Society.493:468–476.arXiv:2001.06020.doi:10.1093/mnras/staa174. Retrieved3 October 2024.
  32. ^abMontargès, M.; Homan, W.; Keller, D.; Clementel, N.; Shetye, S.; Decin, L.; Harper, G. M.; Royer, P.; Winters, J. M.; Le Bertre, T.; Richards, A. M. S. (2019)."NOEMA maps the CO J = 2 − 1 environment of the red supergiant μ Cep".Monthly Notices of the Royal Astronomical Society.485 (2):2417–2430.arXiv:1903.07129.Bibcode:2019MNRAS.485.2417M.doi:10.1093/mnras/stz397.S2CID 119423161.
  33. ^abcdArévalo, Aura de Las Estrellas Ramírez (July 2018).The Red Supergiants in the Supermassive Stellar Cluster Westerlund 1 (text thesis). University of São Paulo.doi:10.11606/D.14.2019.tde-12092018-161841.
  34. ^Gvaramadze, V. V.; Menten, K. M.; Kniazev, A. Y.; Langer, N.; Mackey, J.; Kraus, A.; Meyer, D. M. -A.; Kamiński, T. (January 2014)."IRC −10414: a bow-shock-producing red supergiant star".Monthly Notices of the Royal Astronomical Society.437 (1):843–856.arXiv:1310.2245.Bibcode:2014MNRAS.437..843G.doi:10.1093/mnras/stt1943.ISSN 0035-8711.
  35. ^abcdefghijkVallenari, A.; Brown, A. G. A.; Prusti, T. (13 June 2022)."Gaia Data Release 3. Summary of the content and survey properties".Astronomy & Astrophysics.674.arXiv:2208.00211.Bibcode:2023A&A...674A...1G.doi:10.1051/0004-6361/202243940.hdl:10902/30704.ISSN 0004-6361.S2CID 244398875.
  36. ^Tsuboi, Masato; Kitamura, Yoshimi; Tsutsumi, Takahiro; Miyawaki, Ryosuke; Miyoshi, Makoto; Miyazaki, Atsushi (April 2020). "Sub-millimeter detection of a Galactic center cool star IRS 7 by ALMA".Publications of the Astronomical Society of Japan.72 (2): 36.arXiv:2002.01620.Bibcode:2020PASJ...72...36T.doi:10.1093/pasj/psaa013.ISSN 0004-6264.
  37. ^Guerço, Rafael; Smith, Verne V; Cunha, Katia; Ekström, Sylvia; Abia, Carlos; Plez, Bertrand; Meynet, Georges; Ramirez, Solange V; Prantzos, Nikos; Sellgren, Kris; Hayes, Cristian R; Majewski, Steven R (13 September 2022)."Evidence of deep mixing in IRS 7, a cool massive supergiant member of the Galactic nuclear star cluster".Monthly Notices of the Royal Astronomical Society.516 (2):2801–2811.arXiv:2208.10529.doi:10.1093/mnras/stac2393.ISSN 0035-8711.
  38. ^Rodríguez-Coira, G.; Gravity Collaboration (2021). "The Molecular Layer of GCIRS7".New Horizons in Galactic Center Astronomy and Beyond.528: 397.Bibcode:2021ASPC..528..397R.
  39. ^Van Loon, J. Th.; Cioni, M.-R. L.; Zijlstra, A. A.; Loup, C. (18 April 2005). "An empirical formula for the mass-loss rates of dust-enshrouded red supergiants and oxygen-rich Asymptotic Giant Branch stars".Astronomy and Astrophysics.438 (1):273–289.arXiv:astro-ph/0504379.Bibcode:2005A&A...438..273V.doi:10.1051/0004-6361:20042555.S2CID 16724272.
  40. ^"GCVS: "==WY Vel"".VizieR.General Catalogue of Variable Stars @Centre de données astronomiques de Strasbourg. Retrieved11 February 2024.
  41. ^Norris, Ryan (27 February 2021)."An Interferometric Imaging Survey of Red Supergiant Stars".The 20.5Th Cambridge Workshop on Cool Stars: 263.Bibcode:2021csss.confE.263N.doi:10.5281/zenodo.4567641.
  42. ^abAnugu, Narsireddy; Gies, Douglas R.; Roettenbacher, Rachael M.; Monnier, John D.; Montargés, Miguel; Mérand, Antoine; Baron, Fabien; Schaefer, Gail H.; Shepard, Katherine A.; Kraus, Stefan; Anderson, Matthew D.; Codron, Isabelle; Gardner, Tyler; Gutierrez, Mayra; Köhler, Rainer (September 2024)."Time Evolution Images of the Hypergiant RW Cephei during the Rebrightening Phase Following the Great Dimming".The Astrophysical Journal Letters.973 (1): L5.arXiv:2408.11906.Bibcode:2024ApJ...973L...5A.doi:10.3847/2041-8213/ad736c.ISSN 2041-8205.
  43. ^abcdeLevesque, Emily M.; Massey, Philip; Olsen, K. A. G.; Plez, Bertrand; Josselin, Eric; Maeder, Andre; Meynet, Georges (August 2005). "The Effective Temperature Scale of Galactic Red Supergiants: Cool, but Not As Cool As We Thought".The Astrophysical Journal.628 (2):973–985.arXiv:astro-ph/0504337.Bibcode:2005ApJ...628..973L.doi:10.1086/430901.ISSN 0004-637X.S2CID 15109583.
  44. ^Davies, B.; Figer, D. F.; Law, C. J.; Kudritzki, R. P.; Najarro, F.; Herrero, A.; MacKenty, J. W. (2008). "The Cool Supergiant Population of the Massive Young Star Cluster RSGC1".The Astrophysical Journal.676 (2):1016–1028.arXiv:0711.4757.Bibcode:2008ApJ...676.1016D.doi:10.1086/527350.S2CID 15639297.
  45. ^Decin, Leen; Richards, Anita M. S.; Marchant, Pablo; Sana, Hugues (2024). "ALMA detection of CO rotational line emission in red supergiant stars of the massive young star cluster RSGC1".Astronomy & Astrophysics.681: A17.arXiv:2303.09385.doi:10.1051/0004-6361/202244635.
  46. ^Massalkhi, S.; Agúndez, M.; Cernicharo, J. (August 2019)."Study of CS, SiO, and SiS abundances in carbon star envelopes: assessing their role as gas-phase precursors of dust".Astronomy & Astrophysics.628: A62.arXiv:1906.09461.Bibcode:2019A&A...628A..62M.doi:10.1051/0004-6361/201935069.ISSN 0004-6361.PMC 6739229.PMID 31511746.
  47. ^van Genderen, A. M.; Lobel, A.; Nieuwenhuijzen, H.; Henry, G. W.; De Jager, C.; Blown, E.; Di Scala, G.; Van Ballegoij, E. J. (2019). "Pulsations, eruptions, and evolution of four yellow hypergiants".Astronomy and Astrophysics.631: A48.arXiv:1910.02460.Bibcode:2019A&A...631A..48V.doi:10.1051/0004-6361/201834358.S2CID 203836020.
  48. ^abcdComerón, F.; Djupvik, A. A.; Schneider, N.; Pasquali, A. (27 September 2020). "The historical record of massive star formation in Cygnus".Astronomy & Astrophysics.2009: A62.arXiv:2009.12779.Bibcode:2020A&A...644A..62C.doi:10.1051/0004-6361/202039188.S2CID 221970180.
  49. ^Turner, David G.; Rohanizadegan, Mina; Berdnikov, Leonid N.; Pastukhova, Elena N. (November 2006)."The Long-Term Behavior of the Semiregular M Supergiant Variable BC Cygni".Publications of the Astronomical Society of the Pacific.118 (849):1533–1544.Bibcode:2006PASP..118.1533T.doi:10.1086/508905.ISSN 0004-6280.S2CID 121309425.
  50. ^Messineo, Maria; Figer, Donald F.; Kudritzki, Rolf-Peter; Zhu, Qingfeng; Menten, Karl M.; Ivanov, Valentin D.; Chen, C. -H. Rosie (2021)."New Infrared Spectral Indices of Luminous Cold Stars: From Early K to M Types".The Astronomical Journal.162 (5): 187.arXiv:2107.03707.Bibcode:2021AJ....162..187M.doi:10.3847/1538-3881/ac116b.S2CID 235765247.
  51. ^abcdBergeat, J.; Chevallier, L. (January 2005). "The mass loss of C-rich giants".Astronomy and Astrophysics.429:235–246.arXiv:astro-ph/0601366.Bibcode:2005A&A...429..235B.doi:10.1051/0004-6361:20041280.S2CID 56424665.
  52. ^González-Torà, G.; Wittkowski, M.; Davies, B.; Plez, B. (19 December 2023). "The effect of winds on atmospheric layers of red supergiants II. Modelling VLTI/GRAVITY and MATISSE observations of AH Sco, KW Sgr, V602 Car, CK Car and V460 Car".Astronomy & Astrophysics.683: A19.arXiv:2312.12521.doi:10.1051/0004-6361/202348047.ISSN 0004-6361.
  53. ^Hopkins, Jeffrey L.; Bennett, Philip D.; Pollmann, Ernst (2015). "VV Cephei Eclipse Campaign 2017/19".The Society for Astronomical Sciences 34th Annual Symposium on Telescope Science. Published by Society for Astronomical Sciences.34: 83.Bibcode:2015SASS...34...83H.
  54. ^Wright, K. O. (1 April 1977)."The System of VV Cephei Derived from an Analysis of the Hα Line".Journal of the Royal Astronomical Society of Canada.71: 152.Bibcode:1977JRASC..71..152W.ISSN 0035-872X.
  55. ^Hack, M.; Engin, S.; Yilmaz, N.; Sedmak, G.; Rusconi, L.; Boehm, C. (1 November 1992)."Spectroscopic study of the atmospheric eclipsing binary VV Cephei".Astronomy and Astrophysics Supplement Series.95:589–601.Bibcode:1992A&AS...95..589H.ISSN 0365-0138.
  56. ^abSiderud, Emelie (2020).Dust emission modelling of AGB stars.
  57. ^abDe, Kishalay; Mereminskiy, Ilya; Soria, Roberto; Conroy, Charlie; Kara, Erin; Anand, Shreya; Ashley, Michael C. B.; Boyer, Martha L.; Chakrabarty, Deepto; Grefenstette, Brian; Hankins, Matthew J.; Hillenbrand, Lynne A.; Jencson, Jacob E.; Karambelkar, Viraj; Kasliwal, Mansi M. (1 August 2022)."SRGA J181414.6-225604: A New Galactic Symbiotic X-Ray Binary Outburst Triggered by an Intense Mass-loss Episode of a Heavily Obscured Mira Variable".The Astrophysical Journal.935 (1): 36.arXiv:2205.09139.Bibcode:2022ApJ...935...36D.doi:10.3847/1538-4357/ac7c6e.ISSN 0004-637X.S2CID 248887540.
  58. ^abMessineo, Maria (18 January 2023). "Identification of late-type Class I stars using Gaia DR3 Apsis parameters".Astronomy & Astrophysics.671: A148.arXiv:2301.07415.Bibcode:2023A&A...671A.148M.doi:10.1051/0004-6361/202245587.S2CID 256486848.
  59. ^abcdefghijklRamstedt, S.; Olofsson, H. (25 May 2014)."The12CO/13CO ratio in AGB stars of different chemical type. Connection to the12C/13C ratio and the evolution along the AGB".Astronomy and Astrophysics.566: A145.arXiv:1405.6404.Bibcode:2014A&A...566A.145R.doi:10.1051/0004-6361/201423721.ISSN 0004-6361.S2CID 59125036.
  60. ^abcdefghiDanilovich, T.; Teyssier, D.; Justtanont, K.; Olofsson, H.; Cerrigone, L.; Bujarrabal, V.; Alcolea, J.; Cernicharo, J.; Castro-Carrizo, A.; García-Lario, P.; Marston, A. (1 September 2015)."New observations and models of circumstellar CO line emission of AGB stars in the Herschel SUCCESS programme".Astronomy & Astrophysics.581: A60.arXiv:1506.09065.Bibcode:2015A&A...581A..60D.doi:10.1051/0004-6361/201526705.ISSN 0004-6361.
  61. ^Goldman, Steven R.; van Loon, Jacco Th.; Jones, Olivia C.; Blommaert, Joris A. D. L.; Groenewegen, Martin A. T. (February 2025)."Equatorial Enhancement in the Dustiest OH/IR Stars in the Galactic Bulge".The Astrophysical Journal.980 (2): 191.arXiv:2501.02722.Bibcode:2025ApJ...980..191G.doi:10.3847/1538-4357/ada6ad.ISSN 0004-637X.
  62. ^abLombaert, R.; Decin, L.; Royer, P.; de Koter, A.; Cox, N. L. J.; González-Alfonso, E.; Neufeld, D.; De Ridder, J.; Agúndez, M.; Blommaert, J. A. D. L.; Khouri, T. (April 2016). "Constraints on the H2O formation mechanism in the wind of carbon-rich AGB stars".Astronomy and Astrophysics.588: A124.arXiv:1601.07017.Bibcode:2016A&A...588A.124L.doi:10.1051/0004-6361/201527049.ISSN 0004-6361.S2CID 62787287.
  63. ^Natale, G.; Rea, N.; Lazzati, D.; Perna, R.; Torres, D. F.; Girart, J. M. (25 January 2017)."Dust Radiative Transfer Modeling of the Infrared Ring around the Magnetar SGR 1900+14".The Astrophysical Journal.837 (1): 10.arXiv:1701.07442.Bibcode:2017ApJ...837....9N.doi:10.3847/1538-4357/aa5c82.S2CID 119213779.
  64. ^abSchöier, F. L.; Ramstedt, S.; Olofsson, H.; Lindqvist, M.; Bieging, J. H.; Marvel, K. B. (February 2013). "The abundance of HCN in circumstellar envelopes of AGB stars of different chemical types".Astronomy & Astrophysics.550: A78.arXiv:1301.2129.Bibcode:2013A&A...550A..78S.doi:10.1051/0004-6361/201220400.ISSN 0004-6361.
  65. ^abcVan Belle, G. T.; Thompson, R. R.; Creech-Eakman, M. J. (2002). "Angular Size Measurements of Mira Variable Stars at 2.2 Microns. II".The Astronomical Journal.124 (3):1706–1715.arXiv:astro-ph/0210167.Bibcode:2002AJ....124.1706V.doi:10.1086/342282.S2CID 33832649.
  66. ^Decin, L.; Hony, S.; de Koter, A.; Molenberghs, G.; Dehaes, S.; Markwick-Kemper, F. (30 July 2007)."The variable mass loss of the AGB star WX Piscium as traced by the COJ = 1-0 through 7-6 lines and the dust emission".Astronomy & Astrophysics.475 (1):233–242.arXiv:0708.4107.doi:10.1051/0004-6361:20077737.ISSN 0004-6361.
  67. ^abBlum, R. D.; Ramírez, Solange V.; Sellgren, K.; Olsen, K. (3 July 2003)."Really Cool Stars and the Star Formation History at the Galactic Center".The Astrophysical Journal.597 (1):323–346.arXiv:astro-ph/0307291.Bibcode:2003ApJ...597..323B.doi:10.1086/378380.ISSN 0004-637X.S2CID 5664467.
  68. ^Baron, F.; Monnier, J. D.; Kiss, L. L.; Neilson, H. R.; Zhao, M.; Anderson, M.; Aarnio, A.; Pedretti, E.; Thureau, N.; ten Brummelaar, T. A.; Ridgway, S. T. (April 2014). "CHARA/MIRC Observations of Two M Supergiants in Perseus OB1: Temperature, Bayesian Modeling, and Compressed Sensing Imaging".The Astrophysical Journal.785 (1): 46.arXiv:1405.4032.Bibcode:2014ApJ...785...46B.doi:10.1088/0004-637X/785/1/46.ISSN 0004-637X.S2CID 17085548.
  69. ^Wallstrom, S. H. J.; et al. (7 December 2023). "ATOMIUM: Molecular inventory of 17 oxygen-rich evolved stars observed with ALMA".Astronomy & Astrophysics.681: A50.arXiv:2312.03467.doi:10.1051/0004-6361/202347632.
  70. ^Asaki, Yoshiharu; Maud, Luke T.; Francke, Harold; Nagai, Hiroshi; Petry, Dirk; Fomalont, Edward B.; Humphreys, Elizabeth; Richards, Anita M. S.; Wong, Ka Tat; Dent, William; Hirota, Akihiko; Fernandez, Jose Miguel; Takahashi, Satoko; Hales, Antonio S. (November 2023)."ALMA High-frequency Long Baseline Campaign in 2021: Highest Angular Resolution Submillimeter Wave Images for the Carbon-rich Star R Lep".The Astrophysical Journal.958 (1): 86.arXiv:2310.09664.Bibcode:2023ApJ...958...86A.doi:10.3847/1538-4357/acf619.ISSN 0004-637X.
  71. ^Ohnaka, K.; Hofmann, K. -H.; Schertl, D.; Weigelt, G.; Baffa, C.; Chelli, A.; Petrov, R.; Robbe-Dubois, S. (July 2013). "High spectral resolution imaging of the dynamical atmosphere of the red supergiant Antares in the CO first overtone lines with VLTI/AMBER".Astronomy and Astrophysics.555: A24.arXiv:1304.4800.Bibcode:2013A&A...555A..24O.doi:10.1051/0004-6361/201321063.ISSN 0004-6361.S2CID 56396587.
  72. ^abcdeHoffleit, D.; Warren, W. H. Jr. (November 1995). "VizieR Online Data Catalog: Bright Star Catalogue, 5th Revised Ed. (Hoffleit+, 1991)".VizieR Online Data Catalog: V/50.Bibcode:1995yCat.5050....0H.
  73. ^Mittag, M.; Schröder, K. -P.; Perdelwitz, V.; Jack, D.; Schmitt, J. H. M. M. (1 January 2023), "Chromospheric activity and photospheric variation of α Ori during the great dimming event in 2020",Astronomy and Astrophysics,669: A9,arXiv:2211.04967,Bibcode:2023A&A...669A...9M,doi:10.1051/0004-6361/202244924,ISSN 0004-6361
  74. ^abcJoyce, Meridith; Leung, Shing-Chi; Molnár, László; Ireland, Michael; Kobayashi, Chiaki; Nomoto, Ken'ichi (October 2020)."Standing on the Shoulders of Giants: New Mass and Distance Estimates for Betelgeuse through Combined Evolutionary, Asteroseismic, and Hydrodynamic Simulations with MESA".The Astrophysical Journal.902 (1): 63.arXiv:2006.09837.Bibcode:2020ApJ...902...63J.doi:10.3847/1538-4357/abb8db.ISSN 0004-637X.S2CID 221507952.
  75. ^MacLeod, Morgan; Blunt, Sarah; De Rosa, Robert J.; Dupree, Andrea K.; Granzer, Thomas; Harper, Graham M.; Huang, Caroline D.; Leiner, Emily M.; Loeb, Abraham (17 September 2024)."Radial Velocity and Astrometric Evidence for a Close Companion to Betelgeuse".The Astrophysical Journal.978 (1): 50.arXiv:2409.11332.Bibcode:2025ApJ...978...50M.doi:10.3847/1538-4357/ad93c8.
  76. ^Mittag, M.; Schröder, K. -P.; Perdelwitz, V.; Jack, D.; Schmitt, J. H. M. M. (January 2023)."Chromospheric activity and photospheric variation of α Ori during the great dimming event in 2020".Astronomy & Astrophysics.669: 18.arXiv:2211.04967.Bibcode:2023A&A...669A...9M.doi:10.1051/0004-6361/202244924.ISSN 0004-6361.S2CID 253406622.
  77. ^Montargès, M.; Norris, R.; Chiavassa, A.; Tessore, B.; Lèbre, A.; Baron, F. (June 2018). "The convective photosphere of the red supergiant CE Tau. I. VLTI/PIONIER H-band interferometric imaging".Astronomy & Astrophysics.614: A12.arXiv:1802.06086.Bibcode:2018A&A...614A..12M.doi:10.1051/0004-6361/201731471.ISSN 0004-6361.S2CID 118950270.
  78. ^Anugu, Narsireddy; et al. (7 August 2024)."CHARA Near-Infrared Imaging of the Yellow Hypergiant Star ρ Cassiopeiae: Convection Cells and Circumstellar Envelope".The Astrophysical Journal.974 (1): 113.arXiv:2408.02756v2.Bibcode:2024ApJ...974..113A.doi:10.3847/1538-4357/ad6b2b.
  79. ^Schmidt, M. R.; He, J. H.; Szczerba, R.; Bujarrabal, V.; Alcolea, J.; Cernicharo, J.; Decin, L.; Justtanont, K.; Teyssier, D.; Menten, K. M.; Neufeld, D. A.; Olofsson, H.; Planesas, P.; Marston, A. P.; Sobolev, A. M. (August 2016)."Herschel /HIFI observations of the circumstellar ammonia lines in IRC+10216".Astronomy & Astrophysics.592: A131.arXiv:1606.01878.Bibcode:2016A&A...592A.131S.doi:10.1051/0004-6361/201527290.ISSN 0004-6361.PMC 5217166.PMID 28065983.
  80. ^Nieuwenhuijzen, H.; De Jager, C.; Kolka, I.; Israelian, G.; Lobel, A.; Zsoldos, E.; Maeder, A.; Meynet, G. (1 October 2012)."The hypergiant HR 8752 evolving through the yellow evolutionary void".Astronomy and Astrophysics.546: A105.Bibcode:2012A&A...546A.105N.doi:10.1051/0004-6361/201117166.ISSN 0004-6361.
  81. ^Groenewegen, M. A. T. (2020). "Analysing the spectral energy distributions of Galactic classical Cepheids".Astronomy and Astrophysics.635: A33.arXiv:2002.02186.Bibcode:2020A&A...635A..33G.doi:10.1051/0004-6361/201937060.S2CID 211043995.
  82. ^Kamiński, Tomek; Tylenda, Romuald; Kiljan, Aleksandra; Schmidt, Mirek; Lisiecki, Krzysztof; Melis, Carl; Frankowski, Adam; Joshi, Vishal; Menten, Karl M. (1 November 2021)."V838 Monocerotis as seen by ALMA: A remnant of a binary merger in a triple system".Astronomy & Astrophysics.655: A32.arXiv:2106.07427.Bibcode:2021A&A...655A..32K.doi:10.1051/0004-6361/202141526.ISSN 0004-6361.S2CID 235422695.
  83. ^abTylenda, R. (1 June 2005)."Evolution of V838 Monocerotis during and after the 2002 eruption".Astronomy & Astrophysics.436 (3):1009–1020.arXiv:astro-ph/0502060.Bibcode:2005A&A...436.1009T.doi:10.1051/0004-6361:20052800.ISSN 0004-6361.S2CID 3566688.
  84. ^Najarro, Francisco; Figer, Don F.; Hillier, D. John; Geballe, T. R.; Kudritzki, Rolf P. (February 2009). "Metallicity in the Galactic Center: The Quintuplet Cluster".The Astrophysical Journal.691 (2):1816–1827.arXiv:0809.3185.Bibcode:2009ApJ...691.1816N.doi:10.1088/0004-637X/691/2/1816.ISSN 0004-637X.S2CID 15473563.
  85. ^Libert, Y.; Gerard, E.; Le Bertre, T. (10 September 2007)."The formation of a detached shell around the carbon star Y CVn".Monthly Notices of the Royal Astronomical Society.380 (3):1161–1171.arXiv:0706.4211.Bibcode:2007MNRAS.380.1161L.doi:10.1111/j.1365-2966.2007.12154.x.
  86. ^Woodruff, H. C.; Eberhardt, M.; Driebe, T.; Hofmann, K.-H.; Ohnaka, K.; Richichi, A.; Schertl, D.; Schöller, M.; Scholz, M.; Weigelt, G.; Wittkowski, M.; Wood, P. R. (July 2004)."Interferometric observations of the Mira star o Ceti with the VLTI/VINCI instrument in the near-infrared".Astronomy & Astrophysics.421 (2):703–714.arXiv:astro-ph/0404248.Bibcode:2004A&A...421..703W.doi:10.1051/0004-6361:20035826.ISSN 0004-6361.S2CID 17009595.
  87. ^abcOhnaka, Keiichi; Weigelt, Gerd; Hofmann, Karl-Heinz (24 September 2019)."Infrared interferometric three-dimensional diagnosis of the atmospheric dynamics of the AGB star R Dor with VLTI/AMBER".The Astrophysical Journal.883 (1): 89.arXiv:1908.06997.Bibcode:2019ApJ...883...89O.doi:10.3847/1538-4357/ab3d2a.ISSN 1538-4357.S2CID 201103617.
  88. ^abMoravveji, Ehsan; Guinan, Edward F.; Khosroshahi, Habib; Wasatonic, Rick (December 2013). "The Age and Mass of the α Herculis Triple-star System from a MESA Grid of Rotating Stars with 1.3".The Astronomical Journal.146 (6): 148.arXiv:1308.1632.Bibcode:2013AJ....146..148M.doi:10.1088/0004-6256/146/6/148.ISSN 0004-6256.S2CID 117872505.
  89. ^Clark, J. S.; Najarro, F.; Negueruela, I.; Ritchie, B. W.; Urbaneja, M. A.; Howarth, I. D. (May 2012). "On the nature of the galactic early-B hypergiants".Astronomy & Astrophysics.541: A145.arXiv:1202.3991.Bibcode:2012A&A...541A.145C.doi:10.1051/0004-6361/201117472.ISSN 0004-6361.S2CID 11978733.
  90. ^Harper, Graham M.; Bennett, Philip D.; Brown, Alexander; Ayres, Thomas R.; Ohnaka, Keiichi; Griffin, Elizabeth (2022)."HST STIS Observations of ζ Aurigae A's Irradiated Atmosphere".The Astronomical Journal.164 (1): 16.Bibcode:2022AJ....164...16H.doi:10.3847/1538-3881/ac6feb.S2CID 250101470.
  91. ^abMcDonald, I.; Zijlstra, A. A.; Watson, R. A. (1 October 2017), "Fundamental parameters and infrared excesses of Tycho-Gaia stars",Monthly Notices of the Royal Astronomical Society,471 (1):770–791,arXiv:1706.02208,Bibcode:2017MNRAS.471..770M,doi:10.1093/mnras/stx1433,ISSN 0035-8711 Note: SeeVizieR catalogue
  92. ^Gull, Theodore R.; Hillier, D. John; Hartman, Henrik; Corcoran, Michael F.; Damineli, Augusto; Espinoza-Galeas, David; Hamaguchi, Kenji; Navarete, Felipe; Nielsen, Krister; Madura, Thomas; Moffat, Anthony F. J.; Morris, Patrick; Richardson, Noel D.; Russell, Christopher M. P.; Stevens, Ian R. (1 July 2022)."Eta Carinae: an evolving view of the central binary, its interacting winds and its foreground ejecta".The Astrophysical Journal.933 (2): 175.arXiv:2205.15116.Bibcode:2022ApJ...933..175G.doi:10.3847/1538-4357/ac74c2.ISSN 0004-637X.
  93. ^abDavidson, Kris (5 February 2020)."Radiation-Driven Stellar Eruptions".Galaxies.8 (1): 10.arXiv:2009.02340.Bibcode:2020Galax...8...10D.doi:10.3390/galaxies8010010.ISSN 2075-4434.
  94. ^Chesneau, O.; Dessart, L.; Mourard, D.; Bério, Ph.; Buil, Ch.; Bonneau, D.; Borges Fernandes, M.; Clausse, J. M.; Delaa, O.; Marcotto, A.; Meilland, A.; Millour, F.; Nardetto, N.; Perraut, K.; Roussel, A. (October 2010)."Time, spatial, and spectral resolution of the Hαline-formation region of Deneb and Rigel with the VEGA/CHARA interferometer".Astronomy and Astrophysics.521: A5.arXiv:1007.2095.doi:10.1051/0004-6361/201014509.ISSN 0004-6361.
  95. ^Schiller, F.; Przybilla, N. (March 2008). "Quantitative spectroscopy of Deneb".Astronomy and Astrophysics.479 (3):849–858.arXiv:0712.0040.Bibcode:2008A&A...479..849S.doi:10.1051/0004-6361:20078590.ISSN 0004-6361.S2CID 103635615.
  96. ^abBaines, Ellyn K.; Armstrong, J. Thomas; Schmitt, Henrique R.; Zavala, R. T.; Benson, James A.; Hutter, Donald J.; Tycner, Christopher; van Belle, Gerard T. (20 December 2017)."Fundamental Parameters of 87 Stars from the Navy Precision Optical Interferometer".The Astronomical Journal.155 (1): 30.arXiv:1712.08109.Bibcode:2018AJ....155...30B.doi:10.3847/1538-3881/aa9d8b.ISSN 1538-3881.
  97. ^Souza, A. Domiciano de; Zorec, J.; Millour, F.; Bouquin, J.-B. Le; Spang, A.; Vakili, F. (1 October 2021)."Refined fundamental parameters of Canopus from combined near-IR interferometry and spectral energy distribution".Astronomy & Astrophysics.654: A19.arXiv:2109.07153.Bibcode:2021A&A...654A..19D.doi:10.1051/0004-6361/202140478.ISSN 0004-6361.S2CID 237513623.
  98. ^abNielsen, Krister E.; Airapetian, Vladimir S.; Carpenter, Kenneth G.; Rau, Gioia (1 August 2023)."The Advanced Spectral Library: The Evolution of Chromospheric Wind Characteristics from Noncoronal to Hybrid Giant Stars".The Astrophysical Journal.953 (1): 16.Bibcode:2023ApJ...953...16N.doi:10.3847/1538-4357/acdcf1.ISSN 0004-637X.
  99. ^Evans, Nancy Remage; Schaefer, Gail H.; Gallenne, Alexandre; Torres, Guillermo; Horch, Elliott P.; Anderson, Richard I.; Monnier, John D.; Roettenbacher, Rachael M.; Baron, Fabien; Anugu, Narsireddy; Davidson, James W.; Kervella, Pierre; Bras, Garance; Proffitt, Charles; Mérand, Antoine (1 August 2024)."The Orbit and Dynamical Mass of Polaris: Observations with the CHARA Array".The Astrophysical Journal.971 (2): 190.arXiv:2407.09641.Bibcode:2024ApJ...971..190E.doi:10.3847/1538-4357/ad5e7a.ISSN 0004-637X.
  100. ^Hatzes, A. P.; Cochran, W. D.; Endl, M.; Guenther, E. W.; MacQueen, P.; Hartmann, M.; Zechmeister, M.; Han, I.; Lee, B.-C.; Walker, G. a. H.; Yang, S.; Larson, A. M.; Kim, K.-M.; D. E. Mkrtichian; Döllinger, M. (1 August 2015)."Long-lived, long-period radial velocity variations in Aldebaran: A planetary companion and stellar activity".Astronomy & Astrophysics.580: A31.arXiv:1505.03454.Bibcode:2015A&A...580A..31H.doi:10.1051/0004-6361/201425519.ISSN 0004-6361.S2CID 53324086.
  101. ^Ramirez, I.; Prieto, C. Allende (20 December 2011). "Fundamental Parameters and Chemical Composition of Arcturus".The Astrophysical Journal.743 (2): 135.arXiv:1109.4425.Bibcode:2011ApJ...743..135R.doi:10.1088/0004-637X/743/2/135.ISSN 0004-637X.S2CID 119186472.
  102. ^Tkachenko, A.; et al. (May 2016), "Stellar modelling of Spica, a high-mass spectroscopic binary with a β Cep variable primary component",Monthly Notices of the Royal Astronomical Society,458 (2):1964–1976,arXiv:1601.08069,Bibcode:2016MNRAS.458.1964T,doi:10.1093/mnras/stw255,S2CID 26945389
  103. ^McAlister, H. A.; ten Brummelaar, T. A.; Gies; Huang; Bagnuolo, Jr.; Shure; Sturmann; Sturmann; Turner; Taylor; Berger; Baines; Grundstrom; Ogden; Ridgway; Van Belle; et al. (2005). "First Results from the CHARA Array. I. An Interferometric and Spectroscopic Study of the Fast Rotator Alpha Leonis (Regulus)".The Astrophysical Journal.628 (1):439–452.arXiv:astro-ph/0501261.Bibcode:2005ApJ...628..439M.doi:10.1086/430730.S2CID 6776360.
  104. ^Monnier, J. D.; Che, Xiao; Zhao, Ming; Ekström, S.; Maestro, V.; Aufdenberg, Jason; Baron, F.; Georgy, C.; Kraus, S.; McAlister, H.; Pedretti, E. (December 2012). "Resolving Vega and the Inclination Controversy with CHARA/MIRC".The Astrophysical Journal.761 (1): L3.arXiv:1211.6055.Bibcode:2012ApJ...761L...3M.doi:10.1088/2041-8205/761/1/L3.ISSN 0004-637X.S2CID 17950155.
  105. ^Bouchaud, K.; Domiciano de Souza, A.; Rieutord, M.; Reese, D. R.; Kervella, P. (1 January 2020)."A realistic two-dimensional model of Altair".Astronomy and Astrophysics.633: A78.arXiv:1912.03138.Bibcode:2020A&A...633A..78B.doi:10.1051/0004-6361/201936830.ISSN 0004-6361.
  106. ^Davis, J.; et al. (October 2010). "The Angular Diameter and Fundamental Parameters of Sirius A".Publications of the Astronomical Society of Australia.28:58–65.arXiv:1010.3790.doi:10.1071/AS10010.
  107. ^Akeson, Rachel; Beichman, Charles; Kervella, Pierre; Fomalont, Edward; Benedict, G. Fritz (14 June 2021)."Precision Millimeter Astrometry of the α Centauri AB System".The Astronomical Journal.162 (1): 14.arXiv:2104.10086.Bibcode:2021AJ....162...14A.doi:10.3847/1538-3881/abfaff.ISSN 0004-6256.
  108. ^Kamath, D.; Wood, P. R.; Van Winckel, H. (1 December 2015)."Optically visible post-AGB stars, post-RGB stars and young stellar objects in the Large Magellanic Cloud".Monthly Notices of the Royal Astronomical Society.454 (2):1468–1502.arXiv:1508.00670.doi:10.1093/mnras/stv1202.ISSN 0035-8711.
  109. ^abcdefBeasor, Emma R.; Smith, Nathan (1 May 2022)."The Extreme Scarcity of Dust-enshrouded Red Supergiants: Consequences for Producing Stripped Stars via Winds".The Astrophysical Journal.933 (1): 41.arXiv:2205.02207.Bibcode:2022ApJ...933...41B.doi:10.3847/1538-4357/ac6dcf.S2CID 248512934.
  110. ^abcdefghijklmnopqrstuvwxyzaaabacadaeafagahaiajakalamanaoapaqarasatauavawaxayazbabbbcbdbebfbgbhbibjbkblbmbnbobpbqbrbsbtbubvbwbxbybzcacbcccdcecfcgchcicjckclcmcncocpcqcrcsctcucvcwcxcyczdadbdcdddedfdgdhdidjdkdldmdndodpdqdrdsdtdudvdwdxdydzeaebecedeeefegeheiejekelemeneoepeqereseteuevewexeyezfafbfcfdfefffgfhfifjfkflfmfnfofpfqfrfsftfufvfwfxfyfzgagbgcgdgegfggghgigjgkglgmgngogpgqgrgsgtgugvgwgxgygzhahbhchdhehfhghhhihjhkhlhmhnhohphqhrhshthuhvhwhxhyhziaibicidieifigihiiijikiliminioipiqirisitiuiviwixiyizjajbjcjdjejfjgjhjijjjkjljmjnjojpjqjrjsjtjujvjwjxjyjzkakbkckdkekfkgkhkikjkkklkmknkokpkqkrksktkukvkwkxkykzlalblcldlelflglhliljlklllmlnlolplqlrlsltlulvlwlxlylzmambmcmdmemfmgmhmimjmkmlmmmnmompmqmrmsmtmumvmwmxmymznanbncndnenfngnhninjnknlnmnnnonpnqnrnsntnunvnwnxnynzoaobocodoeofogohoiojokolomonooopoqorosotouovowoxoyozpapbpcpdpepfpgphpipjpkplpmpnpopppqprpsptpupvpwpxpypzqaqbqcqdqeqfqgqhqiqjqkqlqmqnqoqpqqqrqsqtquqvqwqxqyqzrarbrcrdrerfrgrhrirjrkrlrmrnrorprqrrrsrtrurvrwrxryrzsasbscsdsesfsgshsisjskslsmsnsospsqsrssstsusvswsxsyszMassey, Philip; Neugent, Kathryn F.; Ekstrom, Sylvia; Georgy, Cyril; Georges, Meynet (2023)."The Time-Averaged Mass-Loss Rates of Red Supergiants As Revealed by their Luminosity Functions in M31 and M33".The Astrophysical Journal.942 (2): 35.arXiv:2211.14147.Bibcode:2023ApJ...942...69M.doi:10.3847/1538-4357/aca665.S2CID 254018399.
  111. ^abcdeGoldman, Steven R.; van Loon, Jacco Th.; Zijlstra, Albert A.; Green, James A.; Wood, Peter R.; Nanni, Ambra; Imai, Hiroshi; Whitelock, Patricia A.; Matsuura, Mikako; Groenewegen, Martin A. T.; Gómez, José F. (11 February 2017)."The wind speeds, dust content, and mass-loss rates of evolved AGB and RSG stars at varying metallicity".Monthly Notices of the Royal Astronomical Society.465 (1):403–433.arXiv:1610.05761.Bibcode:2017MNRAS.465..403G.doi:10.1093/mnras/stw2708.ISSN 0035-8711.
  112. ^abcdefghijklmnopqrstuvwxyzaaabacadaeafagahaiajakalamGroenewegen, M. A. T.; Sloan, G. C. (January 2018)."Luminosities and mass-loss rates of Local Group AGB stars and red supergiants".Astronomy & Astrophysics.609: A114.arXiv:1711.07803.Bibcode:2018A&A...609A.114G.doi:10.1051/0004-6361/201731089.ISSN 0004-6361.S2CID 59327105.
  113. ^abcUniversity, Keele (December 2017).Research, Keele University (doctoral thesis). Keele University.
  114. ^abcdefghijklmnNeugent, Kathryn F.; Levesque, Emily M.; Massey, Philip; Morrell, Nidia I.; Drout, Maria R. (8 September 2020)."The Red Supergiant Binary Fraction of the Large Magellanic Cloud".The Astrophysical Journal.900 (2): 118.arXiv:2007.15852.Bibcode:2020ApJ...900..118N.doi:10.3847/1538-4357/ababaa.ISSN 1538-4357.
  115. ^abMunoz-Sanchez, G.; de Wit, S.; Bonanos, A. Z.; Antoniadas, K.; Boutsia, K.; Boumis, P.; Christodoulou, E.; Kalitsounaki, M.; Udalski, A. (21 May 2024). "Episodic mass loss in the very luminous red supergiant [W60] B90 in the Large Magellanic Cloud".Astronomy & Astrophysics.690: A99.arXiv:2405.11019.Bibcode:2024A&A...690A..99M.doi:10.1051/0004-6361/202450737.
  116. ^abcdeChen, Kaitlyn M.; Dorn-Wallenstein, Trevor Z. (March 2024)."A Spectroscopic Hunt for Post-red Supergiants in the Large Magellanic Cloud. I. Preliminary Results".Research Notes of the AAS.8 (3): 75.arXiv:2403.08048.Bibcode:2024RNAAS...8...75C.doi:10.3847/2515-5172/ad32bb.ISSN 2515-5172.S2CID 268378990.
  117. ^abcdefghde Wit, S.; Bonanos, A.Z.; Tramper, F.; Yang, M.; Maravelias, G.; Boutsia, K.; Britavskiy, N.; Zapartas, E. (2023). "Properties of luminous red supergiant stars in the Magellanic Clouds".Astronomy and Astrophysics.669: 17.arXiv:2209.11239.Bibcode:2023A&A...669A..86D.doi:10.1051/0004-6361/202243394.S2CID 252519285.
  118. ^abcdMartin, John C.; Humphreys, Roberta M. (30 October 2023)."A Census of the Most Luminous Stars. I. The Upper HR Diagram for the Large Magellanic Cloud".The Astronomical Journal.166 (5): 214.Bibcode:2023AJ....166..214M.doi:10.3847/1538-3881/ad011e.ISSN 0004-6256.
  119. ^abGarcía-Hernández, D. A.; Manchando, A.; Lambert, D. L.; Plez, B.; García-Lario, P.; D'Antona, F.; Lugaro, M.; Karakas, A. I.; van Raai, M. A. (8 October 2009)."Rb-Rich Asymptotic Giant Branch Stars in the Magellanic Clouds".The Astrophysical Journal Letters.705 (1):L31 –L35.arXiv:0909.4391.Bibcode:2009ApJ...705L..31G.doi:10.1088/0004-637X/705/1/L31.hdl:1885/29244.ISSN 0004-637X.S2CID 17864885.
  120. ^abcdBritavskyi, N.; Lennon, D. J.; Patrick, L. R.; Evans, C. J.; Herrero, A.; Langer, N.; van Loon, J. Th.; Clark, J. S.; Schneider, F. R. N.; Almeida, L. A.; Sana, H.; de Koter, A.; Taylor, W. D. (26 February 2019)."The VLT-FLAMES Tarantula Survey. XXX. Red stragglers in the clusters Hodge 301 and SL 639".Astronomy & Astrophysics.624: 13.arXiv:1902.09891.Bibcode:2019A&A...624A.128B.doi:10.1051/0004-6361/201834564.S2CID 244683559.
  121. ^abcMunoz-Sanchez, G.; et al. (28 November 2024). "The dramatic transition of the extreme Red Supergiant WOH G64 to a Yellow Hypergiant".arXiv:2411.19329 [astro-ph.SR].
  122. ^abLevesque, Emily M.; Massey, Philip; Plez, Bertrand; Olsen, Knut A. G. (2009). "The Physical Properties of the Red Supergiant WOH G64: The Largest Star Known?".The Astronomical Journal.137 (6): 4744.arXiv:0903.2260.Bibcode:2009AJ....137.4744L.doi:10.1088/0004-6256/137/6/4744.S2CID 18074349.
  123. ^Levesque, E. M. (June 2010).The Physical Properties of Red Supergiants. Hot and Cool: Bridging Gaps in Massive Star Evolution ASP Conference Series. Vol. 425. p. 103.arXiv:0911.4720.Bibcode:2010ASPC..425..103L.S2CID 8921166.
  124. ^Steven R. Goldman; Jacco Th. van Loon (2016)."The wind speeds, dust content, and mass-loss rates of evolved AGB and RSG stars at varying metallicity".Monthly Notices of the Royal Astronomical Society.465 (1):403–433.arXiv:1610.05761.Bibcode:2017MNRAS.465..403G.doi:10.1093/mnras/stw2708.S2CID 11352637.
  125. ^abcdeDorn-Wallenstein, Trevor Z.; Levesque, Emily M.; Davenport, James R. A.; Neugent, Kathryn F.; Morris, Brett M.; Bostroem, K. Azalee (1 November 2022)."The Properties of Fast Yellow Pulsating Supergiants: FYPS Point the Way to Missing Red Supergiants".The Astrophysical Journal.940 (1): 27.arXiv:2206.11917.Bibcode:2022ApJ...940...27D.doi:10.3847/1538-4357/ac79b2.ISSN 0004-637X.
  126. ^abcBeasor, Emma R; Davies, Ben; Cabrera-Ziri, Ivan; Hurst, Georgia (21 September 2018)."A critical re-evaluation of the Thorne–Żytkow object candidate HV 2112".Monthly Notices of the Royal Astronomical Society.479 (3):3101–3105.arXiv:1806.07399.Bibcode:2018MNRAS.479.3101B.doi:10.1093/mnras/sty1744.ISSN 0035-8711.
  127. ^Glatzel, Wolfgang; Kraus, Michaela (23 March 2024)."Instabilities in the yellow hypergiant domain".Monthly Notices of the Royal Astronomical Society.529 (4):4947–4957.arXiv:2403.14315.doi:10.1093/mnras/stae861.ISSN 0035-8711.
  128. ^Lamers, H. J. G. L. M. (1 January 1995)."Observations and Interpretation of Luminous Blue Variables".IAU Colloq. 155: Astrophysical Applications of Stellar Pulsation.83: 176.Bibcode:1995ASPC...83..176L.
  129. ^abKastner, Joel H.; Buchanan, Catherine L.; Sargent, B.; Forrest, W. J. (10 February 2006)."Spitzer Spectroscopy of Dusty Disks around B[e] Hypergiants in the Large Magellanic Cloud".The Astrophysical Journal.638 (1):L29 –L32.Bibcode:2006ApJ...638L..29K.doi:10.1086/500804.ISSN 0004-637X.S2CID 121769413.
  130. ^Brands, Sarah A.; Koter, Alex de; Bestenlehner, Joachim M.; Crowther, Paul A.; Sundqvist, Jon O.; Puls, Joachim; Caballero-Nieves, Saida M.; Abdul-Masih, Michael; Driessen, Florian A.; García, Miriam; Geen, Sam; Gräfener, Götz; Hawcroft, Calum; Kaper, Lex; Keszthelyi, Zsolt (1 July 2022)."The R136 star cluster dissected with Hubble Space Telescope/STIS – III. The most massive stars and their clumped winds".Astronomy & Astrophysics.663: A36.arXiv:2202.11080.Bibcode:2022A&A...663A..36B.doi:10.1051/0004-6361/202142742.ISSN 0004-6361.S2CID 247025548.
  131. ^Hainich, R.; Rühling, U.; Todt, H.; Oskinova, L. M.; Liermann, A.; Gräfener, G.; Foellmi, C.; Schnurr, O.; Hamann, W.-R. (May 2014)."The Wolf-Rayet stars in the Large Magellanic Cloud: A comprehensive analysis of the WN class⋆⋆⋆".Astronomy & Astrophysics.565: A27.arXiv:1401.5474.Bibcode:2014A&A...565A..27H.doi:10.1051/0004-6361/201322696.ISSN 0004-6361.S2CID 55123954.
  132. ^Shenar, T.; Hainich, R.; Todt, H.; Sander, A.; Hamann, W.-R.; Moffat, A. F. J.; Eldridge, J. J.; Pablo, H.; Oskinova, L. M.; Richardson, N. D. (July 2017)."Wolf-Rayet stars in the Small Magellanic Cloud: II. Analysis of the binaries".Astronomy & Astrophysics.591: A22.arXiv:1604.01022.Bibcode:2016A&A...591A..22S.doi:10.1051/0004-6361/201527916.ISSN 0004-6361.S2CID 119255408.
  133. ^Massey, Philip; Evans, Kate Anne (August 2016)."The Red Supergiant Content of M31*".The Astrophysical Journal.826 (2): 224.arXiv:1605.07900.Bibcode:2016ApJ...826..224M.doi:10.3847/0004-637X/826/2/224.ISSN 0004-637X.
  134. ^abcdefghijklmnopqrstuvwxyzaaabacadaeafagahaiajakalamanaoapaqarDrout, Maria R.; Massey, Philip; Meynet, Georges (April 2012)."THE YELLOW AND RED SUPERGIANTS OF M33*".The Astrophysical Journal.750 (2): 97.arXiv:1203.0247.Bibcode:2012ApJ...750...97D.doi:10.1088/0004-637X/750/2/97.ISSN 0004-637X.S2CID 119160120.
  135. ^abMassey, Philip; Silva, David R.; Levesque, Emily M.; Plez, Bertrand; Olsen, Knut A. G.; Clayton, Geoffrey C.; Meynet, Georges; Maeder, Andre (September 2009)."Red Supergiants in the Andromeda Galaxy (M31)".The Astrophysical Journal.703 (1):420–440.arXiv:0907.3767.Bibcode:2009ApJ...703..420M.doi:10.1088/0004-637X/703/1/420.S2CID 119293010. Retrieved30 September 2023.
  136. ^Kourniotis, M.; Bonanos, A. Z.; Yuan, W.; Macri, L. M.; Garcia-Alvarez, D.; Lee, C.-H. (1 May 2017)."Monitoring luminous yellow massive stars in M 33: new yellow hypergiant candidates".Astronomy & Astrophysics.601: A76.arXiv:1612.06853.Bibcode:2017A&A...601A..76K.doi:10.1051/0004-6361/201629146.ISSN 0004-6361.S2CID 55559261.
  137. ^Valeev, A. F.; Sholukhova, O.; Fabrika, S. (11 June 2009)."A new luminous variable in M33".Monthly Notices of the Royal Astronomical Society: Letters.396 (1):L21 –L25.arXiv:0903.5222.Bibcode:2009MNRAS.396L..21V.doi:10.1111/j.1745-3933.2009.00654.x.S2CID 14666975.
  138. ^abcBritavskiy, N. E.; Bonanos, A. Z.; Herrero, A.; Cerviño, M.; García-Álvarez, D.; Boyer, M. L.; Masseron, T.; Mehner, A.; McQuinn, K. B. W. (November 2019). "Physical parameters of red supergiants in dwarf irregular galaxies in the Local Group".Astronomy and Astrophysics.631: A95.arXiv:1909.13378.Bibcode:2019A&A...631A..95B.doi:10.1051/0004-6361/201935212.ISSN 0004-6361.S2CID 203593402.
  139. ^abcdeNeugent, Kathryn (2022)."Locating Red Supergiants in the Galaxy NGC 6822".The Astronomical Journal.163 (2): 70.arXiv:2112.03990.Bibcode:2022AJ....163...70D.doi:10.3847/1538-3881/ac410e.
  140. ^González-Torà, Gemma; Davies, Ben; Kudritzki, Rolf-Peter; Plez, Bertrand (23 June 2021)."The temperatures of red supergiants in low-metallicity environments".Monthly Notices of the Royal Astronomical Society.505 (3):4422–4443.arXiv:2106.01807.doi:10.1093/mnras/stab1611.ISSN 0035-8711.
  141. ^Jones, Olivia C.; Maclay, Matthew T.; Boyer, Martha L.; Meixner, Margaret; McDonald, Iain; Meskhidze, Helen (1 February 2018)."Near-infrared Stellar Populations in the Metal-poor, Dwarf Irregular Galaxies Sextans A and Leo A".The Astrophysical Journal.854 (2): 117.arXiv:1712.06594.Bibcode:2018ApJ...854..117J.doi:10.3847/1538-4357/aaa542.ISSN 0004-637X.S2CID 119199303.
  142. ^Abbott, Jay Brian (2004). "Quantitative spectroscopic studies of Wolf-Rayet stars in local group galaxies".Bibcode:2004PhDT.......161A.{{cite journal}}:Cite journal requires|journal= (help)
  143. ^abcdefghijklmnopqrstuvwxyzaaabacadaeafagahaiajakalamanaoapaqarasatauavawaxayazbabbbcbdbebfbgbhbibjbkblbmbnbobpbqbrbsbtbubvbwbxbybzcacbcccdcecfcgchcicjckclcmcncocpcqcrcsctcucvde Wit, S.; Bonanos, A. Z.; Antoniadis, K.; Zapartas, E.; Ruiz, A.; Britavskiy, N.; Christodoulou, E.; De, K.; Maravelias, G. (19 February 2024), "Investigating episodic mass loss in evolved massive stars",Astronomy & Astrophysics,689: A46,arXiv:2402.12442,doi:10.1051/0004-6361/202449607
  144. ^abcHumphreys, Roberta M.; Stangl, Sarah; Gordon, Michael S.; Davidson, Kris; Grammer, Skyler H. (January 2019)."Luminous and Variable Stars in NGC 2403 and M81".The Astronomical Journal.157 (1): 22.arXiv:1811.06559.Bibcode:2019AJ....157...22H.doi:10.3847/1538-3881/aaf1ac.ISSN 0004-6256.S2CID 119379139.
  145. ^abBond, Howard E.; Jencson, Jacob E.; Whitelock, Patricia A.; Adams, Scott M.; Bally, John; Cody, Ann Marie; Gehrz, Robert D.; Kasliwal, Mansi M.; Masci, Frank J. (April 2022)."Hubble Space Telescope Imaging of Luminous Extragalactic Infrared Transients and Variables from the Spitzer Infrared Intensive Transients Survey*".The Astrophysical Journal.928 (2): 158.arXiv:2202.11040.Bibcode:2022ApJ...928..158B.doi:10.3847/1538-4357/ac5832.ISSN 0004-637X.
  146. ^Zachary, Gazak J.; Kudritzki, Rolf; Evans, Chris; Patrick, Lee; Davies, Ben; Bergemann, Maria; Plez, Bertand; Bresolin, Fabio; Bender, Ralf; Wegner, Michael; Bonanos, Alceste Z.; Williams, Stephen J. (2 June 2015)."Red Supergiants as Cosmic Abundance Probes: The Sculptor Galaxy NGC 300".The Astrophysical Journal.805 (2): 9.arXiv:1505.00871.Bibcode:2015ApJ...805..182G.doi:10.1088/0004-637X/805/2/182.ISSN 0004-637X.S2CID 14681047.
  147. ^Prieto, José (2007). "LBT Discovery of a Yellow Supergiant Eclipsing Binary in the Dwarf Galaxy Holmberg IX".arXiv:0709.2376 [Astrophysics].
  148. ^Prieto, José (2007). "LBT Discovery of a Yellow Supergiant Eclipsing Binary in the Dwarf Galaxy Holmberg IX".arXiv:0709.2376 [Astrophysics].
  149. ^Petit, V.; Drissen, L.; Crowther, P. A. (2005). "Quantitative analysis of STIS spectra of NGC 2363-V1".The Fate of the Most Massive Stars.332: 159.Bibcode:2005ASPC..332..157P.
  150. ^"[HMR2016] N4038 13068".SIMBAD.Centre de données astronomiques de Strasbourg.
  151. ^"[HMR2016] N4038 46842".SIMBAD.Centre de données astronomiques de Strasbourg.
  152. ^Ilie, Cosmin; Paulin, Jillian; Freese, Katherine (25 July 2023)."Supermassive Dark Star candidates seen by JWST".Proceedings of the National Academy of Sciences.120 (30): e2305762120.arXiv:2304.01173.Bibcode:2023PNAS..12005762I.doi:10.1073/pnas.2305762120.ISSN 0027-8424.PMC 10372643.PMID 37433001.
  153. ^Ball, Warrick H.; Tout, Christopher A.; Żytkow, Anna N.; Eldridge, John J. (1 July 2011)."The structure and evolution of quasi-stars: The structure and evolution of quasi-stars".Monthly Notices of the Royal Astronomical Society.414 (3):2751–2762.arXiv:1102.5098.doi:10.1111/j.1365-2966.2011.18591.x.S2CID 119239346.
  154. ^Diego, J. M.; et al. (2023). "JWST's PEARLS: A new lens model for ACT-CL J0102−4915, "El Gordo," and the first red supergiant star at cosmological distances discovered by JWST".Astronomy & Astrophysics.672: A3.arXiv:2210.06514.Bibcode:2023A&A...672A...3D.doi:10.1051/0004-6361/202245238.S2CID 252873244.
  155. ^abDiego, J. M.; Pascale, M.; Kavanagh, B. J.; Kelly, P.; Dai, L.; Frye, B.; Broadhurst, T. (September 2022)."Godzilla, a monster lurks in the Sunburst galaxy".Astronomy & Astrophysics.665: A134.arXiv:2203.08158.Bibcode:2022A&A...665A.134D.doi:10.1051/0004-6361/202243605.ISSN 0004-6361.S2CID 247476158.
  156. ^"Scientists face down 'Godzilla', the most luminous star known".Nature.610 (7930): 10. 6 October 2022.Bibcode:2022Natur.610T..10..doi:10.1038/d41586-022-03054-3.ISSN 0028-0836.
  157. ^Diego, J. M.; Sun, Bangzheng; Yan, Haojing; Furtak, Lukas J.; Zackrisson, Erik; Dai, Liang; Kelly, Patrick; Nonino, Mario; Adams, Nathan; Meena, Ashish K.; Willner, S. P.; Zitrin, Adi; Cohen, Seth H.; D'Silva, Jordan C. J.; Jansen, Rolf A. (19 September 2023)."JWST's PEARLS: Mothra, a new kaiju star at z=2.091 extremely magnified by MACS0416, and implications for dark matter models".Astronomy & Astrophysics.679: A31.arXiv:2307.10363.Bibcode:2023A&A...679A..31D.doi:10.1051/0004-6361/202347556.ISSN 0004-6361.S2CID 259991552.
  158. ^Pastorello, A.; Chen, T.-W.; Cai, Y.-Z.; Morales-Garoffolo, A.; Cano, Z.; Mason, E.; Barsukova, E. A.; Benetti, S.; Berton, M.; Bose, S.; Bufano, F.; Callis, E.; Cannizzaro, G.; Cartier, R.; Chen, Ping (May 2019)."The evolution of luminous red nova AT 2017jfs in NGC 4470".Astronomy & Astrophysics.625: L8.arXiv:1906.00811.Bibcode:2019A&A...625L...8P.doi:10.1051/0004-6361/201935511.ISSN 0004-6361.S2CID 155703569.
  159. ^Elias-Rosa, N.; Benetti, S.; Cappellaro, E.; Pastorello, A.; Terreran, G.; Morales-Garoffolo, A; Howerton, S. C.; Valenti, S.; Kankare, E.; Drake, A. J.; Djorgovski, S. G.; Tomasella, L.; Tartaglia, L.; Kangas, T.; Ochner, P.; Filippenko, A. V.; Ciabattari, F.; Geier, S.; Howell, D. A.; Isern, J.; Leonini, S.; Pignata, J.; Turatto, M. (9 January 2018)."SNhunt151: an explosive event inside a dense cocoon".Monthly Notices of the Royal Astronomical Society.475 (2):2614–2631.arXiv:1801.03040.Bibcode:2018MNRAS.475.2614E.doi:10.1093/mnras/sty009.ISSN 0035-8711.S2CID 119519504.
  160. ^Elias-Rosa, N.; et al. (7 September 2016)."Dead or Alive? Long-term evolution of SN 2015bh (SNhunt275)".Monthly Notices of the Royal Astronomical Society.463 (4):3894–3920.arXiv:1606.09024.Bibcode:2016MNRAS.463.3894E.doi:10.1093/mnras/stw2253.ISSN 0035-8711.S2CID 119205955.
  161. ^Cai, Y. -Z.; et al. (3 December 2019)."The transitional gap transient AT 2018hso: new insights into the luminous red nova phenomenon".Astronomy & Astrophysics.631: 9.arXiv:1909.13147.Bibcode:2019A&A...632L...6C.doi:10.1051/0004-6361/201936749.ISSN 0004-6361.S2CID 203593575.
  162. ^Charalampopoulos, P.; et al. (22 January 2024). "The fast transient AT 2023clx in the nearby LINER galaxy NGC 3799 as a tidal disruption of a very low-mass star".Astronomy & Astrophysics.689: A350.arXiv:2401.11773v2.Bibcode:2024A&A...689A.350C.doi:10.1051/0004-6361/202449296.
  163. ^Jencson, Jacob E.; Adams, Scott M.; Bond, Howard E.; van Dyk, Schuyler D.; Kasliwal, Mansi M.; Bally, John; Blagorodnova, Nadejda; De, Kishalay; Fremling, Christoffer; Yao, Yuhan; Fruchter, Andrew; Rubin, David; Barbarino, Cristina; Sollerman, Jesper; Miller, Adam A. (26 July 2019)."Discovery of an Intermediate-luminosity Red Transient in M51 and Its Likely Dust-obscured, Infrared-variable Progenitor".The Astrophysical Journal.880 (2): L20.arXiv:1904.07857.Bibcode:2019ApJ...880L..20J.doi:10.3847/2041-8213/ab2c05.ISSN 2041-8213.
  164. ^Smith, Nathan; Frew, David J. (2011)."A revised historical light curve of Eta Carinae and the timing of close periastron encounters".Monthly Notices of the Royal Astronomical Society.415 (3):2009–2019.arXiv:1010.3719.Bibcode:2011MNRAS.415.2009S.doi:10.1111/j.1365-2966.2011.18993.x.S2CID 118614725.
  165. ^abCai Y. -Z.; et al. (27 October 2021)."Intermediate-luminosity red transients: Spectrophotometric properties and connection to electron-capture supernova explosions".Astronomy & Astrophysics.654: 30.arXiv:2108.05087.Bibcode:2021A&A...654A.157C.doi:10.1051/0004-6361/202141078.ISSN 0004-6361.S2CID 236976052.
  166. ^Pessi, Thallis; Prieto, Jose L.; Monard, Berto; Kochanek, Christopher S.; Bock, Greg; Drake, Andrew J.; Fox, Ori D.; Parker, Stuart; Stevance, Heloise F. (4 April 2022)."Unveiling the Nature of SN 2011fh: A Young and Massive Star Gives Rise to a Luminous SN 2009ip-like Event".The Astrophysical Journal.928 (2): 21.arXiv:2110.09546.Bibcode:2022ApJ...928..138P.doi:10.3847/1538-4357/ac562d.ISSN 1538-4357.S2CID 239024685.
  167. ^abSoker, Noam; Kaplan, Noa (May 2021)."Explaining recently studied intermediate luminosity optical transients (ILOTs) with jet powering".Research in Astronomy and Astrophysics.21 (4): 9.arXiv:2007.06472.Bibcode:2021RAA....21...90S.doi:10.1088/1674-4527/21/4/90.ISSN 1674-4527.S2CID 220496730.
  168. ^Stritzinger, M. D; et al. (22 July 2020)."The Carnegie Supernova Project II. Observations of the intermediate-luminosity red transient SNhunt120".Astronomy & Astrophysics.639: 17.arXiv:2005.00319.Bibcode:2020A&A...639A.103S.doi:10.1051/0004-6361/202038018.ISSN 0004-6361.S2CID 249866047.
  169. ^Cai, Y. -Z; Pastorello, A.; Fraser, M.; Botticella, M. T.; Gall, C.; Arcavi, I.; Benetti, S.; Cappellaro, E.; Elias-Rosa, N.; Harmanen, J.; Hosseinzadeh, G.; Howell, D. A.; Isern, J.; Kangas, T.; Kankare, E.; Kuncarayakti, H.; Lundqvist, P.; Mattila, S.; McCully, C.; Reynolds, T. M.; Somero, A.; Stritzinger, M. D.; Terreran, G. (1 August 2018)."AT 2017be – a new member of the class of intermediate-luminosity red transients".Monthly Notices of the Royal Astronomical Society.480 (3):3424–3445.arXiv:1807.11676.Bibcode:2018MNRAS.480.3424C.doi:10.1093/mnras/sty2070.ISSN 0035-8711.S2CID 118946285.
  170. ^Allan, Andrew P; Groh, Jose H; Mehner, Andrea; Smith, Nathan; Boian, Ioana; Farrell, Eoin J; Andrews, Jennifer E (1 August 2020)."The possible disappearance of a massive star in the low-metallicity galaxy PHL 293B".Monthly Notices of the Royal Astronomical Society.496 (2):1902–1908.arXiv:2003.02242.doi:10.1093/mnras/staa1629.ISSN 0035-8711.
  171. ^Kankare, E.; Kotak, R.; Pastorello, A.; Fraser, M; Mattila, S.; Smartt, S. J.; Bruce, A.; Chambers, K. C.; Elias-Rosa, N.; Flewelling, H.; Fremling, C.; Harmanen, J.; Huber, M.; Jerkstand, A.; Kangas, T.; Kuncarayakti, H.; Magee, M.; Magnier, E.; Polshaw, J.; Smith, K. W.; Sollerman, J.; Tomasella, L. (7 September 2015)."On the triple peaks of SNHunt248 in NGC 5806".Astronomy & Astrophysics.581: 7.arXiv:1508.04730.Bibcode:2015A&A...581L...4K.doi:10.1051/0004-6361/201526631.ISSN 0004-6361.S2CID 85321.
  172. ^Mehner, A.; Baade, D.; Rivinius, T.; Lennon, D. J.; Martayan, C.; Stahl, O.; Štefl, S. (July 2013)."Broad-band spectroscopy of the ongoing large eruption of the luminous blue variable R71".Astronomy & Astrophysics.555: A116.arXiv:1303.1367.Bibcode:2013A&A...555A.116M.doi:10.1051/0004-6361/201321323.ISSN 0004-6361.S2CID 67775752.
  173. ^Aghakhanloo, Mojgan; Smith, Nathan; Milne, Peter; Andrews, Jennifer E.; Filippenko, Alexei V.; Jencson, Jacob E.; Sand, David J.; Van Dyk, Schuyler D.; Wyatt, Samuel; Zheng, WeiKang (28 February 2023)."Repeating periodic eruptions of the supernova impostor SN 2000ch".Monthly Notices of the Royal Astronomical Society.521 (2):1941–1957.arXiv:2212.00113.Bibcode:2023MNRAS.521.1941A.doi:10.1093/mnras/stad630.ISSN 0035-8711.S2CID 254125316.
  174. ^abAghakhanloo, Mojgan; Smith, Nathan; Milne, Peter; Andrews, Jennifer E.; Van Dyck, Schuyler D.; Filippenko, Alexei V.; Jencson, Jacob E.; Lau, Ryan N.; Sand, David J.; Wyatt, Samuel; Zhang, WeiKang (7 September 2023)."Recurring outbursts of the supernova impostor AT 2016blu in NGC 4559".Monthly Notices of the Royal Astronomical Society.526 (1):456–472.arXiv:2212.09708.Bibcode:2023MNRAS.526..456A.doi:10.1093/mnras/stad2702.ISSN 0035-8711.S2CID 254854145.
  175. ^Salmaso, I.; Cappellaro, E.; Tartaglia, L.; Benetti, S.; Botticella, M. T.; Elias-Rosa, M.; Pastorello, A.; Patat, F.; Reguitti, A.; Tomasella, L.; Valerin, G.; Yang, S. (May 2023)."Hidden shock powering the peak of SN 2020faa".Astronomy & Astrophysics.673: 14.arXiv:2302.12527.Bibcode:2023A&A...673A.127S.doi:10.1051/0004-6361/202245781.ISSN 0004-6361.S2CID 257205910.
  176. ^"Papers with Code - The Dusty and Extremely Red Progenitor of the Type II Supernova 2023ixf in Messier 101".astro.paperswithcode.com. Retrieved25 November 2023.
  177. ^Qin, Y.; Zhang, Keming; Bloom, J.; Sollerman, J.; Zimmerman, E.; Irani, I.; Schulze, S.; Gal-yam, A.; Kasliwal, M.; Coughlin, M.; Perley, D.; Fremling, C.; Kulkarni, S. (2024)."The Progenitor Star of SN 2023ixf: A Massive Red Supergiant with Enhanced, Episodic Pre-Supernova Mass Loss".Monthly Notices of the Royal Astronomical Society.534:271–280.arXiv:2309.10022.doi:10.1093/mnras/stae2012.S2CID 262054068.
  178. ^Kilpatrick, Charles D.; et al. (29 June 2023)."EType II-P supernova progenitor star initial masses and SN 2020jfo: direct detection, light-curve properties, nebular spectroscopy, and local environment".Monthly Notices of the Royal Astronomical Society.524 (2):2161–2185.arXiv:2307.00550.Bibcode:2023MNRAS.524.2161K.doi:10.1093/mnras/stad1954.ISSN 0035-8711.S2CID 259306203.
  179. ^Shrestha, Manisha; et al. (2024)."Evidence of weak circumstellar medium interaction in the Type II SN 2023axu".The Astrophysical Journal.961 (2): 247.arXiv:2310.00162.Bibcode:2024ApJ...961..247S.doi:10.3847/1538-4357/ad11e1.
  180. ^Yan, Shengyu; Wang, Xiaofeng; Gao, Xing; Zhang, Jujia; Brink, Thomas G.; Mo, Jun; Lin, Weili; Xiang, Danfeng; Ma, Xiaoran; Guo, Fangzhou; Tomasella, Lina; Benetti, Stefano; Cai, Yongzhi; Cappellaro, Enrico; Chen, Zhihao; Li, Zhitong; Pastorello, Andrea; Zhang, Tiangmeng (7 October 2023)."Discovery of the Closest Ultrastripped Supernova: SN 2021agco in UGC 3855".The Astrophysical Journal.959 (2): L32.arXiv:2310.04827.Bibcode:2023ApJ...959L..32Y.doi:10.3847/2041-8213/ad0cc3.
  181. ^SIMBAD.
  182. ^Ohnaka, K.; Hofmann, K. -H.; Schertl, D.; Weigelt, G.; Baffa, C.; Chelli, A.; Petrov, R.; Robbe-Dubois, S. (1 July 2013)."High spectral resolution imaging of the dynamical atmosphere of the red supergiant Antares in the CO first overtone lines with VLTI/AMBER".Astronomy and Astrophysics.555: A24.arXiv:1304.4800.Bibcode:2013A&A...555A..24O.doi:10.1051/0004-6361/201321063.ISSN 0004-6361.
  183. ^abcdefghivan Leeuwen, F. (1 November 2007)."Validation of the new Hipparcos reduction".Astronomy and Astrophysics.474 (2):653–664.arXiv:0708.1752.Bibcode:2007A&A...474..653V.doi:10.1051/0004-6361:20078357.ISSN 0004-6361.
  184. ^Woodruff, H. C.; Eberhardt, M.; Driebe, T.; Hofmann, K. -H.; Ohnaka, K.; Richichi, A.; Schertl, D.; Schöller, M.; Scholz, M.; Weigelt, G.; Wittkowski, M.; Wood, P. R. (1 July 2004)."Interferometric observations of the Mira star o Ceti with the VLTI/VINCI instrument in the near-infrared".Astronomy and Astrophysics.421 (2):703–714.arXiv:astro-ph/0404248.Bibcode:2004A&A...421..703W.doi:10.1051/0004-6361:20035826.ISSN 0004-6361.
  185. ^Sacuto, S.; Jorissen, A.; Cruzalèbes, P.; Chesneau, O.; Ohnaka, K.; Quirrenbach, A.; Lopez, B. (1 May 2008). "The close circumstellar environment of the semi-regular S-type star π 1 Gruis".Astronomy and Astrophysics.482 (2):561–574.arXiv:0803.3077.Bibcode:2008A&A...482..561S.doi:10.1051/0004-6361:20078306.ISSN 0004-6361.
  186. ^abRamírez, I.; Allende Prieto, C. (1 December 2011)."Fundamental Parameters and Chemical Composition of Arcturus".The Astrophysical Journal.743 (2): 135.arXiv:1109.4425.Bibcode:2011ApJ...743..135R.doi:10.1088/0004-637X/743/2/135.ISSN 0004-637X.
  187. ^abWallstrom, S. H. J.; Danilovich, T.; Muller, H. S. P.; Gottlieb, C. A.; Maes, S.; Van de Sande, M.; Decin, L.; Richards, A. M. S.; Baudry, A.; Bolte, J.; Ceulemans, T.; De Ceuster, F.; de Koter, A.; Mellah, I. El; Esseldeurs, M. (6 December 2023). "ATOMIUM: Molecular inventory of 17 oxygen-rich evolved stars observed with ALMA".Astronomy & Astrophysics.681: A50.arXiv:2312.03467.doi:10.1051/0004-6361/202347632.ISSN 0004-6361.
  188. ^Soubiran, C.; Creevey, O. L.; Lagarde, N.; Brouillet, N.; Jofré, P.; Casamiquela, L.; Heiter, U.; Aguilera-Gómez, C.; Vitali, S.; Worley, C.; de Brito Silva, D. (1 February 2024)."Gaia FGK benchmark stars: Fundamental Teff and log g of the third version".Astronomy and Astrophysics.682: A145.arXiv:2310.11302.Bibcode:2024A&A...682A.145S.doi:10.1051/0004-6361/202347136.ISSN 0004-6361. Note: SeeVizieR catalogue
  189. ^abcdefgMozurkewich, D.; Armstrong, J. T.; Hindsley, R. B.; Quirrenbach, A.; Hummel, C. A.; Hutter, D. J.; Johnston, K. J.; Hajian, A. R.; Elias II, Nicholas M.; Buscher, D. F.; Simon, R. S. (November 2003)."Angular Diameters of Stars from the Mark III Optical Interferometer".The Astronomical Journal.126 (5):2502–2520.Bibcode:2003AJ....126.2502M.doi:10.1086/378596.ISSN 0004-6256.
  190. ^Gatewood, George (1 July 2008)."Astrometric Studies of Aldebaran, Arcturus, Vega, the Hyades, and Other Regions".The Astronomical Journal.136 (1):452–460.Bibcode:2008AJ....136..452G.doi:10.1088/0004-6256/136/1/452.ISSN 0004-6256.
  191. ^Paladini, C.; Klotz, D.; Sacuto, S.; Lagadec, E.; Wittkowski, M.; Richichi, A.; Hron, J.; Jorissen, A.; Groenewegen, M. A. T.; Kerschbaum, F.; Verhoelst, T.; Rau, G.; Olofsson, H.; Zhao-Geisler, R.; Matter, A. (1 April 2017). "The VLTI/MIDI view on the inner mass loss of evolved stars from the Herschel MESS sample".Astronomy and Astrophysics.600: A136.arXiv:1701.05407.Bibcode:2017A&A...600A.136P.doi:10.1051/0004-6361/201527210.ISSN 0004-6361.
  192. ^Vallenari, A.; et al. (Gaia collaboration) (2023)."Gaia Data Release 3. Summary of the content and survey properties".Astronomy and Astrophysics.674: A1.arXiv:2208.00211.Bibcode:2023A&A...674A...1G.doi:10.1051/0004-6361/202243940.S2CID 244398875. Gaia DR3 record for this source atVizieR.
  193. ^abcdefBailer-Jones, C. A. L.; Rybizki, J.; Fouesneau, M.; Demleitner, M.; Andrae, R. (2021)."Estimating Distances from Parallaxes. V. Geometric and Photogeometric Distances to 1.47 Billion Stars in Gaia Early Data Release 3".The Astronomical Journal.161 (3): 147.arXiv:2012.05220.Bibcode:2021AJ....161..147B.doi:10.3847/1538-3881/abd806.S2CID 228063812. Data about this star can be seenhere.
  194. ^Arroyo-Torres, B.; et al. (June 2014). "VLTI/AMBER observations of cold giant stars: atmospheric structures and fundamental parameters".Astronomy & Astrophysics.566: 11.arXiv:1404.7384.Bibcode:2014A&A...566A..88A.doi:10.1051/0004-6361/201323264.S2CID 16778588. A88.
  195. ^abcdefgRichichi, A.; Percheron, I.; Khristoforova, M. (1 February 2005)."CHARM2: An updated Catalog of High Angular Resolution Measurements".Astronomy and Astrophysics.431 (2):773–777.Bibcode:2005A&A...431..773R.doi:10.1051/0004-6361:20042039.ISSN 0004-6361.
  196. ^Vallenari, A.; et al. (Gaia collaboration) (2023)."Gaia Data Release 3. Summary of the content and survey properties".Astronomy and Astrophysics.674: A1.arXiv:2208.00211.Bibcode:2023A&A...674A...1G.doi:10.1051/0004-6361/202243940.S2CID 244398875. Gaia DR3 record for this source atVizieR.
  197. ^Min, Cheulhong; Matsumoto, Naoko; Kim, Mi Kyoung; Hirota, Tomoya; Shibata, Katsunori M.; Cho, Se-Hyung; Shizugami, Makoto; Honma, Mareki (1 April 2014). "Accurate Parallax Measurement toward the Symbiotic Star R Aquarii".Publications of the Astronomical Society of Japan.66 (2): 38.arXiv:1401.5574.doi:10.1093/pasj/psu003.ISSN 2053-051X.
  198. ^Vallenari, A.; et al. (Gaia collaboration) (2023)."Gaia Data Release 3. Summary of the content and survey properties".Astronomy and Astrophysics.674: A1.arXiv:2208.00211.Bibcode:2023A&A...674A...1G.doi:10.1051/0004-6361/202243940.S2CID 244398875. Gaia DR3 record for this source atVizieR.
  199. ^"HD 6860 Overview".NASA Exoplanet Archive. Retrieved7 June 2024.
  200. ^Wittkowski, M.; et al. (December 2006), "Tests of stellar model atmospheres by optical interferometry. IV. VINCI interferometry and UVES spectroscopy of Menkar",Astronomy and Astrophysics,460 (3):855–864,arXiv:astro-ph/0610150,Bibcode:2006A&A...460..855W,doi:10.1051/0004-6361:20066032,S2CID 16525827

External links

Formation
Evolution
Classification
Remnants
Hypothetical
Nucleosynthesis
Structure
Properties
Star systems
Earth-centric
observations
Lists
Related
Portals:
Retrieved from "https://en.wikipedia.org/w/index.php?title=List_of_largest_stars&oldid=1282053811#SMC_018136"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp